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SUMMARY

Sucrose non-fermenting 1-related protein kinases (SnRKs) are important for plant growth and stress

responses. This family has three clades: SnRK1, SnRK2 and SnRK3. Although plant SnRKs are thought to be

activated by upstream kinases, the overall mechanism remains obscure. Geminivirus Rep-Interacting Kinase

(GRIK)1 and GRIK2 phosphorylate SnRK1s, which are involved in sugar/energy sensing, and the grik1-1

grik2-1 double mutant shows growth retardation under regular growth conditions. In this study, we estab-

lished another Arabidopsis mutant line harbouring a different allele of gene GRIK1 (grik1-2 grik2-1) that

grows similarly to the wild-type, enabling us to evaluate the function of GRIKs under stress conditions. In

the grik1-2 grik2-1 double mutant, phosphorylation of SnRK1.1 was reduced, but not eliminated, suggesting

that the grik1-2 mutation is a weak allele. In addition to high sensitivity to glucose, the grik1-2 grik2-1

mutant was sensitive to high salt, indicating that GRIKs are also involved in salinity signalling pathways.

Salt Overly Sensitive (SOS)2, a member of the SnRK3 subfamily, is a critical mediator of the response to

salinity. GRIK1 phosphorylated SOS2 in vitro, resulting in elevated kinase activity of SOS2. The salt toler-

ance of sos2 was restored to normal levels by wild-type SOS2, but not by a mutated form of SOS2 lacking

the T168 residue phosphorylated by GRIK1. Activation of SOS2 by GRIK1 was also demonstrated in a recon-

stituted system in yeast. Our results indicate that GRIKs phosphorylate and activate SnRK1 and other mem-

bers of the SnRK3 family, and that they play important roles in multiple signalling pathways in vivo.

Keywords: GRIKs, SnRKs, SOS2, upstream kinases, salinity, sugar, phosphorylation, stress, Arabidopsis

thaliana.

INTRODUCTION

Reversible protein phosphorylation is one of the most

important mechanisms by which cell signalling responds

to environmental changes. Sucrose non-fermenting 1

(SNF1)/AMP-activated protein kinases (AMPKs) are

involved in the responses to energy depletion in yeasts

and mammals (Kemp et al., 2003; Hardie, 2004). The plant

homologues of SNF1, the SNF1-related protein kinases

(SnRK), comprise three subfamilies: SnRK1, SnRK2 and

SnRK3. SnRK1 proteins, including SnRK1.1 and 1.2 (also

known as KIN10 and 11) of Arabidopsis thaliana, have the

highest similarity to SNF1. As expected based on

homology, SnRK1s play important roles in energy sig-

nalling (Baena-Gonz�alez et al., 2007). On the other hand,

SnRK2 and SnRK3 proteins are plant-specific subfamilies

consisting of 10 and 25 members, respectively, in Ara-

bidopsis, and are involved in diverse signalling pathways

(Hrabak et al., 2003; Luan, 2009; Umezawa et al., 2010).

One of the best characterized SnRK3s (a.k.a. calcineurin B-

like proteins-interacting protein kinases, CIPKs), SOS2 (Salt

Overly Sensitive 2/SnRK3.11/CIPK24), is a Ser/Thr protein

kinase acting in the SOS pathway that is required for salt

tolerance (Zhu et al., 1998; Liu et al., 2000). In the SOS
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pathway, SOS2 activates the plasma membrane Na+/H+

antiporter SOS1 (Shi et al., 2000; Quan et al., 2007; Quin-

tero et al., 2011) and vacuolar targets such as the tonoplast

K+(Na+)/H+ exchangers NHXs (Qiu et al., 2004) and the H+/

Ca2+ antiporter CAX1 (Cheng et al., 2004). SnRK3s bind to

the calcium-binding proteins, SCaBPs (SOS3-like calcium-

binding protein, a.k.a. calcineurin B-like/CBL), with varying

degrees of specificity and combinatorial diversity (Halfter,

2000; Kim et al., 2000). SOS2 is activated by SOS3 or

SCaBP8/CBL10 after binding to the FISL motif (a.k.a. NAF

domain) of SOS2, which is thought to comprise an autoin-

hibitory domain, in a Ca2+-dependent manner (Halfter,

2000; Quan et al., 2007).

In addition to interactions with binding proteins, other

regulatory mechanisms of the SnRK family have been

proposed. Phosphorylation in the activation-loop (a.k.a.

T-loop) is an important regulatory mechanism of SnRK

proteins (Hanks and Hunter, 1995; Cutler et al., 2010). In

yeast, three kinases, SAK1/PAK1, TOS3 and ELM1, phos-

phorylate SNF1 in vitro, and the triple deletion of genes

encoding these upstream kinases abolishes the catalytic

activity of SNF1 and causes a phenotype similar to that of

Dsnf1 (Hong et al., 2003; Sutherland et al., 2003). In Ara-

bidopsis, two kinases have been identified as homologues

of yeast SAK1, TOS3 and ELM1. These proteins were

named Geminivirus Rep-Interacting Kinases (GRIK)1 and

GRIK2 because their expression is induced by geminivirus

infection and they bind to geminivirus replication protein

AL1 (Kong and Hanley-Bowdoin, 2002; Shen and Hanley-

Bowdoin, 2006). GRIK1 or GRIK2 (a.k.a. SnRK1 activating

kinase; Hey et al., 2007) can functionally complement the

yeast elm1 sak1 tos3 triple mutant (Shen and Hanley-Bow-

doin, 2006). Extracts from yeast cells expressing GRIK1 or

GRIK2 phosphorylate a peptide corresponding to the acti-

vation-loop of the SnRK1 clade (Hey et al., 2007). In addi-

tion, recombinant GRIK1 and GRIK2 phosphorylate the

activation-loop of SnRK1.1 and 1.2, activating them in vitro

(Shen et al., 2009; Crozet et al., 2010). A large-scale study

of double mutants suggested that the grik1-1 grik2-1 dou-

ble mutant was embryonic lethal (Bolle et al., 2013), but a

recent report showed that the grik1-1 grik2-1 double

mutant could be rescued on sugar-supplemented medium,

albeit plants were small and did not produce seeds (Glab

et al., 2017). Phosphorylation of SnRK1s was reduced in

the double mutant (Glab et al., 2017). Thus, GRIK1 and

GRIK2 play essential roles in sugar/energy signalling.

Resembling the activation of SnRK1 proteins, phospho-

rylation-mimicking mutations in the activation-loop make

SOS2 constitutively active (Guo et al., 2001). Three candi-

date phosphorylation sites in the activation-loop are con-

served among the SnRK3 family (Gong et al., 2002b;

Chaves-Sanjuan et al., 2014). Replacement of the Ser-156,

Thr-168 or Tyr-175 residue in the activation-loop of SOS2

with an Asp residue to mimic phosphorylation significantly

increases the activity of the enzyme in vitro (Gong et al.,

2002b). Transgenic plants overexpressing SOS2 with the

Thr168?Asp mutation are more tolerant to salt (Guo et al.,

2004), and similar effects have been observed on other

SnRK3s (Gong et al., 2002a,c). These results strongly sug-

gest that phosphorylation in the activation-loop activates

SOS2, raising the question of the identity of the upstream

kinases involved.

To investigate the possible role of GRIK1 and GRIK2 as

upstream regulators of SnRK3s, we have inspected the

phenotype of Arabidopsis plants bearing mutations in

genes GRIK1 and GRIK2. Because the strong phenotype of

the previously characterized grik1-1 grik2-1 double mutant

could mask the responses to environmental stress condi-

tions, we used a different combination of mutant alleles.

The grik1-2 grik2-1 double mutant used here grew nor-

mally under regular conditions but was salt sensitive. We

show that GRIK1 and GRIK2 phosphorylate and activate

SOS2 to increase salt tolerance. Thus, GRIK1 and GRIK2

coordinate the responses to metabolic and environmental

stresses in plants.

RESULTS

GRIK1 and 2 affect the amount and phosphorylation state

of SnRK1.1

To investigate the function of GRIK1 and GRIK2 in vivo, we

analysed T-DNA insertion lines in which either the GRIK1

or GRIK2 genes were disrupted (Salk_142938 for grik1 and

Salk_015230 for grik2; Figure 1a). For this study, we will

denote these mutant alleles as grik2-1 as this is the only

GRIK2 knockout line characterized so far, and grik1-2

because this is a grik1 allele different to the GABI-713C09

mutant reported previously (Bolle et al., 2013; Glab et al.,

2017). Because we observed no significant differences

between the wild-type, grik1-2 and grik2-1 plants, we

crossed the two mutant lines and identified a grik1-2 grik2-

1 double mutant in the F2 generation. We verified that the

mutant lines grik1-2 and grik2-1 used in this study harbour

T-DNA insertions in the 1st intron and 10th exon, respec-

tively, and confirmed by reverse transcriptase-polymerase

chain reaction (RT-PCR) that no full-length mRNA for either

GRIK1 or GRIK2 is expressed in the double mutant (Fig-

ure 1b). A large-scale study of double mutants of paralo-

gous genes suggested that the grik1-1 grik2-1 double

mutant was embryonic lethal (Bolle et al., 2013). Recently,

Glab et al. (2017) have shown that the grik1-1 grik2-1

mutant could be rescued by sugar supplementation, yet

the mature plant was stunted and sterile. The grik1-2 grik2-

1 double mutant used here grew and reproduced normally

under our growth-room conditions (Figure 1c). Thus, it

was possible that grik1-2 is a weak allele and not a com-

plete loss-of-function. To investigate the possibility that

the T-DNA insertion in the 1st intron yielded a truncated
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form of GRIK1 in the grik1-2 mutant, Northern blotting was

performed using as probe the middle region of GRIK1,

downstream of the T-DNA insertion. In the grik1-2 mutant,

a hybridizing band stronger than the endogenous GRIK1

transcript in the wild-type was detected, while no band

was detected with similar size to the wild-type in the grik1-

1 mutant (Figure 1d). Sequencing of the RT-PCR amplicon

pertaining to the grik1-2 allele revealed that there was an

mRNA containing the T-DNA left border fused to the 1st

intron and the second exon of GRIK1 in the 50-end region

of grik1-2 mRNA. Because the 2nd and 3rd introns were

correctly spliced out, the remaining mRNA may have the

same sequence as the wild-type in the downstream 30-end
region. While several short ORFs could possibly encode

peptides 7-, 11- and 59-residues long, the longest ORF in

the grik1-2 transcript encoded an N-terminal truncated

GRIK1 protein starting at Met-156 in the wild-type protein

(Figure 1e). These results and the phenotype of the grik1-2

mutant suggest that this truncated GRIK1 expressed in the

grik1-2 mutant could provide residual GRIK1 function.

Importantly, the robust growth of the grik1-2 grik2-1 dou-

ble mutant allowed the inspection of stress-related

responses, which could be separated from the role of

GRIKs in plant development.

SnRK1s are the primary targets of GRIKs in Arabidopsis

(Shen et al., 2009). In the grik1-1 grik2-1 mutant the phos-

phorylation in the activation-loop of SnRK1.1 was almost

eliminated (Glab et al., 2017). To evaluate the phosphoryla-

tion rate in the grik1-2 grik2-1 mutant, we used an antibody

against phosphorylated AMPK protein that recognizes the

Arabidopsis SnRK1 proteins (Baena-Gonz�alez et al., 2007;

Cho et al., 2016). Results showed that the amounts of

phosphorylated SnRK1.1 and SnRK1.2 were lower in the

grik1-2 grik2-1 mutant compared with wild-type on Mura-

shige and Skoog medium (MS) plates with 1% sucrose,

although phosphorylation was not entirely eliminated (Fig-

ure 1f). Western blotting with the anti-SnRK1.1 antibody

showed that the total amount of SnRK1.1 was also reduced

in the grik1-2 grik2-1 double mutant (Figure 1f). These

results suggest that the phosphorylation and amount of

SnRK1 proteins are reduced in the grik1-2 grik2-1 mutant.

The grik1-2 grik2-1 double mutant is sensitive to glucose

during post-germination growth

Next, we examined the phenotype of the grik1-2 grik2-1

double mutant under low-energy conditions, in which

SnRK1s play important roles (Baena-Gonz�alez et al., 2007).

Four-week-old plants were kept in the dark or submerged

in water for 60 h, conditions in which mutants with altered

SnRK1.1 activity manifested phenotypic differences with

the wild-type (Cho et al., 2016). We detected no significant

growth difference between the wild-type and grik1-2 grik2-

1 double mutant in the dark (Figure S1a) or under submer-

gence (Figure S1b), suggesting that the residual

Figure 1. Characterization of the grik1-2 grik2-1 mutant line.

(a) Schematic diagram of grik1 T-DNA insertion lines.

(b) Reverse transcriptase-polymerase chain reaction (RT-PCR) of full-length

GRIK1, GRIK2 and tubulin8 in the wild-type Col-0, grik1-2, grik2-1 and grik1-

2 grik2-1.

(c) Phenotype of the wild-type and grik1-2 grik2-1 under short-day condition

for 4 weeks.

(d) Northern blotting with the middle region of GRIK1 as probe in the wild-

type, grik1-1 and grik1-2.

(e) cDNA sequence of the 50-end region of grik1-2 and potential ORFs. The

longest ORF corresponded to an N-terminal truncated GRIK1 protein start-

ing at Met-156 of the wild-type protein.

(f) Amount and phosphorylation status of SnRK1s in the wild-type and

grik1-2 grik2-1.

Western blot with anti-pAMPK antibody (upper panel) and anti-SnRK1.1

antibody (middle panel). Coomassie staining was used to show protein

amounts (lower panel). A greater amount of proteins from grik1-2 grik2-1

(150%) was also loaded to compare the phosphorylation ratio in equivalent

amounts of SnRK1.1.
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phosphorylation of SnRK1s is sufficient to mediate physio-

logically important functions under the tested conditions.

By contrast, the grik1-2 grik2-1 double mutant had a glu-

cose-sensitive phenotype. On MS plates with 1% sucrose,

grik1-2 grik2-1 showed post-germination growth similar to

the wild-type. On the other hand, growth of the double

mutant was arrested before greening on MS plates with

1% sucrose and supplemented with 3% glucose (Fig-

ure S1c). By contrast, on plates with 3% additional sucrose

(total 4%), we observed no difference in greening between

the wild-type and the double mutant, although the wild-

type tended to grow slightly faster (Figure S1c). On 3% sor-

bitol plates, in which the osmolarity was identical to that of

the glucose- and sucrose-supplemented plates, we

observed no difference in growth between the wild-type

and the double mutant (Figure S1c). These results indicate

that GRIK1 and GRIK2 specifically function in high-glucose

conditions, which is consistent with the reported pheno-

type of the grik1-1 grik2-1 mutant (Glab et al., 2017).

The grik1-2 grik2-1 double mutant is sensitive to high

concentrations of NaCl

Next, we assessed the sensitivity of the double mutant to

environmental stresses. When similarly-sized 3–4-day-old
seedlings were transferred to MS agar plates supple-

mented with 50 mM or 100 mM NaCl, the roots of the

double mutant were shorter than those of the wild-type,

grik1-2 or grik2-1 (Figure 2a); on regular MS plates, the

double mutant had slightly shorter roots. The grik1-2 grik2-

1 double mutant was not as sensitive to NaCl as the sos2-2

mutant, which could not survive on 100 mM NaCl plates

(Figure 2a). On the other hand, when seedlings were trans-

ferred to MS plates supplemented with 200 or 300 mM

mannitol, we detected no significant differences in root

length among any of the strains tested, in keeping with the

similar sensitivity of the double mutant and wild-type

plants to 3% sorbitol (165 mM; Figure S1d). These results

indicate that GRIK1 and GRIK2 are instrumental in

Figure 2. Salt-sensitive phenotype of grik1-2 grik2-1 double mutant.

(a) Seedlings of the wild-type (Col-0), grik1-2, grik2-1, grik1-2 grik2-1 and

sos2-2 mutants grown on Murashige and Skoog (MS) agar plate were trans-

ferred to fresh plates with or without 100 mM NaCl. Photographs were taken

12 days after transfer. The line graph represents primary root length of

seedlings 12 days after transfer to MS agar plates with the indicated con-

centration of NaCl (mean � SE, n = 20). Asterisks indicate significant differ-

ences from wild-type (P < 0.05, in one-way ANOVA followed by Tukey’s

multiple comparison test).

(b) Hydroponic culture of Col-0, grik1-2, grik2-1, grik1-2 grik2-1 and sos2-2

mutants in LAK medium supplemented with NaCl as indicated. Plants were

grown for 4 weeks. The bar graph represents the dry weight of plants

(mean � SE, n = 7) at the end of the experiment. Asterisks indicate signifi-

cant differences from wild-type (P < 0.01, in one-way ANOVA followed by

Tukey’s multiple comparison test).
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mounting tolerance to the ionic component of salinity and

are likely to function in concert with the SOS pathway.

Hence, we also evaluated the contribution of GRIK1 and

GRIK2 to the salt tolerance of Arabidopsis in hydroponic

culture with LAK medium, which maximises ionic-sensitive

phenotypes due to the enhanced sodium uptake linked to

evapotranspiration (Barragan et al., 2012). The grik1-2

grik2-1 double mutant had a significant salt-sensitive phe-

notype at 20 mM NaCl, but was still less sensitive than the

sos2-2 mutant (Figure 2b). Together, these results indicate

that GRIK1 and GRIK2 play redundant yet important roles

in the sodium tolerance of Arabidopsis.

GRIK1 phosphorylates Thr168 in the activation-loop of

SOS2

SOS2, which belongs to the SnRK3 subfamily and plays an

important role in salt tolerance, is phylogenetically related

to SnRK1s. Hence, we investigated whether GRIKs could

also phosphorylate SOS2. For these experiments, we pro-

duced glutathione S-transferase (GST)-fused GRIK1 recom-

binant proteins in Escherichia coli. A kinase-dead type

mutant protein of GRIK1 (GRIK1-KR), in which the ATP-

binding residue Lys137 was changed to Arg, was also pro-

duced as a negative control. In vitro kinase assays revealed

that GRIK1 had autophosphorylation activity, whereas

GRIK1-KR did not (Figure 3a). A kinase-dead type of SOS2,

in which Lys40 was mutated to Gln (SOS2-KN; Gong et al.,

2002b), was phosphorylated by GRIK1, but not by GRIK1-

KR (Figures 3a and S2). These results indicate that GRIK1

phosphorylates SOS2 in vitro.

To identify the GRIK1 phosphorylation site in SOS2, we

introduced mutations in the activation-loop at the three

candidate sites (Ser-156, Thr-168 and Tyr-175), because

they are fully conserved in all the members of the Ara-

bidopsis SnRK3 subfamily, and replacement of these resi-

dues with Asp to mimic phosphorylation significantly

increased the activity of SOS2 in vitro (Gong et al., 2002b;

Chaves-Sanjuan et al., 2014). We generated SOS2 mutants,

in which one or all three of the putative phosphorylated

residues were changed to Ala (single mutants SOS2-

S156A, SOS2-T168A and SOS2-Y175A; and triple mutant

SOS2-AAA), and used them as GRIK1 substrates in an

in vitro kinase assay. These mutations of SOS2 were com-

bined with the K40N mutation to abrogate auto-phosphor-

ylation. Phosphorylation of SOS2-T168A and SOS2-AAA by

GRIK1 was not detected, whereas SOS2-S156A and SOS2-

Y175A were still phosphorylated by GRIK1 (Figures 3b and

S2). These results suggest that GRIK1 phosphorylates

Thr168 in the activation-loop of SOS2 in vitro.

The T168A mutant of SOS2 cannot rescue the salt-

sensitive phenotype of sos2-2

We next examined whether the phosphorylation site in the

activation-loop is essential for the activity of SOS2 under

salt stress in vivo. For this purpose, phosphorylation

site-mutated forms of SOS2 were expressed in the sos2-2

background under the control of the 35S promoter of Cau-

liflower Mosaic Virus (35S promoter). Transgenic plants

expressing wild-type SOS2 in the sos2-2 background could

grow well under high-salt conditions (Figure 4). Transgenic

plants expressing SOS2-S156A or SOS2-Y175A in the sos2-

2 background could survive on 100 mM NaCl plates, albeit

their roots were shorter than those of the plants expressing

wild-type SOS2. The lines presenting the best resistance to

the NaCl plates among more than 10 independent lines for

each transgene were selected for these experiments in Fig-

ure 4. On the other hand, all the 12 lines tested of T2 trans-

genic plants expressing SOS2-T168A in the sos2-2

background died on the 100 mM NaCl plates (Figure 4).

Northern blot analysis revealed that transcripts of SOS2-

S156A, SOS2-T168A and SOS2-Y175A in each transgenic

line were substantially more abundant than those of wild-

type SOS2 in the transgenic line expressing wild-type or

endogenous SOS2 (Figure 4b). The reason for this dispro-

portionate accumulation of SOS2-S156A, SOS2-T168A and

SOS2-Y175A transcripts is unclear, but could be due to the

known upregulation of the SOS2 transcript by salt stress,

and that transgenic plants expressing inactive SOS2

mutants would suffer from acute salinity stress compared

with the wild-type and sos2-2 transgenic plants com-

Figure 3. In vitro phosphorylation of SOS2 by GRIK1.

(a) A kinase-dead SOS2 fused to GST (SOS2-KN, arrow) was incubated with

GST-fused GRIK1 or the kinase-dead (K137R) of GRIK1 (GRIK1-KR) also

fused to GST (arrowhead). Proteins were separated in sodium dodecyl sul-

phate–polyacrylamide gel electrophoresis (SDS–PAGE) followed by Coo-

massie staining (left) and autoradiograph (right).

(b) GST-fused mutant T168A of SOS2 was incubated with GST-fused GRIK1.

Proteins were separated in SDS–PAGE followed by Coomassie staining (left)

and autoradiograph (right).
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plemented by the wild-type SOS2 gene. In any case, trans-

genic lines expressing the SOS2-S156A, SOS2-T168A and

SOS2-Y175A transcripts at levels commensurate with the

wild-type SOS2 transgene showed similar complementa-

tion results (Figure S3), demonstrating that differences in

transgene expression were not the reason for root growth

retardation in plants expressing SOS2-S156A or SOS2-

Y175A. Together, these results indicate that Ser156, Thr168

and Tyr175 of SOS2 are involved in the function of SOS2

under salt stress, and that Thr168 in particular is essential

for survival under salt stress.

In vitro activation of SOS2 by GRIK1

Next, we asked whether phosphorylation by GRIK1 acti-

vates SOS2 in vitro. Deletion of the C-terminal 138 amino

acids of SOS2 (SOS2-Δ308) removes the autoinhibitory

domain of SOS2, yielding a SOS3-independent form of the

kinase (Guo et al., 2001). The T168A-mutated form of

SOS2-Δ308 (SOS2-Δ308/T168A) was used as a negative

control. The GST-fused C-terminal 148 amino acids of

SOS1 (SOS1-CT; Fujii and Zhu, 2009) were used as a sub-

strate for SOS2. SOS1-CT was phosphorylated by SOS2-

Δ308 to a greater degree in the presence of GRIK1 than in

the presence of GRIK1-KR (Figures 5 and S2). Little phos-

phorylation of SOS1 was observed when GRIK1 was com-

bined with the SOS2-Δ308/T168A protein. These results

Figure 4. Expression of SOS2 mutants S159A (SA) and Y175A (YA), but not

T168A (TA), partially rescued the sos2-2 under salt stress condition.

(a) Seedlings grown on Murashige and Skoog (MS) agar medium were

transferred to fresh plates with or without 100 mM NaCl. Photographs were

taken 12 days after transfer. The lines presenting the best resistance to the

NaCl plates were selected for this test.

(b) Northern blot for SOS2 transcript was performed with total RNA

extracted from wild-type (WT), sos2-2 transgenic plants expressing the

S159A (SA), T168A (TA) and Y175A (YA) mutant forms of SOS2, and non-

transformed sos2-2. Total RNA was purified 12 h after transfer to MS agar

plates with 100 mM NaCl. rRNA (ethidium bromide stained) was used as a

loading control.

(c) Survival rates of the seedlings on MS agar plates with or without

100 mM NaCl. The experiment was repeated three times, and mean values

(� SE) are shown.

(d) Primary root length of seedlings 12 days after transfer to MS agar plates

with or without 100 mM NaCl (mean � SE). Asterisks indicate significant dif-

ferences from sos2-2 transformed with the wild-type SOS2 (P < 0.05, in

one-way ANOVA followed by Tukey’s multiple comparison test).

Figure 5. In vitro activation of SOS2-Δ308 by GRIK1.

The GST-fused SOS3-independent form of SOS2 (SOS2-Δ308, arrowhead),

or the combined T168A mutation in SOS2-Δ308 were incubated with GST-

fused GRIK1 or GST-fused kinase-dead (K137R) version of GRIK1 (GRIK1-

KR). The SOS1 C-terminal fragment (SOS1-CT, arrows) was added as a

phosphorylation substrate of SOS2. Proteins were separated in sodium

dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE) followed

by Coomassie staining (left) and autoradiograph (right). Note that the small

amount of GRIK1 used was enough to achieve the activation of SOS2, even

though GRIK1 bands were not observed. The relative band intensity of

SOS1-CT bands was normalized to the signal from the SOS2-Δ308WT/

GRIK1-KR lane (mean � SE, n = 6). Asterisks indicate significant differences

(P < 0.05, binomial test).
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indicate that phosphorylation of Thr168 by GRIK1 can acti-

vate SOS2 in vitro.

To confirm the physical interaction of GRIK1 and SOS2

in planta, we conducted bimolecular fluorescence comple-

mentation (BiFC) experiments in Nicotiana benthamiana.

The results demonstrated that SOS2 and GRIK1 interact at

least in the cytosol (Figure 6). BiFC fluorescence was visi-

ble in the cytoplasmic rims around nuclei, in cytosol-filled

transvacuolar strands, and in cytoplasmic pockets.

Although SOS2 shows a nucleo-cytoplasmic distribution

when expressed alone (Kim et al., 2007), no GRIK1–SOS2

complex was detected inside the nuclei.

GRIK1 activates SOS2 in yeast

The yeast SNF1 kinase is essential for carbon utilization, as

evidenced by the inability of yeast to grow in non-fermen-

table carbon sources if SNF1 is inactive. To test the ability

of GRIKs to activate SNF1, Arabidopsis GRIK1 was

expressed in the yeast strain YPDahl55 (sak1D::KanMX

elm1D::KanMX tos3D::TRP1), which lacks all three

upstream regulatory kinases of SNF1 (Ye et al., 2008).

Restoration of growth in media with the non-fermentable

carbon sources glycerol and ethanol by the wild-type

GRIK1 but not by the dead-kinase mutant bearing the

mutation K137R demonstrated that GRIK1 was fully active

in the yeast cell (Figure S4).

The SOS pathway, comprising the Na/H exchanger

SOS1, SOS2 and SOS3, can be reconstituted in yeast

strains that lack all major sodium efflux transporters and

are exceedingly sensitive to sodic stress (Quintero et al.,

2002, 2011). We used this system to analyse the in vivo

activation of SOS2 by GRIK1. For this study, we used strain

YP890, a derivative of AXT3K (Δena1::HIS3::ena4, nha1::

LEU2, nhx1::KanMX; Quintero et al., 2002), in which a

PGK1prom:SOS1:CYC1ter expression cassette was inserted

chromosomally to provide moderate and constitutive

expression of the SOS1 protein (Guo et al., 2004). This

strain expresses the endogenous SNF1-upstream kinases

SAK1/PAK1, ELM1 and TOS3, which are the fungal homo-

logues of GRIKs (Shen and Hanley-Bowdoin, 2006). For

reconstitution of the GRIK1/SOS2/SOS1 phosphorylation

cascade, we first tested the non-phosphorylatable mutant

SOS2-AAA in strain YP890. SOS2-AAA was unable to acti-

vate SOS1 in this system, irrespective of the removal of

the autoinhibitory domain of SOS2 (SOS2-AAAD308; Fig-

ure 7a) or the co-expression of SOS3 (Figure 7b). These

results indicate that, in contrast to wild-type SOS2, the

SOS2-AAA mutant cannot be activated by endogenous

upstream kinases.

Next, we generated strain D3K4E, in which the genes

encoding the three fungal upstream kinases SAK1/PAK1,

ELM1 and TOS3, and the ENA1-4 sodium pumps that are

the major determinants of Na+ tolerance in Saccharomyces

cerevisiae, had been deleted. Transformation of D3K4E

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6. SOS2-GRIK1 interaction visualized by bimolecular fluorescence

complementation (BiFC).

Panels from (a) to (f) show several images of reconstituted BiFC by GRIK1-

SOS2 interaction (left: fluorescence images; right: overlay with transmitted

light). Arrows indicate the presence of a transvacuolar strand in (c) and (d),

and nuclei in (e) and (f). Panels (g) and (h) show a negative control with

GRIK1 in pSPYCE(M) and the empty vector pSPYNE(R)173. Panels (i) and (j)

show co-transformation with SOS2 in pSPYNE(R)173 and the empty vector

pSPYCE(M). Scale bar: 10 lm.
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cells with the core components of the Arabidopsis SOS

pathway (SOS1, SOS2 and SOS3) failed to complement

the salt-sensitive phenotype (Figure 7c). Expression of

GRIK1 in D3K4E cells improved growth in glucose-supple-

mented AP medium due to the complementation of sak1

elm1 tos3 mutations. At low-NaCl concentrations (100 mM

NaCl), the residual salt tolerance imparted by the full com-

plement of SOS proteins was identical to that conferred by

SOS1 alone, indicating that the SOS2–SOS3 regulatory

module was essentially inactive in D3K4E (Figure 7c). How-

ever, co-expression of GRIK1 increased the capacity of the

SOS proteins to confer salt-tolerance to D3K4E cells. These

results demonstrate that GRIK1 can activate SOS2 in yeast.

DISCUSSION

In this study, we successfully produced a grik1-2 grik2-1

double mutant with near wild-type vegetative growth.

Previous data had indicated that the grik1-1 grik2-1 dou-

ble mutant was lethal before germination (Bolle et al.,

2013) or needed supplementation of sugar to grow

beyond the cotyledon-stage (Glab et al., 2017). Whereas

the grik2-1 mutant line used here (Salk_015230) is identi-

cal to that of previous reports, the mutant lines harbour-

ing T-DNA insertions in GRIK1 were different. Previous

studies used the GABI line 713C09 with the T-DNA inser-

tion in the 8th intron, and we have used line Salk_142938

bearing the T-DNA insertion at the 1st intron (Figure 1a).

Northern blotting and RT-PCR data (Figure 1d and e) sug-

gest that in grik1-2 the T-DNA insertion disrupts the full-

length GRIK1 transcript but allows the expression of a

mRNA encoding a truncated form of GRIK1 starting at

methionine 156. Our results showing that phosphoryla-

tion of SnRK1s at the activation-loop was reduced but

not eliminated in the grik1-2 grik2-1 double mutant (Fig-

ure 1f) suggest that the putative protein encoded by the

grik1-2 allele retains some level of activity. The remaining

phosphorylation of SnRK1s may be also sufficient to

maintain SnRK1-mediated pathways, as the grik1-2 grik2-

1 double mutant did not exhibit any defects under dark

or submergence conditions (Figure S1a and b), in which

Figure 7. Activation of SOS2 by GRIK1 in yeast.

(a) The constitutively active form of SOS2 lacking the C-terminal autoinhibitory domain and with either the phosphomimic T168D mutation in the activation-loop

(SOS2-T/DΔ308) or with the three putative phosphorylation sites by GRIK kinases (S156/T168/Y175) converted to alanine residues (SOS2-AAAΔ308) were

expressed in the yeast strain YP890 bearing mutations ena1-4 nha1 nhx1 and expressing SOS1 from a chromosomal integration. The salt sensitivity of all trans-

formants was analysed by spotting decimal dilutions of starting cultures in AP plates supplemented with the indicated amounts of NaCl. Growth in NaCl-supple-

mented media reported the activation of SOS1 by SOS2.

(b) The full-length SOS2 protein and the triple mutant S156A/T168A/Y175A (SOS2-AAA) were expressed in the yeast strain YP890 harbouring a chromosomal

integration of SOS1. When indicated, SOS3 was also co-expressed. The salt tolerance of the transformants was analysed in AP medium with increasing concen-

tration of NaCl as described above. Failure to convey salt tolerance indicated that SOS2AAA is unable to form a productive complex with SOS3 to activate

SOS1.

(c) SOS1, SOS2 and SOS3 were expressed, in various combinations as indicated, in strain D3K4E, which lacks the three SNF1-activating kinases SAK1, ELM1

and TOS3 in addition to the Na+ pumps ENA1-4. When indicated, GRIK1 was also co-expressed to test for the ability to complement the sak1 elm1 tos3 muta-

tions with regard to SOS2 activation. Results indicated that only the full complement of GRIK1, SOS2, SOS3 and SOS1 was able to restore salt tolerance.
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SnRK1s play important roles (Baena-Gonz�alez et al., 2007;

Cho et al., 2016). On the other hand, the grik1-2 grik2-1

double mutant was sensitive to high glucose (Figure S1c)

as previously shown for the grik1-1 grik2-1 double mutant

(Glab et al., 2017), indicating that the truncated protein

encoded by the grik1-2 allele cannot fully replace the

intact GRIK1. Lack of GRIKs might have multiple effects

on SnRK1-mediated pathways, including a decrease in

the amount of SnRK1.1 in the grik1-2 grik2-1 double

mutant (Figure 1f). In the grik1-1 grik2-1 double mutant,

the amount of SnRK1.1 was similar to that of the wild-

type (Glab et al., 2017). Because SnRK1.1 degradation is

strictly dependent on its activity and inactive SnRK1.1

variants are disproportionally stable (Crozet et al., 2016),

it is likely that the synthesis of SnRK1.1 is somehow com-

promised in both double mutants compared with the

wild-type, whereas higher degradation of SnRK1.1 would

occur in grik1-2 grik2-1 compared with the grik1-1 grik2-1

mutant due to the residual activity of SnRK1.1 in the

grik1-2 background.

The grik1-2 grik2-1 double mutant was sensitive to high

NaCl (Figure 2). The effects on salt sensitivity indicated

that GRIKs play important roles in several signalling path-

ways, and suggested that they might have substrates other

than SnRK1s. Shen et al. (2009) concluded that GRIK1 and

GRIK2 do not phosphorylate SOS2. However, their in vitro

kinase assay detected bands possibly corresponding to

phosphorylated SOS2, but none corresponding to phos-

phorylated SnRK2.4. In our experiments, phosphorylation

of SOS2 by GRIK1 was strong enough to be detectable

(Figure 3a). Based on the observation that phosphorylation

intensity of the mutated form of SOS2 (T168A, T169A) was

similar to that of the wild-type SOS2, Shen et al. (2009)

also concluded that GRIK1 and GRIK2 could not phospho-

rylate the activation-loop of SOS2. We observed that the

phosphorylated SOS2 band disappeared in SOS2-T168A

and SOS2-AAA (Figures 3b and S2c), indicating that GRIK1

indeed phosphorylates SOS2 at T168. The reason for the

discrepancy between our results and those of Shen et al.

(2009) remains unclear. Under their conditions, SOS2

(T168A, T169A) may have been phosphorylated on other

sites to a sufficient degree to mask the reduction of phos-

phorylation on T168/T169; alternatively, the difference may

be due to unintended effects of the fused tags. The T168

residue of SOS2 is conserved among SnRK3s (Gong et al.,

2002b), whereas this residue is a Ser in SnRK2s (with the

exception of SnRK2.8). This suggests that SnRK3s, but not

SnRK2s, may be targeted by GRIKs. In our study, GRIK1

phosphorylated and activated SOS2-Δ308 in vitro (Fig-

ure 4). GRIK1 and SOS2 physically interact in N. benthami-

ana (Figure 6). In addition, GRIK1 could activate the SOS

pathway in a yeast-reconstituted system (Figure 7). Taken

together, our results indicate that GRIK1 has the ability to

phosphorylate the activation-loop of SOS2 and to activate

this kinase, suggesting that the roles of GRIKs are not lim-

ited to upstream regulation of SnRK1s.

Our data show that T168 in the activation-loop of SOS2

is important for function of SOS2 under salt stress in vivo

(Figure 5). Mutations at S159 and Y175 also affected salt

tolerance, as reflected by root growth, although these resi-

dues were not essential for plant survival under acute salt

stress (Figure 5). These two sites might be important for

the local molecular conformation of SOS2, thereby exert-

ing an effect on phosphorylation on T168, or for another

unknown mechanism involving the activation-loop such as

phosphorylation by additional kinases contributing to the

full activation of SOS2 under salinity. In any case, our data

demonstrate that phosphorylation of T168 by GRIK1 is

important for SOS2 function in vitro and in the yeast sys-

tem. The grik1-2 grik2-1 double mutant, however, was less

sensitive to salt than the sos2-2 mutant. If GRIKs are the

upstream kinases of SOS2 in vivo, then either the putative

protein encoded by the grik1-2 allele works to some extent

or parallel mechanisms responsible for salt resistance

exist, for example another upstream kinase(s) contributing

to the full activation of SOS2, perhaps by phosphorylating

residues S159 and/or Y175. SOS2 is also activated by

SOS3 and SCaBP8 in a Ca2+-dependent manner (Halfter,

2000; Quan et al., 2007). GRIK-mediated phosphorylation

may affect the competence of SOS2 for Ca2+-dependent

activation. In that case, when salt stress induces Ca2+ sig-

nalling, SOS3 or SCaBP8 may activate SOS2 depending

upon the sugar/energy information gating by GRIKs (Fig-

ure 8).

In summary, GRIKs can phosphorylate and activate

members of the SnRK3 family in addition to their well-

known targets SnRK1s, and they play important roles not

only in the sugar signalling pathway but also in the SOS

pathway for salt tolerance in vivo.

Figure 8. Model of the placement of GRIK kinases at the interface between

sensing of the energy status and salinity stress signalling.

Salt stress induces the activation of SOS2 through calcium/CBL (SOS3 and

SCaBP8) binding. Sugar/energy status is transmitted through SOS2 phos-

phorylation by GRIK1/2, which also controls reciprocally the activity of

SnRK1s.
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EXPERIMENTAL PROCEDURES

Construction and site-directed mutagenesis

Total RNA prepared from 10 days seedling of A. thaliana Colum-
bia-0 ecotype was primed with oligo(dT) and reverse-transcribed
with the Superscript II RT (Invitrogen). GRIK1 cDNA was amplified
by PCR with KOD polymerase (Takara) under the following condi-
tions: 1 9 95°C for 5 min; 30 9 (95°C for 20 sec, 55°C for 20 sec,
70°C for 2 min). Primers used to obtain a 1207-bp fragment encod-
ing the GRIK1 are listed in Table S1. The PCR product was sub-
cloned into pGEX4T1 vector between EcoRI and XhoI sites.
Inserted fragments of all constructs were sequenced.

GRIK1 cDNA was inserted into the vector p425GPD (Mumberg
et al., 1995) as BamHI/EcoRI for expression in yeast. Plasmids for
the expression in yeast of core components of the SOS pathway
have been described elsewhere (Quintero et al., 2002, 2011).

To introduce the point mutations into SOS2-pGEX4T1 (Guo
et al., 2001), primer pairs in Table S1 were used for the first PCR:
1 9 95°C for 5 min; 20 9 (95°C for 20 sec, 51°C for 20 sec, 70°C for
90 sec). Using the PCR products as templates, the second amplifi-
cation was performed under the following conditions: 1 9 95°C
for 5 min, 30 9 (95°C for 20 sec, 51°C for 20 sec, 70°C for 90 sec).
The final product was cloned into pGEX4T1 (BamHI-EcoRI sites for
SOS2). For expression in A. thaliana, fragments were cloned into
a binary vector (pCAMBIA1200) under the control of the CaMV
35S promoter derived from pRT105. For expression in yeast, the
full-length mutant allele SOS2-AAA and the truncated version
SOS2-AAAΔ308 were subcloned as BamHI/EcoRI fragments in
p414GPD (Mumberg et al., 1995).

Arabidopsis T-DNA insertion lines

The seeds of T-DNA insertion lines (Salk_142938 and Salk_015230)
were obtained from Arabidopsis Biological Resource Center
(Alonso et al., 2003). Homozygous insertion lines were identified
with PCR following the instructions (http://signal.salk.edu/cgi-bin/
tdnaexpress). The following conditions were used: 1 9 95°C for
5 min; 35 9 (95°C for 20 sec, 55°C for 20 sec, 70°C for 1 min) with
primers described in Table S1. The insertion sites were identified
by sequencing the amplicons.

cDNAs purified from 10-day-old seedlings of Col-0 plants and T-
DNA insertion lines as mentioned above were used as templates
for RT-PCR. The following conditions were used: 1 9 95°C for
5 min; 35 9 (95°C for 20 sec, 58°C for 20 sec for GRIK1 and GRIK2,
or 54°C for 20 sec for tubulin, respectively, 70°C for 45 sec) with
primers as listed in Table S1.

Northern blot analysis was performed as described in Fujii and
Zhu (2009). For GRIK1, the cDNA fragment digested with PstI (248-
889 of ORF) was used as a probe. The mRNA of grik1-2 was ampli-
fied by RT-PCR with primers given in Table S1, followed by
sequencing.

Hydroponic culture with LAK medium

For salt treatment in hydroponic culture, seeds were directly
grown on hydroponics as described by Barragan et al. (2012). A
modified Long Ashton mineral solution with 1 mM K+ and nomi-
nally free of Na+ and NH4

+ (LAK medium) was used for hydroponic
cultures. This medium was designed to maximize the toxicity of
Na+ ions, while minimizing the osmotic effects of supplemental
NaCl. The final composition of the LAK base solution was as fol-
lows: 1 mM KH2PO4, 2 mM Ca(NO3)2, 1 mM MgSO4, 30 mM H3BO3,
10 mM MnSO4, 1 mM ZnSO4, 1 mM CuSO4, 0.03 mM (NH4)6Mo7O24

and 100 mM Fe2+ as Sequestrene 138- Fe, pH 5.3. Seedlings were

grown in LAK medium for 1 week followed by salt treatment at
the indicated NaCl concentrations.

Expression and purification of GST fusion proteins in

Escherichia coli

The constructs encoding GST-fused proteins were transformed
into E. coli Rosetta cells (Novagen). Single colonies were grown
overnight at 37°C, transferred to fresh 20 9 volume of Luria-Ber-
tani media, and further cultured for 1 h. Recombinant protein
expression was induced by 0.2 mM isopropyl beta-D-thiogalacto-
pyranoside for 4 h at 37°C. The cells were harvested by centrifuga-
tion (5000 g, 5 min, 4°C), and the pellets were resuspended in
pre-chilled lysis buffer (10 mM Tris pH 8.0, 150 mM NaCl, 1 mM

EDTA and 100 lg ml�1 lysozyme), incubated on ice for 15 min.
After dithiothreitol (50 mM), phenylmethanesulphonyl fluoride
(1 mM) and Triton X-100 (1.5%) were added, and the suspension
was centrifuged at 30 000 g for 5 min at 4°C. Then, glutathione-
agarose beads (Sigma) were added to the supernatant, and the
mixture was incubated with gentle agitation for at least 1 h at 4°C.
The beads were washed six times with pre-chilled buffer (10 mM

Tris pH 8.0, 150 mM NaCl, 1 mM EDTA).

Western blotting

Two-week-old Col-0 and grik1-2 grik2-1 seedlings, grown on MS
media with 1% sucrose, were collected and ground in liquid nitro-
gen. The tissue samples were added to Laemmli sample buffer
(Laemmli, 1970) and heat-treated (10 min at 65°C). Solid material
was removed by centrifugation, and samples were run in sodium
dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE)
followed by Western blot. The blots were incubated with either
anti-phospho-T172-AMPK-a antibody (Cell Signaling, MS, USA) or
anti-SnRK1.1 antibody (Agrisera, Sweden) overnight at 4°C with
slow agitation. All blots were then incubated with horseradish per-
oxidase-conjugated anti-rabbit antibody (GE Healthcare, UK) for
2 h at room temperature with slow agitation. All antibody dilu-
tions were made in TTBS-buffer (20 mM Tris-HCl pH 7.5, 150 mM

NaCl and 0.05% Tween-20). Signals from the blots were detected
using Westernbright ECL (Advansta, CA, USA), and band
strengths were evaluated with LiCor Image Studio program (LiCor,
UK). Experiments were replicated with five biological samples.

In vitro kinase assays

In vitro phosphorylation assays were performed as described pre-
viously (Fujii and Zhu, 2009), with some modification. Twenty
microlitres of the reaction mixture contained 20 mM Tris (pH 7.2),
10 or 40 mM MgCl2, 10 lM ATP, 5 lCi [c-32P] ATP and 2 mM dithio-
threitol. Reaction mixtures were incubated at 30°C for 40 min. The
reaction was stopped by the addition of Laemmli’s sample buffer,
followed by SDS–PAGE.

Yeast strains and media

Yeast strain YP890 (Δena1::HIS3::ena4, nha1::LEU2, nhx1::KanMX,
PGK1prom::AtSOS1::CYC1ter; Guo et al., 2004) was used to test the
function of wild-type and mutant SOS2. The yeast strain YPDahl55
(sak1D::KanMX elm1D::KanMX tos3D::TRP1) lacking all three
upstream regulatory kinases of SNF1 (Ye et al., 2008) was used as
the starting biological material to produce a strain suitable to test
activation of SOS2 by GRIK1. The ENA1-ENA4 gene tandem array
encoding Na+-ATPases was disrupted by transformation with an
ena1::hisG::URA3::hisG::ena4 gene replacement cassette, followed
by selection of uracil prototrophs and sodium-sensitive transfor-
mants. Gene replacement was confirmed by diagnostic PCR. Next,
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a loss-of-function mutant of the TRP1 gene marker in tos3D::TRP1
was isolated by counter-selection with 5-fluoroanthranilic acid
(Toyn et al., 2000). The resulting strain was denoted D3K4E. Trans-
formation of S. cerevisiae was performed using a standard lithium
acetate–polyethylene glycol method. Yeast cells were propagated
in rich YPD medium (1% yeast extract, 2% peptone, 2% glucose).
To test growth in non-fermentable carbon sources, glucose was
substituted by 3% ethanol, 2% glycerol. The ability of yeast cells
to grow in salt was tested on AP medium (Rodr�ıguez-Navarro and
Ramos, 1984). Strains were cultured overnight in liquid AP med-
ium supplemented with 1 mM KCl. After harvest, cells were resus-
pended and diluted decimally in distilled water. Five-microlitre
aliquots were spotted onto AP plates supplemented with 1 mM

KCl and various concentrations of NaCl, and grown for 3–4 days
at 28°C.

BiFC experiments in Nicotiana benthamiana

For BiFC assays, the full-length cDNA of GRIK1 was transferred to
the pSPYCE(M) vector (Waadt et al., 2008) using the XbaI and
SmaI sites to create a C-terminal translational fusion of GRIK1 to
the C-terminal moiety of YFP. The N-terminal fusion of SOS2 to
the N-terminal moiety of YFP in pSPYNE(R)173 has been
described before (Waadt et al., 2008). All the YFP fusions were
expressed under the control of the 35S promoter. The resulting
plasmids were electroporated into Agrobacterium tumefaciens
(strain GV3101). The bacterial cultures were grown at 28°C over-
night and centrifuged at 15 000 g for 10 min. Pellets were resus-
pended with infiltration buffer (10 mM MES pH 5.6, 10 mM MgCl2,
0.1 mM acetosyringone) and kept at room temperature for 5 h. Cell
cultures were adjusted to a final OD600 nm of 0.2. Appropriate com-
binations of cultures were mixed with equal amounts of an
Agrobacterium suspension carrying the p19 suppressor of
post-transcriptional gene silencing (Silhavy et al., 2002). The
Agrobacterium suspensions were then infiltrated into the leaves
of 3–4-week-old N. benthamiana plants as described (Marillonnet
et al., 2005). The infiltrated plants were kept in a controlled growth
chamber (16 h day/8 h night, 25°C/22°C, 60–70% relative humidity,
150 lmol m�2 sec�1 PAR) for 3 days until analysis by confocal
microscopy. Images were taken with a FluoView FV1000 Confocal
Microscope (Olympus) using a 488-nm Ar/ArKr laser and 60 9

objective. The Olympus FluoView 4.2 software was used to anal-
yse the images.

Statistics

Student’s t-test and one-way ANOVA followed by Tukey’s multiple
comparison test were performed for single and multiple compar-
isons, respectively. For normalized values, the non-parametric
binomial test was adopted with 0.5 as a priori probability of > 1.
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