
A software tool for verification of Spiking Neural
P Systems

Miguel A. Gutiérrez-Naranjo Æ Mario J. Pérez-Jiménez Æ
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Abstract The formal verification of a Spiking Neural P System (SN P Systems, for short) 
designed for solving a given problem is usually a hard task. Basically, the verification 
process consists of the search of invariant formulae such that, once proved their validity, 
show the right answer to the problem. Even though there does not exist a general meth-

odology for verifying SN P Systems, in (Păun et al., Int J Found Comput Sci 17(4):975–

1002, 2006) a new tool based on the transition diagram of the P system has been developed 
for helping the researcher in the search of invariant formulae. In this paper we show a 
software tool which allows to generate the transition diagram of an SN P System in an 
automatic way, so it can be considered as an assistant for the formal verification of such 
computational devices.
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1 Introduction

Natural Computing studies new computational paradigms inspired from various well known 
natural phenomena in physics, chemistry and biology. It abstracts the way in which nature 
computes, conceiving new computing models. There are several fields in Natural 
Computing that are now well established. Among them, Genetic algorithms introduced by 
Holland (1975) is inspired by natural evolution and selection in order to find a good solution 
in a large set of feasible candidate solutions; Neural Networks introduced by
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McCulloch and Pitts (1943) which is based on the interconnections of neurons in the brain;

DNA-based molecular computing, that was born when Adleman (1994) published a

solution to an instance of the Hamiltonian path problem by manipulating DNA strands in a

lab.

In the framework of Natural Computing, Păun introduced Membrane Computing in

Păun (2000) under the assumption that the processes taking place in the compartmental

structure of a living cell can be interpreted as computations.1 Since then, a large number of

variants have been considered, concerning both the syntax and the semantics of the model.

The devices of this model are generically called P systems.

The basic idea is to consider a distributed and parallel computing device, structured like

a cell, by means of a hierarchical arrangement of membranes which delimit compartments

where various chemicals (we call them objects) evolve according to local reaction rules.

The objects can be described by symbols or by strings of symbols from a given alphabet.

These objects can also pass through membranes, under the control of specific rules.

Because the chemicals from the compartments of a cell are swimming in an aqueous

solution, the data structure we consider is that of a multiset—a set with multiplicities

associated with its elements. Also, in close analogy with what happens in a cell, the

reaction rules are applied in a parallel manner. This means that in each computational step

a maximal (multi)set of non-deterministically chosen rules is applied.

The notions of membrane investigated in this new paradigm of computation are abstract

entities which try to mimic some features of the functioning of membranes in living cells.

The basic function of biological membranes is to define compartments and to relate
compartments to their environment, including neighbouring compartments. The currently

accepted model of the membrane structure is the so-called fluid-mosaic model, proposed in

1972 by S. Singer and G. Nicholson. According to this model, a membrane is a phos-

pholipid bilayer in which protein molecules (as well as other molecules) are totally or

partially embedded.

Spiking Neural P Systems (SN P Systems, for short) were introduced in Ionescu et al.

(2006) with the aim of incorporating in membrane computing ideas specific to spike-based

neuron models. The intuitive goal was to have a directed graph where the nodes represent

the neurons and the edges represent the synaptic connections among the neurons. The flow

of information is carried on the action potentials, which are encoded by objects of the same

type, the spikes, which are placed inside the neurons and can be sent from presynaptic to

postsynaptic neurons according to specific rules and making use of the time as a support of

information.

The biological motivation for these new SN P Systems is based on recent discoveries on

neural coding. Since all spikes of a given neuron look alike, the form of the action potential

does not carry any information. Rather, it is the number and the timing of spikes which

matter. Traditionally, it has been thought that most, if not all, of the relevant information

was contained in the mean firing rate of the neuron. The concept of mean firing rates has

been successfully applied during the last 80 years (see, e.g., Mountcastle 1957 or Hubel

and Wiesel 1959) from the pioneering work of Adrian (1926a, b). Nonetheless, more and

more experimental evidence has been accumulated during recent years which suggests that

a straightforward firing rate concept based on temporal averaging may be too simplistic to

describe brain activity. One of the main arguments is that reaction times in behavioural

experiment are often too short to allow long temporal averages. For instance, recognition

1 A comprehensive presentation can be found in Păun (2002) and further updated bibliography in
http://ppage.psystems.eu/. A presentation of applications can be found in Ciobanu et al. (2006).

http://ppage.psystems.eu/


and reaction involve several processing steps from the retinal input to the finger movement

at the output. If at each processing steps, neurons had to wait and perform a temporal

average in order to read the message of the presynaptic neurons, the reaction time would be

much longer. Many other studies show the evidence of precise temporal correlations

between pulses of different neurons and stimulus-dependent synchronisation of the activity

in populations of neurons (see, for example, Eckhorn et al. 1988 or Gray and Singer 1989).

Most of these data are inconsistent with a concept of coding by mean firing rates where the

exact timing of spikes should play no role.

Instead of considering mean firing rates, spiking-based models consider the realistic

situation in which a neuron abruptly receives an input at a given instant and for each

neuron the timing of the first spike after the reference signal contains all the information

about the new stimulus.

The paper is organised as follows: in Sect. 2 we recall some definitions related to SN P

Systems (further information can be found in the literature, see http://ppage.psystems.eu/).

Section 3 is devoted to general aspects of simulation software in the framework of P

systems, presenting the most relevant works until now. Next the simulator is presented and

some features of its implementation are given. Section 5 provides an example of how the

simulator works and finally, in the last section some remarks and future work lines are

presented.

2 Spiking Neural P Systems

An SN P System consists of a set of neurons placed in the nodes of a directed graph and

sending signals (called spikes) along the arcs of the graph (providing the synapses between

neurons). The objects evolve according to a set of rules (called spiking rules). The idea is

that a neuron containing a certain amount of spikes can consume some of them and

produce other ones. These produced spikes are sent (maybe with a delay of some steps) to

all neurons to which a synapse exists outgoing from the neuron where the rule was applied.

There also are forgetting rules. By application of these rules no spikes are sent, simply

some spikes are removed from the neuron where the rule was applied. A global clock is

assumed and in each time unit each neuron which can use a rule should do it, but only (at

most) one rule is used in each neuron. One of the neurons is considered to be the output

neuron, and its spikes are also sent to the environment.

Definition 1 An SN P System of degree m C 1, is a construct of the form

P ¼ ðO; r1; . . .; rm; syn; outÞ

where

– O = {a} is the singleton alphabet (the object a is called spike);

– r1,…,rm are neurons, of the form ri = (ni,Ri) with i [ {1,…, m} where:

• ni C 0 is the initial number of spikes contained by the neuron ri;

• Ri is a finite set of rules of the form

E=ac ! ap; d

where E is a regular expression over a, c C 1 and p, d C 0, with c C p; if p = 0, then

d = 0 too.

http://ppage.psystems.eu/


– syn � f1; 2; . . .;mg � f1; 2; . . .;mg with ði; iÞ 62 syn for i [ {1,…,m} (synapses);

– out [{1, 2,…,m} is the output neuron.

For the sake of simplicity, if p = d = 0, the rule is written as E=ac!k instead of

E=ac ! a0; 0: This type of rules is called forgetting rules. If L(E) = {ac} then the rules are

written in the simplified form ac!ap; d and ac ! k:
With respect to the application of the rules, if the neuron ri contains k spikes, ak [ L(E)

and k C c, then the rule E/ac ?ap; d [ Ri (with p C 1) can be applied; applying it means

that c spikes are consumed, thus only k-c remain in the neuron ri; the neuron ri is fired

and it produces p spikes after d time units. If d = 0, then the spikes are emitted immedi-

ately, otherwise the spikes are emitted after d steps. In the case d C 1, if the rule is used in

step t, then in steps t, t + 1, t + 2,…, t + d-1 the neuron is closed, and it cannot receive

new spikes (if a neuron has a synapse to a closed neuron and sends spikes along it, then the

spikes are lost). In the step t + d, the neuron spikes and becomes again open, hence it can

receive spikes. The p spikes emitted by a neuron ri are replicated and they go to all neurons

rj such that (i, j) [ syn (each rj receives p spikes). If the rule is a forgetting one then no

spike is emitted and the neuron cannot be closed.

In each time unit, in each neuron which can use a rule, a rule must be used, non-

deterministically chosen if several rules are applicable. Note that each neuron processes

sequentially its spikes, using only one rule in each time unit. During the computation, a

configuration is described by both the number of spikes present in each neuron and by the

number of steps to count down until it becomes open (this number is zero if the neuron is

open, for example, in the initial configuration). Any sequence of transitions starting in the

initial configuration is called a computation. A computation halts if it reaches a configu-

ration where all neurons are open and no rule can be used.

Let P be an SN P System and let C ¼ C0 ) C1 ) C2 ) � � � be a computation in P:
The spike train of computation C; denoted by stðCÞ; is the sequence of emitting steps, and

we write it in the form stðCÞ ¼ ht1; t2; . . .i; with 1� t1\t2\ � � � : The set of all spike trains

(over the set COMðPÞ of all computations) of P is denoted by STðPÞ: We also denote by

NðCÞ ¼ fn j n ¼ ti � ti�1; for 2� i� k; stðCÞ ¼ ht1; t2; . . .ig:
One can associate a set of numbers with STðPÞ in several ways. Then, like in Ionescu

et al. (2006), we can consider the intervals between consecutive spikes as numbers com-

puted by a computation, with several alternatives:

– Taking into account only the first k C 2 spikes:

NkðPÞ ¼ fn j n ¼ ti � ti�1; for 2� i� k; C 2 COMðPÞ;
stðCÞ ¼ ht1; t2; . . .i; and C has at least k spikesg:

– Taking into account all spikes of computations with infinite spike trains:

NxðPÞ ¼ fn j n ¼ ti � ti�1; for i� 2; C 2 COMðPÞ
with stðcÞ ¼ ht1; t2; . . .i infiniteg:

– Taking into account all intervals of all computations:

NallðPÞ ¼
[

k� 2

NkðPÞ [ NxðPÞ:



Definition 2 A system P is said to be weakly x-coherent if there is a computation C in P
such that NðCÞ ¼ NallðPÞ (that is, there is a computation which provides all numbers which

all other computations can provide).

The graphical representation of an SN P System is rather intuitive: the neurons are

represented by membranes, placed in the nodes of a directed graph whose arrows represent

the synapses. Figure 1 shows an example of the graphical representation of an SN P

System taken from Păun et al. (2006).

The transition diagram of an SN P System is also a directed graph where the nodes are

configurations and an arc is drawn between two nodes/configurations if a direct transition is

possible between them. This transition diagram is an interesting tool that allows obtaining

invariant formulae to make easier the formal verification of a designed SN P System.

3 Software

Since Păun initiated Membrane Computing (Păun 2000) as a new branch of Natural

Computing, a large number of variants have been considered, both concerning the syntax

and the semantics of the model.

Let us recall here three of the main variants of P systems: Cell-like P systems, Tissue-

like P Systems and Spiking Neural P Systems.

In the cell-like model of P systems, membranes are hierarchically arranged in a tree-like

structure (see Păun 2000). The biological inspiration for it is the morphology of cell, where

small vesicles are surrounded by larger ones. This biological structure can be abstracted

into a tree-like graph, where the root of the graph represents the skin of the cell (the

outermost membrane), the leaves represent membranes that do not contain other ones

(elementary membranes) and two nodes in the graph are connected if they represent two

membranes such that one of them contains the other one. In the tissue P systems (Martı́n

Fig. 1 An SN P system
computing fr þ ni j i� 1g; for
n C 3



Vide et al. 2002, 2003) we consider a general graph instead of a tree-like membrane

structure, where the nodes can be considered as processors and the edges as connections

among them in order to share information. This model has two biological inspirations:

intercellular communication and cooperation between neurons. The common mathematical

model of these two mechanisms is a network of processors dealing with symbols and

communicating these symbols along channels specified in advance.

Irrespectively of the selected approach, it is usually a complex task to predict or to guess

how a P system will behave when we are designing a cellular solution to a problem.

Moreover, as there do not exist, up to now, implementations in laboratories (neither in vitro

nor in vivo nor in any electronical medium), it seems natural to look for software tools that

can be used as assistants that are able to simulate computations of P systems.

3.1 Design

Generically speaking, the design and development processes for a P system simulator can

be structured as follows (see Gutiérrez-Naranjo et al. 2006 for details):

– Formal definition of the model. First of all, one has to choose which variant of

membrane systems is going to be simulated, stating precisely the syntax and semantics

of the model to avoid ambiguous interpretations.

– Choice of a programming language. Each programming language has its own

advantages and disadvantages and, up to now, there is no objective criterion to decide

which is the more suitable one for simulating the evolution of a membrane system.

Indeed, a large number of different languages as Haskell, Prolog, Java, C, Lisp,

Scheme, Visual C++, CLIPS, etc. have been chosen by authors in the literature.

– A good way to represent the knowledge. The choice of a suitable data structure is a key

problem in all fields of Computer Science (in particular, when dealing with the

simulation of P systems). This decision is of course related with the programming

language that is used, as specific techniques related with it have to be applied. A good

representation allows a quick transition between configurations and therefore speeds up

the simulation.

– Design of an inference engine to carry out the computation. There exists two basic

difficulties intrinsic to the simulation of a P system in a conventional computer: their

massive parallelism and the non determinism. Both features must be beared in mind for

designing simulators because sequential conventional computers have only one

processor.

3.2 Existing Software

The first simulators appeared in 2000, only 2 years after Păun’s foundational paper (Păun 
2000) was presented. It was written by Maliţa (2000) in LPA-Prolog and, since then, many 
other software simulators have been presented (see Gutiérrez-Naranjo et al. 2006 and 
references therein for a presentation of the first generation of simulators). The common 
purpose of this first generation was the better understanding of the computational process 
of P systems, for pedagogical purposes as well as assistant for researchers. Among these 
simulators, we can find simulators for P systems where the membrane structure does no 
change along the computation (as Maliţa’s one) or simulators able to deal with P Systems 
where the membranes can divide (as Ciobanu and Paraschiv’s simulator (2002)). Some of



them explore new architectures looking for increasing the speed of the computation, as

Ciobanu and Wenyuan’s simulator (2004) based on parallel architecture. Others put the

stress on a simulation closer to biological laws, as the simulator by the Group for Models of
Natural Computing (http://www.di.univr.it) in Verona, based on the implementation of the

metabolic algorithm introduced in Bianco et al. (2006).

After the first wave, a new generation of software simulators has arisen. They have left

the pedagogical purposes and focus their goals on realistic simulations of physical pro-

cesses via membrane computing techniques. Among them, we can find Nishida’s simulator

for the Membrane Approximation Algorithm, the two simulators from D. Pescini and

P. Cazzaniga related to Vibrio Fischeri and Dynamical Probabilistic P Systems, Cyto-Sim
(Sedwards and Mazza 2007) a processes simulator designed at the Microsoft Research—

University of Trento Centre for Computational and Systems Biology, the stochastic sim-

ulator based on a generalisation of the Gillespie algorithm designed by Romero-Campero

and Pérez-Jiménez (2008) and the simulators for biological processes from the University

of Sheffield group and Seville team (all of them available from http://ppage.psystems.eu/).

4 A simulator for SN P Systems

In Ramı́rez-Martı́nez and Gutiérrez-Naranjo (2007), a simulator for SN P Systems was

presented. It receives the description of an SN P System and outputs its transition diagram

with an user friendly interface. Until now, no other software tool has been presented for

dealing with SN P Systems. It shares the common purpose of the first simulators of other P

system models: the understanding of the computational process of the systems and

becoming an assistant for researchers.

As pointed out above, the graphical representation of an SN P System is rather intuitive:

the neurons are represented by membranes, placed in the nodes of a directed graph whose

arrows represent the synapses. In the graphical representation of this software tool, the

environment is also represented by a membrane and an arrow exits from the output neuron,

pointing to this membrane; in each neuron we specify the rules and the spikes present in the

initial configuration. Figure 2 shows a screen snapshot of the designer module of the

software by showing the graphical representation of an SN P System.

4.1 Technical features

The software tool2 for simulating the evolution of an SN P System is composed by the

integration of three modules:

– A Graphical User Interface (GUI) which allows an easy interface to users, decoupling

experimentation and simulation from programming. This module is written in

XBase++ (http://www.alaska-software.com), which is an object oriented language

to program database oriented graphic applications.

– A second module, written in SWI-Prolog (http://www.swi-prolog.org) which is the

inference engine. It takes the initial configuration, the synapses and the rules and

produces the transition diagram in text mode.

– A graphical designer tool, which allows the user to draw neurons, synapses and to

associate spikes and rules with them by using a friendly interface.

2 The simulator is available at (http://ppage.psystems.eu/).

http://www.di.univr.it
http://ppage.psystems.eu/
http://www.alaska-software.com
http://www.swi-prolog.org
http://ppage.psystems.eu/


The basic way of providing the data to the simulator is by a plain text file with the

information stored in an appropriate way. Figure 3 shows the input file of the example

represented3 in Fig. 1.

The syntax is quite intuitive. The file consists on a set of literals with the predicate

symbols rule; synapses and initial:

– Rules are of the form ruleðN� X; LatexÞ; where N is the label of the neuron, X is the

ordinal of the rule and Latex is the rule written in Latex mode. In the current version,

we accept seven syntactically different types of rules:

(1) â s=â cnto â p; d meaning as=ac ! ap; d
(2) â s=â cnto a; d meaning as=ac ! a; d
(3) â cnto â p; d meaning ac ! ap; d
(4) â cnto nlamda meaning ac ! k

Fig. 2 Screen snapshot of the designer interface

Fig. 3 Input file

3

for the values r = 3, n = 5 and the labels d1 = 6, d2 = 7, d3 = 8, out = 7, env = 10 and 0 = 11.

2



(5) anto a; d meaning a! a; d
(6) â cnto a; d meaning ac ! a; d
(7) anto nlamda meaning a! k

– synapses has as argument a list of pairs of neurons Start� End:
– initial stores the initial configuration. A configuration is a list of pairs A=B where the

i-th pair A=B denotes the number of spikes ðAÞ and the number of steps to became open

ðBÞ the neuron with label i.

The simulator also provides a graphical interface which allows the user to design an SN

P System, to store it and build its transition diagram. The SN P System can also be

exported from the graphical representation to a file with a text mode representation as

described above.

5 An example

Next, we illustrate how important it is to know the transition diagram associated with an

SN P System by means of an example.

Let us consider the SN P System, P , described by Fig. 1. For each configuration C we

denote by Cd (with d = 0,1) the configuration obtained from C applying in neuron 0 the

rule a ?a; d. Then, the transition diagram of P associated with the SN P System P can be

depicted by Fig. 4.

Firstly, we note that there are no halting computations in P: We denote by r the path

C2 ! � � � ! Crþ2 and by s the path Crþ2 ! � � �Crþn�1 ! C0
rþn ! C0

rþnþ1: Then,

Length(r) = r and Length (s) = n-1.

Fig. 4 Transition diagram of the
SN P system in Fig. 1



For each i C 0, we denote by c(i) the path Crþ2�!
ðiÞ � � � ! Crþn�1 ! C1

rþn ! C1
rþnþ1 !

C1
rþ2; meaning that the configuration Cr+2 is passed exactly (i + 1) times. Let d(i) be the

path C2 
r

Crþ2 
cðiÞ

Crþ2: Then, Length (c(i)) = ni and Length(d(i)) = r + ni.
Hence, for every computation, C; of P there exists an infinite sequence of natural

numbers {ik: k C 1} such that C can be described through the following path in the

transition diagram associated with P:

C0 ! C1 ! C2  
dði1Þ

Crþ2 
s

C0
rþnþ1 ! C2  

dði2Þ
Crþ2 

s
C0

rþnþ1 ! � � �

We will denote that computation by Cðfik : k� 1gÞ: Then,

NallðCðfik : k� 1gÞ ¼ ftkþ1 � tk : k� 1g ¼ fr þ nðik þ 1Þ : k� 1g; and we have the

following result:

For every n C 2,

(a) For each computation, C of P we have NðCÞ � fr þ ni : i� 1g:
(b) For each i C 1 there exists a computation, C; of P such that r þ ni 2 NðCÞ: Moreover,

the SN P System P is weakly x-coherent.

This result illustrates the usefulness of the transition diagram in order to obtain the 
formal verification of an SN P System.

The simulator described in Sect. 4 automatically generates the transition diagram 
associated with a given SN P System.

Next, we briefly present how the simulator works on this example. After loading the 
corresponding file, which can be generated by using a text editor or the designer tool, the 
simulation can start. At time zero, only the initial configuration is shown.

After that, the user can develop the transition diagram step by step. The new elements 
(nodes or arcs) in each step are depicted in red color. Figure 5 shows an intermediate stage 
of the development of the transition diagram. When no new element can be added to the 
diagram, it is finished. In the example, this happens at step 11. Figure 6 shows the same 
transition diagram of the SN P System of Figure 1 for the values r = 3 and n = 5 with the 
representation of our simulator.

6 Final remarks and future work

The success of first generation of simulators in Membrane Computing is beyond any doubt. 
On the one hand, one of the main benefits of these simulators is their use for a better 
understanding of membrane computing, so they are pedagogical tools of first line. On the 
other hand, it has proved to be a useful assistant tool for the design and verification of 
complex P systems which solve hard problems, saving the researchers heavy hand-made 
calculations.

As pointed out in Gutiérrez-Naranjo et al. (2006), one of the common features of the 
first generation of simulators for cell-like P systems was the lack of efficiency in favor of 
the expressivity. The simulator reported here follows the same line: a high grade of 
expressivity is kept, looking for a friendly interface with the user.

The formal verification of an SN P System designed for solving a given problem is 
usually a hard task. The transition diagram associated with an SN P System provides 
information about some invariant formulae on the evolution of such system. In this context, 
it would be interesting to have a tool that automatically generates the transition diagram 
from the SN P System. The simulator presented in this paper satisfies this requirement.



Some technical details could be improved. As pointed out in Ramı́rez-Martı́nez and

Gutiérrez-Naranjo (2007), one of them is the possibility of fixing a bound on the number of

steps from the initial configuration in order to avoid that the software collapses. Another

point is to extend the definition of the rules, since in the current version only a restricted

definition is used.

It is desirable that the simulator is able to interact with the user by providing detailed

information about the computation as, for example, the number of used rules in each step,

intermediate configurations or objects sent to the environment (if any), in order to make

statistical studies of the computations (see e.g. Cavaliere and Ardelean 2006; Gutiérrez-

Naranjo et al. 2005; Suzuki et al. 2001). Indeed, biologically inspired variants of mem-

brane systems are not interested in looking for halting configurations, but on the evolution

process itself.

Fig. 5 Intermediate stage (Time 8)
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