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Abstract In this paper, we introduce the notion of a membrane computing schema
for string objects. We propose a computing schema for a membrane network (i.e.,
tissue-like membrane system) where each membrane performs unique type of oper-
ations at a time and sends the result to others connected through the channel. The
distinguished features of the computing models obtained from the schema are:

1. only context-free insertion operations are used for string generation,
2. some membranes assume filtering functions for structured objects (molecules),
3. generating model and accepting model are obtained in the same schema, and

both are computationally universal,
4. several known rewriting systems with universal computability can be reformu-

lated by the membrane computing schema in a uniform manner.

The first feature provides the model with a simple uniform structure which facilitates
a biological implementation of the model, while the second feature suggests further
feasibility of the model in terms of DNA complementarity.

Through the third and fourth features, one may have a unified view of a variety of
existing rewriting systems with Turing computability in the framework of membrane
computing paradigm.

1 Introduction

In the theory of bio-inspired computing models, membrane systems (or P systems)
have been widely studied from various aspects of the computability such as the
optimal system designs, the functional relations among many ingredients in different
levels of computing components, the computational complexity and so forth. Up to
the present, major concerns are focused on the computational capability of multi-
sets of certain objects in a membrane structure represented by a rooted tree, and
there are a relatively limited amount of works in the membrane structure of other
types (like a network or graph) on string objects and their languages: those are,
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for example, in the context of P system on graph structure [15], of the tissue P
systems [11], and of spiking neural P systems [3, 7].

On the other hand in DNA computing theory, a string generating device called
insertion-deletion system has been proposed and investigated from the unique view-
point of non-rewriting nature in generating string objects [10, 14]. Among others,
string insertion operation with no context is of our particular interests, because of
the relevance to biological feasibility in terms of DNA sequences.

In this paper, we are concerned with tissue-like membrane systems with string
insertion operations and investigate the computational capability of those systems.
By using the framework of tissue-like membrane systems, however, our major focus
is on studying the new aspects of the computational mechanisms used in a variety
of existing models based on string rewriting.

To this aim, we propose the notion of a membrane computing schema which
provides a unified view and framework to investigate new aspects of the variety of
computational mechanisms. More specifically, let M be a given computing device
(grammar or machine) based on string manipulation. Then by a membrane comput-
ing schema Π , we represent the core structure of M in question. At the same time,
we also consider an interpretation I to Π which specifies the details of M . In this
manner, we are able to have M that is embodied as a tissue-like membrane system
I (Π) with string insertion operation.

The advantages of this schematic approach to computing are the following:

(1) High transparency of the computing mechanism is obtained by separating the
skeletal (core) part from other detailed specificity of the computation.

(2) Structural modularity of the computing model facilitates our better understand-
ing of the computing mechanism.

With this framework, we will present not only new results of the computing mod-
els with universal computability but also a unified view of those models from the
framework of tissue-like membrane system with string insertion operations.

2 Preliminaries

We assume the reader to be familiar with all formal language notions and notations
in standard use. For unexplained details, consult, e.g., [14, 16].

For a string x over an alphabet V (i.e., x in V ∗), lg(x) denotes the length of x. For
the empty string, we denote it by λ. For an alphabet V , V = {a | a ∈ V }. A binary
relation ρ over V is called an involution if ρ is injective and ρ2 is an identity (i.e.,
for any a ∈ V , if we write ρ(a) = a, then it holds that ρ(a) = a). A Dyck language
D over V is a language generated by a context-free grammar G = ({S},V ,P,S),
where P = {S → SS,S → λ} ∪ {S → aSa | a ∈ V } and k is the cardinality of V .

An insertion system [10] is a triple γ = (V ,P,A), where V is an alphabet, A is
a finite set of strings over V called axioms, and P is a finite set of insertion rules.
An insertion rule over V is of the form (u, x, v), where u,x, v ∈ V ∗. We define
the relation �→ on V ∗ by w �→ z iff w = w1uvw2 and z = w1uxvw2 for some



insertion rule (u, x, v) ∈ P , w1,w2 ∈ V ∗. As usual �→∗ denotes the reflexive and
transitive closure of �→. An insertion language generated by γ is defined as follows:
L(γ ) = {w ∈ V ∗ | s �→∗ w, s ∈ A}. An insertion rule of the form (λ, x,λ) is said to
be context-free, and we denote it by λ → x.

We denote by RE,CF,LIN, and RG the families of recursively enumerable lan-
guages, of context-free languages, of linear languages, and of regular languages,
respectively.

A matrix grammar with appearance checking is a construct G = (N,T ,S,M,F),
where N,T are disjoint alphabets, S ∈ N , M is a finite set of sequences of the
form (A1 → x1, . . . ,An → xn), n ≥ 1, of context-free rules over N ∪ T (with
Ai ∈ N,xi ∈ (N ∪ T )∗, in all cases), and F is a set of occurrences of rules in
M (we say that N is the non-terminal alphabet, T is the terminal alphabet, S is the
axiom, while the elements of M are called matrices).

For w,z ∈ (N ∪ T )∗, we write w �⇒ z if there is a matrix (A1 → x1, . . . ,An →
xn) in M and the strings wi ∈ (N ∪T )∗,1 ≤ i ≤ n+1, such that w = w1, z = wn+1,

and for all 1 ≤ i ≤ n, either wi = w′
iAiw

′′
i ,wi+1 = w′

ixiw
′′
i , for some w′

i ,w
′′
i ∈ (N ∪

T )∗, or wi = wi+1, Ai does not appear in wi , and the rule Ai → xi appears in F .
(The rules of a matrix are applied in order, possibly skipping the rules in F if they
cannot be applied; we say that these rules are applied in the appearance checking
mode.) If F = ∅, then the grammar is said to be without appearance checking (and
F is no longer mentioned).

We denote by �⇒∗ the reflexive and transitive closure of the relation �⇒.
The language generated by G is defined by L(G) = {w ∈ T ∗ | S �⇒∗ w}. The

family of languages of this form is denoted by MATac . When we use only grammars
without appearance checking, then the obtained family is denoted by MAT . It is
known that MAT ⊂ MATac = RE.

A matrix grammar G = (N,T ,S,M,F) is said to be in the binary normal form
if N = N1 ∪ N2 ∪ {S,#}, with these three sets mutually disjoint, and the matrices in
M are of one of the following forms:

1. (S → XA), with X ∈ N1,A ∈ N2,

2. (X → Y,A → x), with X,Y ∈ N1,A ∈ N2, x ∈ N2 ∪ N2
2 ∪ T ∪ {λ},

3. (X → Y,A → #), with X,Y ∈ N1,A ∈ N2,
4. (X → λ,A → x), with X ∈ N1,A ∈ N2, and x ∈ T ∪ {λ}.
Moreover, there is only one matrix of type 1 and F consists exactly of all rules
A → # appearing in matrices of type 3; # is a trap-symbol, once introduced, it is
never removed. A matrix of type 4 is used only once, at the last step of a derivation.
A matrix of type 3 is called appearance checking matrix rule.

For each matrix grammar (with appearance checking) there effectively exists an
equivalent matrix grammar (with appearance checking) in the binary normal form.
(Note that the definition of the binary normal form presented here is a variant of the
one in [5].)

A random context grammar is a construct G = (N,T ,S,P ), where N,T are
disjoint alphabets, S ∈ N , P is a finite set of rules of the form (A → x,Q,R),
where A → x is a context-free rule (A ∈ N,x ∈ (N ∪ T )∗), Q and R are subsets
of N .



For α,β ∈ (N ∪ T )∗, we write α �⇒ β iff α = uAv, β = uxv for some u,v ∈
(N ∪ T )∗, (A → x,Q,R) ∈ P and all symbols of Q appear in uv, and no symbol
of R appears in uv. We denote by �⇒∗ the reflexive and transitive closure of the
relation �⇒.

The language generated by G is defined by L(G) = {w ∈ T ∗ | S �⇒∗ w}. The
family of languages of this form is denoted by RC. It is known that RC = RE [5].

Note that in what concerns the definitions above for matrix and random context
grammars, we only deal with the type 2 (context-free) grammar as the core grammar.

3 Membrane Computing Schema, Interpretation and Languages

We now introduce the notion of a membrane computing schema in a general form,
then we will present a restricted version, from which a variety of specific computing
models based on insertion operations and filtering can be obtained in the framework
of a tissue-like membrane computing. That is, a membrane computing schema is
given as a skeletal construct consisting of a number of membranes connected with
synapses (or channels) whose structure may be taken as a kind of tissue P systems
(e.g., [11]).

3.1 Membrane Computing Schema

A membrane computing schema of degree (p,k,t) is a construct

Π = (V ,T ,Com,Ope,Fil,Syn, is ,Out),

where

• V is a finite alphabet with an involution relation ρ called the working alphabet.
• T is a subset of V called the terminal alphabet.
• Com = {Com1, . . . ,Comp} is a finite set with p elements, called communication

cells.
• Ope = {Ope1, . . . ,Opek} is a finite set with k elements, called operation cells.
• Fil = {SF,FF} ∪ {FF1, . . . ,FFt} is a finite set with (t + 2) elements, called

filtering cells. (More specifically, SF and FF are called structured filter and final
filter, respectively, and FF1, . . . ,FFt are called sub-filter cells).

• Syn is a subset of (Com × Ope) ∪ (Ope × Com) ∪ (Com × (SubFil ∪ {SF})) ∪
({FF} × Com) ∪ (SubFil × Ope) ∪ {(SF,FF), (FF,Out)}, where SubFil =
{FF1, . . . ,FFt}, which determines the tissue membrane structure of Π . (See
Fig. 1.)

• is (= Com1) is the distinguished cell (to designate some specific role).
• Out is the output cell (for obtaining the outputs).



Fig. 1 Modular structure of 
membrane network in Π

Remark

(1) For i = 1, . . . ,p, each cell Comi serves as a communication channel, that is,
any string x in the cell Comi is sent out to all the cells indicated by Syn.

(2) For j = 1, . . . ,k, each cell Opej consists of a finite number of rules {σj1, . . . ,

σjs}, where each σji is a string insertion operation of the form: λ → u, where
u ∈ V ∗.

(3) SF and FF are associated with two languages LSF and LFF over V , respectively.
Further, for 	 = 1, . . . ,t, each cell FF	 is also associated with a language LFF	

.

3.2 Interpretation of Π

In order to embody a membrane computing schema Π , we need to give further
information for Π specifying the initial configuration, each operation in Ope, and
materializing the filtering cells SF, FF, and FF	 (1 ≤ 	 ≤ t). Let us call such a
notion an interpretation I to the schema Π which enables us to have an embodied
computing model I (Π) that is feasible in a usual sense. In what follows, we use the
following notation:

Notation For any x in Com ∪ SubFil ∪ {FF}, let Syn-from(x) = {y | (x, y) ∈ Syn},
and for any y in Ope ∪ SupFil ∪ {SF}, let Syn-to(y) = {x | (x, y) ∈ Syn}.

Formally, an interpretation I to Π of degree (p,k,t) is a construct

I = (
w0, {R1, . . . ,Rk},LSF,LFF, {LFF	

| 1 ≤ 	 ≤ t}),
where

• w0 is a string in V ∗ called the axiom, where V is the working alphabet of Π .
• Ri specifies a set of insertion operations used in Opej (for j = 1, . . . ,k)
• LSF (LFF) materializes a concrete specification about the function of SF (FF,

respectively). In practical operational phases (described below), we assume the
following:



1. In the cell SF, each string is assumed to form a certain structure (e.g., struc-
tured molecule based on hybridization in terms of H-bonds via minimal energy
principle). SF takes as input a string u over V and allows it to filter through if
it is in LSF (otherwise, a string u is lost). Then after building up a structured
form su of u, SF removes all parts of structures from su and produces as out-
put the concatenation of all remaining strings. The output v is sent out to the
cell FF.

2. FF receives as input a string v over V (from SF). A string v filters through
if it is in LFF and is sent out to Out. Otherwise, it is sent out to all cells in
Syn-from(FF).

3. Each FF	 receives as input a string u over V . Then a string v filters through if
it is in LFF	

and is sent out to all cells in Syn-from(FF	). Otherwise, it is lost.
4. Filtering applies simultaneously to all strings in the filtering cell.

Note that in the case SubFil is empty in a given Π , an interpretation to Π is simply
written as I = (w0, {R1, . . . ,Rk},LSF,LFF).

3.3 Transitions and Languages

Given a schema Π of degree (p,k,t) and an interpretation I to Π , we now have
a membrane system I (Π) based on string insertions. In what follows, we define a
transition sequence of I (Π) and the language associated with I (Π).

The (p+ 1)-tuple of languages over V represented by (L1, . . . ,Lp,Lout) consti-
tutes a configuration of the system, where each Li represents the set of all strings
in the cell Comi (for all i = 1, . . . ,p), and Lout is the set of strings presented in the
output cell (of the system at some time instance).

Let C1 = (L1, . . . ,Lp,Lout) and C2 = (L′
1, . . . ,L

′
p,L

′
out) be two configurations

of the system.
We define one transition from C1 to C2 in the following steps:

(0) Pre-checking Step: For each 	 = 1, . . . ,t, consider L[	] = ⋃q

i=1 L	i
, where

Syn-to(FF	) = {Com	1, . . . ,Com	q }. Then each cell FF	 filters out all strings
of L[	] that are not in LFF	

, and all strings that have passed through are sent to
all the cells in Syn-from(FF	). (In the case when t = 0, i.e., SubFil = ∅, this
step is skipped.)

(1) Evolution Step: For each j = 1, . . . ,k, let σj1, . . . , σjs be all the operations
given in Opej .

Suppose that we apply operations σji : λ → uji (1 ≤ i ≤ s) to a string v which
means that each σji is applied to v simultaneously. Further, when we apply σji to v,
the location in v to insert uji is non-deterministically chosen and the result σji(v)

is considered as the set of all possible strings obtained from v by σji . (Note that if
two or more rules share the same location to insert, then all possible permutations of
those rules are considered to apply to the location.) The result of such an application
of all operations in Opej to v is denoted by Opej (v).



Let L(j) = ⋃d
m=1 Ljm , where Syn-to(Opej ) ∩ Com = {Comj1, . . . ,Comjd

}.
Then the total result performed by Opej to L(j) is defined as

Opej

(
L(j)

) =
⋃

v∈L(j)

Opej (v).

This result is then sent out to all cells in Syn-from(Opej ) simultaneously.

(2) Filtering Step: For each i = 1, . . . ,p, let L̃i = ⋃r
n=1 Opejn

(L(jn)), where

Syn-from(Comi ) = {Opej1
, . . . ,Opejr

}. Further, let Le = ⋃g

m=1 L̃im , where
Syn-to(SF) = {Comi1, . . . ,Comig }.

SF takes as input the set Le and produces as output a set of strings Lf . (Recall
that in the cell SF, each string u is assumed to form a certain structure, and the
output of SF is the reduced string by removing structural parts from u in LSF .) Then
SF sends out Lf to FF. (Any element of Le that was filtered off by SF is assumed
to be lost.)

Finally, the cell FF filters out strings of Lf depending upon whether they are
in LFF or not. All strings in Lf that passed through FF are sent out to Out, while
others are simultaneously sent to all Comi in Syn-from(FF) or they are all lost if
Syn-from(FF) = ∅.

Let Lff be the set of all strings that were filtered off by FF. Then we define
C2 = (L′

1, . . . ,L
′
p,L

′
out) by setting for each i = 1, . . . ,p

L′
i =

{
Lff if Comi ∈ Syn-from(FF),
L̃i otherwise.

Further, let L′
out = Lout ∪ Lf (Out), where Lf (Out) = Lf − Lff (the set of all

strings that have passed through FF and been sent to Out).

Remark

(1) Each cell in Com not only provides a buffer for storing intermediate results in
the computation process but also transmit them to the cells specified by Syn.

(2) Each cell in Ope takes as input a set of strings L and applies insertion operations
to L, and sends out the result to the cells specified by Syn.

(3) Each filtering cell in Fil also takes as input a set of strings L and performs
filtering of L in a way previously described, and sends out the result to the cells
specified by Syn.

(4) The system has a global clock and counts time in such a way that every cell
(including communication cells) takes one unit time to perform its task (de-
scribed in (1), (2), and (3) for Com, Ope and Fil, respectively), irrespective of
the existence of strings in it.

Let I = (w0, {R1, . . . ,Rk},LSF,LFF, {LFF	
| 1 ≤ 	 ≤ t}) be an interpretation

to Π . We write C1 �⇒ C2 if there is a transition from C1 to C2 of I (Π).



A configuration C0 = ({w},
p

︷ ︸︸ ︷
∅, . . . ,∅) with w in V ∗ is called the initial configu-

ration. (We assume that filtering cells are all empty in the initial configuration.)
For any n ≥ 0, let C0 �⇒n Cn = (L1,n, . . . ,Lp,n,L

(n)
out) be a sequence of n-

transitions which we call a computation with n transitions from C0. Then a language
L

(n)
out is called the nth output from C0.

Now, we consider two types of computing models induced from I (Π); one is the
generating model and the other the accepting model.

[Generating Model] In the case of a generating model, we concern all computa-
tions whose results are present in the output cell.

We define the language generated by I (Π) as follows:

Lg

(
I (Π)

) =
⋃

n≥0

L
(n)
out,

where L
(n)
out is the nth output from (w0,∅, . . . ,∅) and w0 is the axiom of I .

[Accepting Model] In the case of an accepting model, we make a slight modifi-
cation on an interpretation I and consider the following I = (λ, {R1, . . . ,Rk},LSF,

LFF, {LFF	
| 1 ≤ 	 ≤ t}) with LFF which functions in such a way that if a string v

filters through LFF , then (not v but) a special symbol “Yes” is sent to Out.
Let w be an input string to be recognized. Then w is accepted iff the re-

sult Yes is present in the output cell after a certain number of transitions from
C0 = ({w},∅, . . . ,∅). Thus, we define the language accepted by I (Π) as follows:

La

(
I (Π)

) = {
w ∈ T ∗ | Yes ∈ L

(n)
out: the nth output from (w,∅, . . . ,∅)

for some n ≥ 0
}
.

Finally, for a class of schemes S = {Π of degree (p,k,t) | p,k,t≥ 0} and for
a class of interpretations I , we denote by L M S x(S, I) the family of all languages
Lx(I (Π)) specified by those systems as above, where Π is in S and I is in I . That
is,

L M S x(S, I) = {
Lx(I (Π)) | I ∈ I is an interpretation to Π ∈ S

}

where x is in {a,g}.

4 Characterizations by Membrane Schema Π0

The structure of the membrane computing schema Π introduced in the previous
section seems to be general enough to induce a computing device of the univer-
sal computability by finding an appropriate interpretation. In what follows, we will
show that such a universal computability can be realized by much simpler schemes
together with appropriate interpretations of moderately simple filtering cells.



Fig. 2 Membrane computing 
schema: Π0,k

First, we consider the following simple membrane computing schema of degree
(2,k,0):

Π0,k = (V ,T ,Com,Ope,Fil,Syn, is ,Out),

where:

(1) V , T , Ope, is and Out are the same as in Π

(2) Com = {Com1,Com2}
(3) Fil = {SF,FF} (i.e., SubFil is empty)
(4) Syn = {Com1,Opei ), (Opei ,Com2) | 1 ≤ i ≤ k} ∪ {(FF,Com1), (Com2,SF),

(SF,FF), (FF,Out)} (See (a) of Fig. 2).

Let Π0 = ⋃
k≥0 Π0,k.

We are now in a position to present our first result.

Theorem 4.1 There exists a class of interpretations IG such that RE = L M S g(Π0,

IG).

Proof We prove only the inclusion ⊆. (The opposite inclusion is due to a conse-
quence of the Turing–Church thesis.)

Let L be any language in RE that is generated by a Chomsky type-0 gram-
mar G = (N,T ,S,P ). Then we consider the following interpretation IG =
(S,RG,LSF,LFF) to Π0,k, where

(i) For each r : u → v in P , construct Rr = {λ → vr, λ → uRr}, and let RG =
{Rr | r ∈ P }. (Note that the cardinality of RG gives k of Π0,k.)

(ii) • LSF is given as the following language: Lmir = {xwwRy | x, y,w ∈ V ∗}.
That is, a string filters through SF iff it is an element in Lmir, where V =
N ∪ T ∪ {r | r ∈ P }. (Recall that, by definition of SF, any string in SF is
assumed to form a structure, and we assume the hybridization by involution
relation ρ over V . Specifically, SF performs two functions: it only accepts all
structures of molecules containing a single hairpin formed by ww, and then
it removes the portion of a hairpin from the structure and sends out the rest
part of the string to FF (see (b) of Fig. 2). The structures rejected by SF are
all lost.)



• LFF is simply given as T ∗, so that only strings in T ∗ can pass through FF
and are sent to the output cell Out. Other strings are all sent to Com1.

For any n ≥ 1, let C0 = ({S},∅,∅) �⇒n Cn = (L1,n,L2,n,L
(n)
out) be a computation

with n transitions in IG(Π0,k). Suppose that S �⇒n−1 α ⇒r β in G, where α =
xuy, β = xvy and r : u → v is used. Then we can show that

(a) α is in L1,(n−1),
(b) β ′ = xvruuRry is in SF, and
(c) after filtering by SF, the reduced string of β ′, i.e., a string xvy(= β) is sent to

FF.

In FF, if β is not in T ∗, then it is sent to Com1 and, therefore, in L1,n, where
Cn = (L1,n,L2,n,L

(n)
out). Otherwise, β is sent to L

(n)
out. That is, if β is in L(G), then

we have β is in Lg(IG(Π0,k)).
Conversely, suppose that for any n ≥ 1, α is in L1,n. Then there exists α′ =

α1wwRα2 in Com2 such that α = α1α2. From the way of constructing RG, there
exists a unique rule r : u → v in P such that Rr = {λ → vr,λ → uRr} and w = ru.
(No other Rr ′ (r ′ �= r) can make a substring wwR by insertion operations because
of the uniqueness of r .)

Therefore, we can write α′ = α1ruuRrα2 for some α1, α2. Then there must
exist α′

1 such that α1 = α′
1v because of the rule λ → vr . Hence, we have α′ =

α′
1vruuRrα2 from which we can derive that α′

1uα2 is in L1,(n−1). Thus, there exists
a derivation: α′

1uα2 �⇒r α′
1vα2 = α in G. By iteratively applying the above argu-

ment, we eventually conclude that there exists a derivation: S �⇒n α in G. (For
more details, consult discussion in Sect. 3 of [13].)

Taking L1,0 = {S} into consideration, it holds that for any n ≥ 0, L1,n = {α |
S �⇒n α in G}. If α is in Lg(IG(Π0,k)), then it is also in L(G). Thus, we have
L(G) = Lg(IG(Π0,k)). Clearly, considering for IG the class of interpretations IG

for all type-0 grammars G, we complete the proof. �

Note The language Lmir used for LSF can be replaced with simpler (regular) lan-
guage LG = ⋃

r∈P V ∗{ruuRr}V ∗, where r : u → v ∈ P and P is the set of produc-
tions of G. However, we choose Lmir here because of its independence of G.

Theorem 4.2 There exists a class of interpretations IM such that RE = L M S a(Π0,

IM).

Proof We use the same strategy as in Theorem 4.1, but start with a (nondeterminis-
tic) Turing machine M . That is, let L(M) be any language in RE accepted by M =
(Q,T ,U, δ,p0,F ), where δ ⊆ Q × U × Q × U × {L,R}. For (p, a, q, c, i) ∈ δ,
we write (p, a) → (q, c, i) ∈ δ. Without loss of generality, we may assume that M

immediately stops as soon as it enters into a final state of F . An instantaneous de-
scription (ID) of M is represented by a string #xpay#′ in {#}U∗QU∗{#′}, where
xay is the tape content (x, y ∈ U∗, a ∈ U ), M is in the state p(∈ Q) and the tape
head is on a, and #(#′) is the left-boundary (right-boundary).



Given an input w(∈ T ∗), M starts computing w from the state p0, represented
by an ID: #p0w#′. (We may assume that the tape content is one-way extendible to
the right.) In general, suppose that a transition rule (p, a) → (q, c, i) ∈ δ is applied
to an ID: #xbpay#′. Then we have a transition between IDs of M :

• #xbpay#′ �⇒ #xbcqy#′ (if i = R ),
• #xbpay#′ �⇒ #xqbcy#′ (if i = L ),
• #xbp#′ �⇒ #xbcq#′ (if i = R, and y = λ),
• #xbp#′ �⇒ #xqbc#′ (if i = L, and y = λ).

In each case, one can consider a rewriting rule, for example, a rule pa → cq for the
first case, or a rule p#′ → cq#′ for the third case. Let PM be the set of all rewriting
rules obtained from δ in the manner mentioned above. Further, we define L(M) as
{#p0w#′ | #p0w#′ �⇒∗ #xqy#′ for some q ∈ F,x, y ∈ U∗}.

We now consider the following interpretation IM = (RM,LSF,LFF):

(i) For each r : u → v in PM , construct Rr = {λ → vr, λ → uRr}, and let RM =
{Rr | r ∈ PM}, where the cardinality of RM gives k in the degree of Π0,k.

(ii) LSF is given in the same way as in IG in the proof for Theorem 4.1.
(iii) LFF is given as V ∗FV ∗, where V = U ∪ {#,#′} ∪ {r | r ∈ PM }.
Let w be any string in T ∗ and n ≥ 0. Then from the way of constructing IM together
with discussion above, it is easily seen that #p0w#′ �⇒n #xqy#′ for some q ∈ F ,
x, y ∈ U∗ iff there exists Yes ∈ L

(n)
out such that C0 = ({#p0w#′},∅,∅) �⇒n Cn =

(L1,n,L2,n,L
(n)
out). Thus, we have L(M) = La(IM(Π0,k)). Let IM be the class of

interpretations IM for all Turing machines M , which completes the proof. �

5 Further Results on Some Variants of Membrane Schema

We now introduce two classes of membrane computing schemes Π1.5 and Π1 which
are variants of Π0. With an appropriate class of interpretations I , both are able to
induce a family of computing devices that can again characterize RE.

A membrane computing schema Π1,k,t is given as follows:

Π1,k,t = (V ,T ,Com,Ope,Fil,Syn, is ,Out),

where:

(1) V , T , Ope, is and Out are the same as in Π0,k.
(2) Com = {Com1}.
(3) Fil = {SF,FF} ∪ SubFil, where SubFil = {FFi | 1 ≤ i ≤ t} or = ∅ (t= 0).
(4) Syn = {(Com1,FFi ), (FFi ,Opei ) | 1 ≤ i ≤ t} ∪ {(Com1,Opej ) | t+ 1 ≤ j ≤

k} ∪ (Opei ,Com1) | 1 ≤ i ≤ k} ∪ {(Com1,SF), (SF,FF), (FF,Out)}. (See (a)
of Fig. 3.)

(Note: In (3) and (4) above, t can take any integer in {0,1, . . . ,k}, and when t= 0,
it means the corresponding set is empty. Π1,k,t is a membrane computing schema
of degree (1,k,t) with t≤ k.)



Fig. 3 Membrane computing
schema: Π1,k,t

Notation We now consider the following two classes of schemes:

Π1.5 =
⋃

k>t≥0

Π1,k,t,

Π1 =
⋃

k≥0

Π1,k,k.

Theorem 5.1 There exists a class of interpretations IGm such that RE = L M S g

(Π1.5, IGm).

Proof sketch We use an argument similar to the one in Theorem 4.1 and start with
a matrix grammar. That is, let L be any language in RE generated by a matrix
grammar Gm = (N,T ,S,M,F) with appearance checking, where N = N1 ∪ N2 ∪
{S,#}, and we may assume that Gm is in the binary normal form (see Sect. 2).

We consider the following interpretation IGm = (XA,RGm,LSF,LFF, {LFFi
|

1 ≤ i ≤ t}), where

(i) XA is the string in (S → XA) of Gm.
(ii)-1: k is the cardinality of M and t is the number of appearance checking matrix

rules in M . For each appearance checking rule mi : (X → Y,A → #) (1 ≤
i ≤ t), construct Rmi

= {λ → Ysmi
, λ → Xsmi

}.
(ii)-2: For other rules mj : (X → Y,A → x) in M (where Y ∈ N1 ∪ {λ}, x ∈

T ∪ N2 ∪ N2
2 ∪ {λ};t + 1 ≤ j ≤ k), construct Rmj

= {λ → Ysmj
, λ →

Xsmj
, λ → xrmj

, λ → Armj
}. Then let RGm = {Rm1, . . . ,Rmk}.

(iii) • LSF is given as the following regular language: Lmat = LsLr , where

Ls = {
smi

XXsmi
| mi : (X → Y,A → y) ∈ M, 1 ≤ i ≤ k

}∗
, and

Lr = (
T ∪ N2 ∪ {rmj

AArmj
| mj : (X → Y,A → x) ∈ M,

t+ 1 ≤ j ≤ k})∗
.



• LFFi
is given as follows: For each appearance checking rule mi : (X →

Y,A → #) (1 ≤ i ≤ t), consider

Lmi
= (V ∪ V )∗ − (V ∪ V )∗{A}(V ∪ V )∗,

where V = T ∪ N ∪ {sm, rm | m ∈ M}.
Then LFFi

is given as Lmi
. (Thus, FFi performs in such a way that it

allows only strings in Lmi
to pass through and sends them to the cell Opei .

Other strings are all lost.)
• Finally, LFF is given as T ∗, so that only strings in T ∗ can pass through FF

and are sent to Out.

Let C0 = ({XA},∅) and consider a transition sequence: C0 �⇒n Cn = (L1,n,

L
(n)
out). Then for any α ∈ (N ∪ T )∗ and n ≥ 0, it holds that α ∈ L1,n iff XA �⇒n α

in Gm. Thus, we have L(Gm) = Lg(IGm(Π1,k,t)). Let IGm be the class of interpre-
tations IGm for all matrix grammars Gm, which completes the proof. �

Theorem 5.2 There exists a class of interpretations IGr such that RE = L M S g

(Π1, IGr ).

Proof sketch We use the same argument as the one in Theorem 5.1, but start
with a random context grammar Gr = (N,T ,S,P ) generating arbitrary recursively
enumerable language L (see Sect. 2). Then consider the following interpretation
IGr = (S,RGr ,LSF,LFF, {LFFi

| 1 ≤ i ≤ k}), where

(i) k is the cardinality of P . For each rule ri : (A → x,Q,R) (1 ≤ i ≤ k), construct
Rri = {λ → xri, λ → Ari}. Then let RGri

= {Rri | ri ∈ P }.
(ii) • LSF is defined by the regular language:

Lm = (
T ∪ {rAAr | r : (A → x,Q,R) ∈ P })∗

.

• LFFi
is given as follows: For each rule ri : (A → x,Q,R), let

Lri = (V ∪ V )∗{A}(V ∪ V )∗

∩
⋂

X∈Q

(V ∪ V )∗{X}(V ∪ V )∗

∩
⋂

X∈R

(
(V ∪ V )∗ − (V ∪ V )∗{X}(V ∪ V )∗

)
,

where V = N ∪ T ∪ {r | r ∈ P }. Then LFFi
is defined by Lri . (That is, each

FFi performs in such a way that it allows only strings in Lri to pass through
and sends them to the cell Opei . Other strings are all lost.)

• Finally, LFF is given as T ∗, so that only strings in T ∗ can pass through FF
and are sent out to Out.

Let C0 = ({S},∅) (note that S is the starting symbol of Gr ) and consider a tran-
sition sequence: C0 �⇒n Cn = (L1,n,L

(n)
out). Then for any α ∈ (N ∪ T )∗ and n ≥ 0,



Fig. 4 Membrane computing
schema: Π2,k

it holds that α ∈ L1,n iff S �⇒n α in Gr . Thus, we have L(Gr) = Lg(IGr (Π1,k,k)).
Letting IGr be the class of interpretations IGr for all random context grammars Gr ,
we complete the proof. �

We present yet another class of membrane computing schemes Π2 which is sim-
pler than Π0 but still able to provide the universal computability of the models
induced from the schema with appropriate interpretations, but at the sacrifice of
increase of the structural complexity in the filtering function SF.

A membrane computing schema Π2,k is given as follows:

Π2,k = (V ,T ,Com,Ope,Fil,Syn, is ,Out),

where

(1) V , T , Ope, Fil, is and Out are the same as in Π0,k.
(2) Com = {Com1}.
(3) Syn = {(Com1,Opei ), (Opei ,Com1) | 1 ≤ i ≤ k} ∪ {(Com1,SF), (SF,FF),

(FF,Out)} (see (a) of Fig. 4).

Let Π2 = ⋃
k≥0 Π2,k.

From this simpler class of schemes Π2, we can induce a family of computing
devices I(Π2) (with an appropriate class of interpretations I ) that can character-
ize RE.

Theorem 5.3 There exists a class of interpretations I ′
G such that RE = L M S g

(Π2, I ′
G).

Proof sketch Let L be any language in RE that is generated by a Chomsky
type-0 grammar G = (V ,T ,S,P ). Then consider the following interpretation I ′

G =
(S, {RG},LSF,LFF), where

(i) For each r : u → v in P , construct Rr = {λ → vr, λ → uRr}, and let RG =⋃
r∈P Rr . The cardinality of RG gives k in the degree of Π2,k.

(ii) LSF adopts the Dyck language D over the alphabet N ∪ T ∪ {r | r ∈ P }.
(iii) LFF is given as T ∗, so that only strings in T ∗ can pass through FF and are sent

out to Out.



Consider a transition sequence: C0 = ({S},∅) �⇒n Cn = (L1,n,L
(n)
out). Then for any

α ∈ (N ∪T )∗ and n ≥ 0, it holds that α ∈ L1,n iff S �⇒n α in G. Thus, it holds that
L(G) = Lg(I

′
G(Π2,k)). In order to complete the proof, we have only to consider

for I ′
G the class of interpretations I ′

G for all type-0 grammars G. (The proof is
based on the following result that each recursively enumerable language L can be
represented in the form L = h(L′ ∩ D)), where L′ is an insertion language, h is a
projection and D is a Dyck language. (Theorem 3.1 in [13]). In order to understand
the idea of the proof, it would be helpful to note that RG in Com1 generates the
insertion language L′, while a pair of SF and FF plays the same role as a pair of D

and h, respectively.) �

6 Concluding Remarks

In this paper, we have introduced the notion of a membrane computing schema and
showed that several known computing models with the universal computability can
be reformulated in a uniform manner in terms of the framework of the schema to-
gether with its interpretation. A similar idea in the context of grammar schema has
been proposed and discussed in [2, 6] to prove the computational completeness of
new type of P systems based on the framework of the random context grammars
for both string and multi-set languages. (Note that the definition of random con-
text in those papers is not on a string to be rewritten but on the applicability of
rules to re-write, different from the standard notion.) As for the communication by
sending objects and the use of filtering function, there are several papers that have
been devoted to studying the computational powers of communicating distributed
H systems (e.g., [4, 12]), and of the hybrid networks of evolutionary processors
(e.g., [8, 9]). Among others, the notion of observers in G/O systems proposed in [1]
may be of special interests in that it seems to have a close relation to the filtering
mechanism (for structured or string objects) of the membrane computing schema
introduced in this paper.

Table 1 summarizes the results we have obtained. From the table, one can have a
unified view of the existing various models of computation based on string rewrit-

Table 1

Computing model Schema SF FF SubFil

Chomsky type-0 grammar Π0 LG(∈ RG) T ∗ (N.A.)

or Lmir(∈ LIN)

Turing machine Π0 LG(∈ RG) V ∗FV ∗ (N.A.)

or Lmir(∈ LIN)

Random context grammar Π1 Lm(∈ RG) T ∗ Lri (∈ RG)

Matrixac grammar Π1.5 Lmat = LsLr(∈ RG) T ∗ Lmi
(∈ RG)

Chomsky type-0 grammar Π2 D(∈ CF) T ∗ (N.A.)



ing. For example, it is seen that there exists a trade-off between the complexity of
network structure in the schema and the complexity of the filtering SF.

More specifically, for new terminologies, L is a star language iff L = F ∗ for
some finite set F . Further, L is an occurrence checking language iff L = V ∗FV ∗
for some finite set F . Then it should be noted that in Table 1:

(i) LG is a finite union of occurrence checking languages,
(ii) Ls , Lr and Lm are star languages,

(iii) Lri is a finite intersection of occurrence checking languages and their comple-
ments,

(iv) Lmi
is the complement of an occurrence checking language.

Since Π0 (or Π1) is more complex than Π2, one may see a trade-off between
the complexity of the schema and that of SF, telling that LG for single (or Lmat for
multiple) hairpin checking is simpler than a Dyck language D for nested hairpin
checking. This kind of trade-off can also be seen in complexity between a series of
schemes (Π1,Π1.5,Π2) and the corresponding SFs(Lm,Lmat,D).

In this paper, we have just made the first step in the new direction toward under-
standing and characterizing the nature of the Turing computability from the novel
viewpoint of modularity in the membrane computing schema. There seems to re-
main many left for the future works:

• it would be the most interesting to study the relation between the complexity
of the language classes and that of SF within a given schema. For instance, we
can show that within the schema Π2, CF can be characterized by star (regular)
languages for SF.

• Instead of insertion operations we adopted in this paper, what kind of operations
can be considered for the unique operation in the cells Ope? What kind of differ-
ent landscape of the computing mechanism can be seen from the new schema?
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Romero-Campero FJ (eds) Reports on fourth brainstorming week on membrane computing,
vol 1, pp 169–193
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5. Dassow J, Păun Gh (1989) Regulated rewriting in formal language theory. Springer, Berlin
6. Freund R, Oswald M (2004) Modeling grammar systems by tissue P systems working in the

sequential mode. In: Proceedings of grammar systems workshop, Budapest
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14. Păun Gh, Rozenberg G, Salomaa A (1998) DNA computing. Springer, Berlin
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