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Abstract

In the literature, several examples of the efficiency of cell-like P systems regarding the solution of NP-
complete problems in polynomial time can be found (obviously, trading space for time). Recently, different
new models of tissue-like P systems have received important attention from the scientific community. In
this paper we present a linear-time solution to an NP-complete problem from graph theory, the 3–coloring
problem, and we discuss the suitability of tissue-like P systems as a framework to address the efficient
solution to intractable problems.
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1 Introduction

Membranes are involved in many reactions taking place inside various compartments

of a cell, and they act as selective channels of communication between different

compartments as well as between the cell and its environment [1].

This paper is enclosed in the Natural Computing framework. More precisely, in

the study of the structure and functioning of cells as living organisms able to process

and generate information. Assuming this starting point, two different disciplines

within Natural Computing can be found in the literature: Membrane Computing

and Brane Calculi.
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Brane Calculi were recently introduced in [6], under the assumption that in living

cells membranes are not merely containers, but they are actually highly dynamic

and participate actively in the cell life. In this way, “computation” happens on the

membranes, not inside them.

On the other hand, Membrane Computing starts from the assumption that the

processes taking place within the compartmental structure of a living cell can be

interpreted as computations [19].

This emergent cross-disciplinary branch of Natural Computing was introduced by

Gh. Păun in [18]. It has received important attention from the scientific community

since then, with contributions by computer scientists, biologists, formal linguists

and complexity theoreticians, enriching each others with results, open problems and

promising new research lines. In fact, Membrane Computing has been selected by

the Institute for Scientific Information, USA, as a fast Emerging Research Front in

Computer Science, and [20] was mentioned in [30] as a highly cited paper in October

2003.

The computational devices in Membrane Computing are called P systems.

Roughly speaking, a P system consists of a membrane structure, in the compart-

ments of which one places multisets of objects which evolve according to given rules

in a synchronous non-deterministic maximally parallel manner 5 .

In the last years, many different models of P systems have been proposed. The

most studied variants are characterized by a cell-like membrane structure, where

the communication happens between a membrane and the surrounding one. In

this model we have a set of nested membranes, in such a way that the graph of

neighborhood relation is a tree.

One of the topics in the field is the study of the computational power and ef-

ficiency of P systems. In particular, different models of these cell-like P systems

have been successfully used in order to design solutions to NP-complete problems

in polynomial time (see [10] and the references therein). These solutions are ob-

tained by generating an exponential amount of workspace in polynomial time and

using parallelism to check simultaneously all the candidate solutions. Inspired in liv-

ing cells, cell-like P systems abstract the way of obtaining new membranes, mainly

from two biological processes: mitosis (membrane division) and autopoiesis, see [14]

(membrane creation). Both ways of generating new membranes have given rise to

the corresponding P systems model: P systems with active membranes, where the

new workspace is generated by membrane division and P systems with membrane

creation, where the new membranes are created from objects.

Both models are universal from a computational point of view, but technically,

they are pretty different. In fact, nowadays there does not exist any theoretical

result which proves that these models can simulate each other in polynomial time.

Under the hypothesis P �=NP, Zandron et al. [29] established the limitations of

P systems that do not use membrane division concerning the efficient solution of

NP-complete problems. This result was generalized by Pérez Jiménez et al. [25]

5 A layman-oriented introduction can be found in [21] and further bibliography at [31].



obtaining a characterization of the P �=NP conjecture by the polynomial time un-

solvability of an NP-complete problem by language accepting P systems (without

using rules that allow to construct an exponential number of membranes in polyno-

mial time).

We shall focus here on another type of P systems, the so-called (because of their

membrane structure) Tissue P Systems. Instead of considering that membranes

are hierarchically arranged, the membranes are placed in the nodes of a graph.

This variant has two biological inspirations (see [17]): intercellular communication

and cooperation between neurons. The common mathematical model of these two

mechanisms is a net of processors dealing with symbols and communicating these

symbols along channels specified in advance. The communication among cells is

based on symport/antiport rules 6 . Symport rules move objects across a membrane

together in one direction, whereas antiport rules move objects across a membrane

in opposite directions.

>From the seminal definition of Tissue P systems [16,17], several research

lines have been developed and other variants have arisen (see, for example,

[2,5,7,12,13,27]). One of the most interesting variants of Tissue P systems was

presented in [22]. In that paper, the definition of Tissue P systems is combined with

the one of P systems with active membranes, yielding Tissue P systems with cell

division.

One of the main features of such Tissue P systems with cell division is related

to their computational efficiency. In [22], a polynomial-time solution to the NP-

complete problem SAT is shown. In this paper we go on with the research in

this variant and present a linear-time solution to another well-known NP-complete

problem: the 3–coloring problem.

The paper is organized as follows: first we recall some preliminaries and the

definition of Tissue P systems with cell division. Next, recognizer Tissue P systems

are briefly described. A linear–time solution to the 3–coloring problem is presented

in the following section, with a short overview of the computation and the necessary

resources. Finally, the main results, some conclusions and new open research lines

are presented.

2 Preliminares

In this section we briefly recall some of the concepts used later on in the paper.

An alphabet, Σ, is a non empty set, whose elements are called symbols. An

ordered sequence of symbols is a string. The number of symbols in a string u is

the length of the string, and it is denoted by |u|. As usual, the empty string (with

length 0) will be denoted by λ. The set of strings of length n built with symbols

from the alphabet Σ is denoted by Σn and Σ∗ = ∪n≥0Σ
n. A language over Σ is a

subset from Σ∗.

A multiset m over a set A is a pair (A, f) where f : A → IN is a mapping. If

6 This way of communication for P systems was introduced in [20].



m = (A, f) is a multiset then its support, supp(m), is defined as supp(m) = {x ∈

A | f(x) > 0} and its size is defined as
∑

x∈A f(x). A multiset is empty (resp. finite)

if its support is the empty set (resp. finite).

If m = (A, f) is a finite multiset over A, then it will be denoted as

m = {{a1, . . . , ak}}, where each element ai occurs f(ai) times.

A graph G is a pair G = (V,E) where V is the set of vertices and E is the set of

edges, each one of which is a (unordered) pair of (different) vertices. If {u, v} ∈ E,

we say that u is adjacent to v (and also v is adjacent to u). The degree of v ∈ V is

the number of adjacent vertices to v.

A path of length n ≥ 1 from a vertex x to a vertex y in a graph G = (V,E) is

a sequence {v0, v1, . . . , vn} of vertices such that v0 = x, vn = y and {{vi, vi+1} | i =

0, . . . , n− 1} ⊆ E. If there is a path from u to v in G, we will say that v is reachable

from u in G and it will be denoted by u �G v. Two vertices u and v are connected

in G if u �G v. A graph is connected if for every pair of different vertices from V ,

one of them is reachable from the other one.

In what follows we assume the reader is already familiar with the basic notions

and the terminology underlying P systems. For details, see [19].

3 Tissue P Systems with Cell Division

In the first definition of the model of tissue P systems [16,17] the membrane structure

did not change along the computation. Based on the cell-like model of P systems

with active membranes, Gh. Păun et al. presented in [22] a new model of tissue P

systems with cell division. The biological inspiration is clear: alive tissues are not

static network of cells, since cells are duplicated via mitosis in a natural way.

The main features of this model, from the computational point of view, are that

cells are not polarized (the contrary holds in the cell-like model of P Systems with

active membranes, see [19]); the cells obtained by division have the same labels as

the original cell and if a cell is divided, its interaction with other cells or with the

environment is blocked during the mitosis process. In some sense, this means that

while a cell is dividing it closes the communication channels with other cells and

with the environment.

Formally, a tissue P system with cell division of degree q ≥ 1 is a tuple of the

form

Π = (Γ, w1, . . . , wq, E ,R, i0),

where:

(i) Γ is a finite alphabet, whose symbols will be called objects.

(ii) w1, . . . , wq are strings over Γ.

(iii) E ⊆ Γ.

(iv) R is a finite set of rules of the following form:

(a) Communication rules : (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i �= j, u, v ∈ Γ∗.

(b) Division rules : [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ.

(v) i0 ∈ {0, 1, 2, . . . , q}.



A tissue P system with cell division of degree q ≥ 1 can be seen as a set of q cells

(each one consisting of an elementary membrane) labelled by 1, 2, . . . , q. We will use

0 to refer to the label of the environment, and i0 denotes the output region (which

can be the region inside a membrane or the environment).

The strings w1, . . . , wq describe the multisets of objects placed in the q cells of

the system. We interpret that E ⊆ Γ is the set of objects placed in the environment,

each one of them in an arbitrary large amount of copies.

The communication rule (i, u/v, j) can be applied over two cells i and j such

that u is contained in cell i and v is contained in cell j. The application of this rule

means that the objects of the multisets represented by u and v are interchanged

between the two cells.

The division rule [a]i → [b]i[c]i can be applied over a cell i containing object a.

The application of this rule divides this cell into other two cells with the same label.

All the objects in the original cell are replicated and copied in each of the new cells,

with the exception of the object a, which is replaced by the object b in the first new

cell and by c in the second one.

Rules are used as usual in the framework of membrane computing, that is, in a

maximally parallel way. In one step, each object in a membrane can only be used

for one rule (non-deterministically chosen when there are several possibilities), but

any object which can participate in a rule of any form must do it, i.e, in each step

we apply a maximal set of rules. This way of applying rules has only one restriction

when a cell is divided, the division rule is the only one which is applied for that cell

in that step; the objects inside that cell do not evolve in that step.

4 Recognizer Tissue P Systems with Cell Division

NP-completeness has been usually studied in the framework of decision problems.

Let us recall that a decision problem is a pair (IX , θX) where IX is a language over

a finite alphabet (whose elements are called instances) and θX is a total boolean

function over IX .

In order to study the computing efficiency for solving NP-complete decision

problems, a variant of tissue P systems with cell division is introduced in [22]:

recognizer tissue P systems. The key idea of such recognizer system is the same one

as from recognizer P systems with cell-like structure.

Recognizer cell-like P systems were introduced in [26] and they are the natural

framework to study and solve decision problems within Membrane Computing, since

deciding whether an instance has an affirmative or negative answer is equivalent to

deciding if a string belongs or not to the language associated with the problem.

In the literature, recognizer cell-like P systems are associated in a natural way

with P systems with input. The data related to an instance of the decision problem

has to be provided to the P system in order to compute the appropriate answer.

This is done by codifying each instance as a multiset placed in an input membrane.

The output of the computation (yes or no) is sent to the environment. In this way,

cell-like P systems with input and external output are devices which can be seen



as black boxes, in the sense that the user provides the data before the computation

starts, and then waits outside the P system until it sends to the environment the

output in the last step of the computation.

A recognizer tissue P system with cell division of degree q ≥ 1 is a tuple

Π = (Γ,Σ, w1, . . . , wq, E ,R, iin, io)

where

• (Γ, w1, . . . , wq, E ,R, io) is a tissue P system with cell division of degree q ≥ 1 (as

defined in the previous section).

• The working alphabet Γ has two distinguished objects yes and no, present in at

least one copy in w1, w2, . . . , wq but not present in E .

• Σ is an (input) alphabet strictly contained in Γ.

• iin ∈ {1, . . . , q} is the input cell.

• The output region io is the environment.

• All computations halt.

• If C is a computation of Π, then either the object yes or the object no (but not

both) must have been released into the environment, and only in the last step of

the computation.

The computations of the system Π with input w ∈ Γ∗ start from a configura-

tion of the form (w1, w2, . . . , wiinw, . . . , wq; E), that is, after adding the multiset w

to the contents of the input cell iin. We say that the multiset w is recognized by

Π if and only if the object yes is sent to the environment, in the last step of the

corresponding computation. We say that C is an accepting computation (respec-

tively, rejecting computation) if the object yes (respectively, no) appears in the

environment associated to the corresponding halting configuration of C.

Definition 4.1 We say that a decision problem X = (IX , θX) is solvable in poly-

nomial time by a family Π = {Π(n) : n ∈ IN} of recognizer tissue P systems with

cell division if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists

a deterministic Turing machine working in polynomial time which constructs the

system Π(n) from n ∈ IN.

• There exists a pair (cod, s) of polynomial-time computable functions over IX such

that:

− for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u));

− the family Π is polynomially bounded with regard to (X, cod, s), that is, there

exists a polynomial function p, such that for each u ∈ IX every computation of

Π(s(u)) with input cod(u) is halting and, moreover, it performs at most p(|u|)

steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX , if there

exists an accepting computation of Π(s(u)) with input cod(u), then θX(u) = 1;



− the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX , if

θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an accepting

one.

In the above definition we have imposed to every P system Π(n) to be confluent,

in the following sense: every computation of a system with the same input multiset

must always give the same answer.

We denote by PMCTD the set of all decision problems which can be solved by

means of recognizer tissue P systems with cell division in polynomial time.

5 A Solution for the 3–coloring problem

A k–coloring (k ≥ 1) of an undirected graph G = (V,E) is a function f : V →

{1, . . . , k}. We say that G is k–colorable if there exists a k–coloring, f , such that

f(u) �= f(v) for every edge {u, v} ∈ E (the k–coloring f is valid). If we represent

the numbers 1, 2, . . . , n as colors, then adjacent vertices must have different colors

by a valid k–coloring..

The k–coloring problem is the following: given an undirected graph G, decide

whether or not G is k-colorable; that is, if there exists a valid 3–coloring of G.

This problem is related to the famous Four Color Conjecture (proved by Appel

and Haken [3,4]). It is a special case of the problem of k-colorability of a graph, in

which the range of C is {1, . . . , k} with k being specified as part of the instance.

The NP-completeness of the 3–coloring problem was proved by Stockmeyer [28] (see

[9]).

Next, we will see that the 3–coloring problem can be solved in linear time by a

family of recognizer tissue P systems with cell division.

Let us consider a graph G = (V,E), where V = {Ai : 1 ≤ i ≤ n} is the set of

vertices and E ⊆ {{Ai, Aj} : 1 ≤ i < j ≤ n} is the set of edges. If {Ai, Aj} ∈ E

then we denote Aij = {Ai, Aj}.

We will address the resolution via a brute force algorithm, in the framework of

recognizer tissue P systems with cell division, which consists in the following phases:

• Generation Stage: The initial cell, labelled by 2, is divided into two new cells;

and the division are iterated until we have all possible candidate solutions to the

problem (one solution for each membrane). Simultaneously, in the membrane

labelled by 1 a counter evolves, and it will determine the moment in which the

checking stage starts.

• Pre–checking Stage: After obtaining all possible 3–colorings encoded in cells la-

belled by 2, this stage provides objects Rij , Gij , Bij in such cells, for every edge

Aij.

• Checking Stage: Once we obtain some objects Rij, Gij , Bij in cells labelled by

2, we check if there exists a pair of adjacent vertices with the same color in the

corresponding candidate solution.

• Output Stage: The system sends to the environment the right answer according

D. Díaz-Pernil et al. / Electronic Notes in Theoretical Computer Science 171 (2007) 81–93 87



to the results of the previous stage.

Next, we provide a linear-time solution for the 3–coloring problem by a family

of recognizer tissue P systems with cell division.

Let us recall that the function 〈n,m〉 = ((n + m)(n + m + 1)/2) + n is primitive

recursive and bijective from IN2 onto IN. Also, the inverse function of h is polynomial.

For each n,m ∈ IN, we will consider the system

Π(〈n,m〉) = (Γ(〈n,m〉),Σ(n), w1, w2(n),R(〈n,m〉), E(〈n,m〉), iin , i0)

where:

• Γ(〈n,m〉) is the set

{Ai, Ri, Ti, Bi, Gi, Ri, Bi, Gi : 1 ≤ i ≤ n} ∪

{ai : 1 ≤ i ≤ 3n + �log2 m� + 11} ∪ {ci : 1 ≤ i ≤ 2n + 1} ∪

{di : 1 ≤ i ≤ �log2 m� + 1} ∪ {fi : 2 ≤ i ≤ n + �log2 m� + 6} ∪

{Aij , Pij , P ij, Rij , Bij , Gij : 1 ≤ i < j ≤ n} ∪ {b,D,E, e, T, S,N, �, yes, no}

• Σ(n) = {Aij : 1 ≤ i < j ≤ n}

• w1 = {{a1, b, c1, yes, no}}

• w2(n) = {{D,A1, . . . , An}}

• R(〈n,m〉) is the set of rules:

(i) Division rules:

r1,i ≡ [Ai]2 → [Ri]2[Ti]2 for i = 1, . . . , n

r2,i ≡ [Ti]2 → [Bi]2[Gi]2 for i = 1, . . . , n

(ii) Communication rules:

r3,i ≡ (1, ai/ai+1, 0) for i = 1, . . . , 2n + �log2 m� + 10

r4,i ≡ (1, ci/c
2
i+1, 0) for i = 1, . . . , 2n

r5 ≡ (1, c2n+1/D, 2)

r6 ≡ (2, c2n+1/d1E, 0)

r7,i ≡ (2, di/d
2
i+1, 0) for i = 1, . . . , �log2 m�

r8 ≡ (2, E/e f2, 0)

r9,i ≡ (2, fi/fi+1, 0) for i = 2, . . . , n + �log2 m� + 5

r10,ij ≡ (2, d�log2 m�+1Aij/Pij , 0) for 1 ≤ i < j ≤ n

r11,ij ≡ (2, Pij/RijP ij , 0) for 1 ≤ i < j ≤ n

r12,ij ≡ (2, P ij/BijGij , 0) for 1 ≤ i < j ≤ n

r13,ij ≡ (2, RiRij/RiRj , 0) for 1 ≤ i < j ≤ n

r14,ij ≡ (2, BiBij/BiBj , 0) for 1 ≤ i < j ≤ n

r15,ij ≡ (2, GiGij/GiGj, 0) for 1 ≤ i < j ≤ n

r16,j ≡ (2, RjRj/�, 0) for 1 ≤ j ≤ n

r17,j ≡ (2, BjBj/�, 0) for 1 ≤ j ≤ n

r18,j ≡ (2, GjGj/�, 0) for 1 ≤ j ≤ n

r19 ≡ (2, e �/λ, 0)

r20 ≡ (2, e fn+�log2 m�+6/T, 0)



r21 ≡ (2, T/λ, 1)

r22 ≡ (1, b T/S, 0)

r23 ≡ (1, S yes/λ, 0)

r24 ≡ (1, b a3n+�log2 m�+11/N, 0)

r25 ≡ (1, N no/λ, 0)

• E(〈n,m〉) = Γ(〈n,m〉) − {yes, no}

• iin = 2 is the input cell.

• i0 = 0 is the output region.

5.1 An Overview of the Computation

First of all we define a polynomial encoding of the 3–coloring problem in the family

Π constructed in the previous section. Let u = (V,E) be an instance of the problem,

with n vertices and m edges. Then we consider a size mapping on the set of instances

defined as s(u) = 〈n,m〉. The codification of the instance will be the multiset

cod(u) = E.

Next we describe informally how the recognizer tissue P system with cell division

Π(s(u)) with input cod(u) works.

Let us start with the generation stage. In this stage we have two parallel pro-

cesses.

• On the one hand, in the cell labelled by 1 we have two counters: ai, which will be

used in the answer stage and ci, which will be multiplied until step 2n, where 4n

copies of c2n+1 are obtained.

• On the other hand, in the cell labelled by 2, the division rules are applied. For

each object Ai (which codifies a vertex of the graph) we get (in two steps) three

cells labelled by 2, each of them encoding one of the three colors by means of the

objects Ri, Gi, Bi.

After the appropriate divisions, in the step 2n we get exactly 3n cells encoding

all the possible 3–colorings of the graph.

In this way, after the 2n–th step the generation stage is finished and the check-

ing stage starts. In this moment, the content of the cell labelled by 1 is

{{a2n+1, c
4n

2n+1, b, yes, no}}, and there are 3n cells each of them containing the object

D, the objects Aij , and a function from V to {1, 2, 3} (we will identify the colors by

red, R, green, G, and blue, B).

In the step 2n + 1, 3n copies of c2n+1 in the cell 1 is traded by 3n objects D

that appears one in each cell labelled by 2. Notice that 4n − 3n spare copies of the

counter c will remain in cell 1. When the object c2n+1 arrives to the cell labelled by

2, the communication starts.

At the beginning of the process, we pay attention to the counters d and f .

The first one will be multiplied until at least m copies are obtained, so that they

can cooperate with the m input symbols Aij that represent the edges. This is

achieved in the 2n + �log2 m�+ 2–th step (for the sake of simplicity, we will denote

γ = 2n + �log2 m�+ 2). The object f will be useful in order to send an object T to



the cell 1 at the end of this stage.

When the m copies of the object d are obtained, each of them is sent together

with an object Aij to the environment, and the corresponding objects Pij are brought

in. Then they are interchanged by Rij , Gij , Bij from the environment (this is done

in two steps by apllying rules r11,ij and r12,ij).

In order to know if a 3–coloring is valid we must check for each cell labelled by

2 (encoding a 3–coloring of the graph) if there exist two adjacent vertices with the

same color. Let us reason with a color, say red (for green and blue, the process is

the same):

• If node i has red color by a 3–coloring encoded in a cell labelled by 2, then the

object Ri is present in that cell. Then in the step γ + 3 the objects Ri and Rij

produce RiRj (the object Rj is brought from the environment). Simultaneously,

in that step the objects P ij produce objects Bij and Gij applying the rules r12,ij .

• If the vertex j is also of color red, then the objects RjRj are traded against an

object � from the environment.

Notice that in the generation stage, the processes are carried out in parallel, but in

the checking stage, the red color is checked one step before the other two colors.

Taking into account that in the worst case each node needs to check

max{degree(u) : u ∈ V } ≤ n adjacent nodes, then after γ + n + 3 steps no

more rules of the types r13,ij , r14,ij, and r15,ij can be applied. The checking stage

will finish at the step γ + n + 5, because no more rules of the types r16,j, r17,j , and

r18,j can be applied.

The output stage starts in the step γ + n + 6.

• Affirmative answer: If there exists a valid 3–coloring of the graph, then in some

cell labelled by 2 from the configuration Cγ+n+5 we have the object e and the

object f�log2 m�+n+6. By applying the rule r20 we produce an object T in that

cell. In the next step, an object T arrives to the cell 1 by the application of the

rule r21. Then, the objects b and T in cell 1 permit that an object S arrives

to cell 1 from the environment (by applying the rule r22). Finally, an object

yes is sent out to the environment by the application of the rule r23 in the step

γ + n + 9 = 3n + �log2 m� + 11. The obtained configuration is a halting one.

• Negative answer: If there is no valid 3–coloring of the graph, then the object e

does not appear in any cell labelled by 2 from the configuration Cγ+n+5. So, in

these cells no rules can be applied anymore. In the next three steps, only the

counter a in cell 1 evolves. Hence, in this cell from the configuration Cγ+n+8 we

have the objects b and a3n+�log2 m�+11. Next, by applying the rule r24 we get from

the environment an object N , and in the following step an object no is sent out to

the environment (because we also have an object no in cell 1). The computation

finishes in the step γ + n + 10 = 3n + �log2 m� + 12.



5.2 Necessary Resources

The presented family of tissue P systems that solves the 3–coloring problem is poly-

nomially uniform by Turing Machines. It can be observed that the definition of

the family is done in a recursive manner from a given instance, in particular from

the constants n and m. Furthermore the necessary resources to build the tissue P

system Π(〈n,m〉) are:

• Size of the alphabet: 3n2 + 11n + 3�log2 m� + 28 ∈ θ(n2 + �log2 m�).

• Initial number of cells: 2 ∈ θ(1).

• Initial number of objects: n + m + 6 ∈ theta(n + m).

• Number of rules: 3n2 + 6n + 3�log2 m� + 24 ∈ θ(n2 + �log2 m�).

• Maximal length of a rule: 4.

Hence, there exists a deterministic Turing machine working in linear time that con-

structs the tissue P system Π(〈n,m〉) from 〈n,m〉 ∈ IN.

5.3 Main Results

>From the discussion in the previous sections and according to the definition of

solvability given in Section 4, we deduce the following result:

Theorem 5.1 3–coloring ∈ PMCTD.

As a consequence of this result we have:

Theorem 5.2 NP ∪ co − NP ⊆ PMCTD.

Proof It suffices to make the following observations: the 3–coloring problem

is NP-complete, 3–coloring ∈ PMCTD and the class PMCTD is stable under

polynomial-time reduction, and also closed under complement.

6 Conclusions and Future Work

The power and efficiency of cell-like P systems for solving NP-complete problems

have been widely studied (in the framework of cell division and membrane creation).

Nevertheless, there are very few works studying the case of tissue-like P systems.

In this paper we propose a new solution to an NP-complete problem, the 3–

coloring problem, which can be used as a scheme for designing solutions to other

NP–complete problems from graph theory such as the vertex–cover problem, the

clique problem, the hamiltoniam path problem, etc. Moreover, the structure of the

solution described can be also adapted for solving computationally hard numerical

problems.

Recently, a new kind P system model (called spiking neural P systems) based

on the idea of spiking neurons has been presented (see, for example, [11]). The

motivation of this model coming from two directions: the attempt of membrane

computing to pass from cell-like architectures to tissue-like or neural-like architec-

tures (see [23], [19]), and the intriguing possibility of encoding information in the



duration of events, or in the interval of time elapsed between events, as in recent

research in neural computing (of third generation) [15].

Until now, spiking neural P systems have been basically used in the generative

mode and the investigations have been addressed to study the computational com-

pleteness of these models. It remains as further work to bridge tissue P systems and

this new model in order to be able to solve NP–complete problems through spiking

neural P systems.

Acknowledgement

The authors wish acknowledge the support of the project TIN2005-09345-C04-01 of

the Ministerio de Educación y Ciencia of Spain, cofinanced by FEDER funds, and

the support of the project of excelence TIC-581 of the Junta de Andalucía.

References

[1] Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. The Molecular Biology of the
Cell, Fourth Edition, Garland Publ. Inc., London (2002).

[2] Alhazov, A., Freund, R. and Oswald, M. Tissue P Systems with Antiport Rules ans Small Numbers of
Symbols and Cells. Lecture Notes in Computer Science 3572, (2005), 100–111.

[3] Appel, K. and Haken, W. Every planar map is 4-colorable - 1: Discharging. Illinois Journal of
Mathematics 21, (1977), 429–490.

[4] Appel, K. and Haken, W. Every planar map is 4-colorable - 2: Reducibility. Illinois Journal of
Mathematics 21, (1977), 491–567.

[5] Bernardini, F. and Gheorghe, M. Cell Communication in Tissue P Systems and Cell Division in
Population P Systems. Soft Computing 9, 9, (2005), 640–649.

[6] L. Cardelli. Brane Calculi. Lecture Notes in Computer Science 3082, (2005), 257–278.

[7] Freund, R., Păun, Gh. and Pérez-Jiménez, M.J. Tissue P Systems with channel states. Theoretical
Computer Science 330, (2005), 101–116.

[8] Frisco, P. and Hoogeboom, H.J. Simulating counter automata by P systems with symport/antiport.
Lecture Notes in Computer Science 2597, (2003), 288–301.

[9] Garey, M.R. and Johnson, D.S. Computers and Intractability A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, (1979).

[10] Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J. and Romero-Campero, F.J. A linear solution for QSAT
with Membrane Creation. Lecture Notes in Computer Science 3850, (2006), 241–252.

[11] Ionescu, M., Păun, Gh. and Yokomori, T. Spiking neural P systems, Fundamenta Informaticae, 71, 2-3
(2006), 279–308.

[12] Krishna, S.N., Lakshmanan K. and Rama, R. Tissue P Systems with Contextual and Rewriting Rules.
Lecture Notes in Computer Science 2597, (2003), 339–351.

[13] Lakshmanan K. and Rama, R. On the Power of Tissue P Systems with Insertion and Deletion Rules.
In A. Alhazov, C. Martín-Vide and Gh. Păun (eds.) Preproceedings of the Workshop on Membrane
Computing, Tarragona, Report RGML 28/03, (2003), 304–318.

[14] Luisi, P.L. The Chemical Implementation of Autopoiesis. In G.R. Fleishaker et al. (eds.) Self-Production
of Supramolecular Structures, Kluwer, Dordrecht, (1994).

[15] W. Maass, C. Bishop, eds.: Pulsed Neural Networks, MIT Press, Cambridge, (1999).



[16] Martín Vide, C. Pazos, J. Păun, Gh. and Rodríguez Patón, A. A New Class of Symbolic Abstract
Neural Nets: Tissue P Systems. Lecture Notes in Computer Science 2387, (2002), 290–299.

[17] Martín Vide, C. Pazos, J. Păun, Gh. and Rodríguez Patón, A. Tissue P systems. Theoretical Computer
Science, 296, (2003), 295–326.

[18] Păun, Gh. Computing with membranes. Journal of Computer and System Sciences, 61, 1, (2000),
108–143.

[19] Păun, Gh. Membrane Computing. An Introduction. Springer–Verlag, Berlin, (2002).

[20] Păun, A. and Păun, Gh. The power of communication: P systems with symport/antiport. New
Generation Computing, 20, 3, (2002), 295–305.

[21] Păun, Gh. and Pérez-Jiménez, M.J. Recent computing models inspired from biology: DNA and
membrane computing. Theoria, 18, 46, (2003), 72–84.

[22] Păun, Gh., Pérez-Jiménez, M.J. and Riscos-Núñez, A. Tissue P System with cell division. In Gh. Păun,
A. Riscos-Núñez, A. Romero-Jiménez and F. Sancho-Caparrini (eds.), Second Brainstorming Week on
Membrane Computing, Sevilla, Report RGNC 01/2004, (2004), 380–386.

[23] Gh. Păun, Y. Sakakibara, T. Yokomori: P systems on graphs of restricted forms. Publicationes
Mathematicae Debrecen, 60 (2002), 635–660.

[24] Pérez-Jiménez, M.J., Romero-Jiménez, A. and Sancho-Caparrini, F. Teoría de la Complejidad en
Modelos de Computación Celular con Membranas. Editorial Kronos, Sevilla, (2002).

[25] Pérez-Jiménez, M.J., Romero-Jiménez, A. and Sancho-Caparrini, F. The P versus NP problem through
cellular computing with membranes. Lecture Notes in Computer Science 2950, (2004), 338–352.

[26] Pérez-Jiménez, M.J., Romero-Jiménez, A. and Sancho-Caparrini, F. A polynomial complexity class in P
systems using membrane division. In E. Csuhaj-Varjú, C. Kintala, D. Wotschke and Gy. Vaszyl (eds.),
Proceedings of the 5th Workshop on Descriptional Complexity of Formal Systems, DCFS 2003, (2003),
284–294.

[27] Prakash, V.J. On the Power of Tissue P Systems Working in the Maximal-One Mode. In A. Alhazov,
C. Martín-Vide and Gh. Păun (eds.). Preproceedings of the Workshop on Membrane Computing,
Tarragona, Report RGML 28/03, (2003), 356–364.

[28] Stockmeyer, L.J. Planar 3-colorability is NP-complete. SIGACT News 5, 3, (1973), 19–25.

[29] Zandron, C., Ferreti, C. and Mauri, G. Solving NP-Complete Problems Using P Systems with
Active Membranes. In I. Antoniou, C.S. Calude and M.J. Dinneen (eds.). Unconventional Models of
Computation, UMC’2K, Springer-Verlag, (2000), 289–301.

[30] ISI web page http://esi-topics.com/erf/october2003.html

[31] P systems web page http://psystems.disco.unimib.it/

http://esi-topics.com/erf/october2003.html
http://psystems.disco.unimib.it/

	Introduction
	Preliminares
	Tissue P Systems with Cell Division
	Recognizer Tissue P Systems with Cell Division
	A Solution for the 3--coloring problem
	An Overview of the Computation
	Necessary Resources
	Main Results

	Conclusions and Future Work
	References

