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A computational algebraic geometry

approach to enumerate Malcev magma

algebras over �nite �elds

�Oscar J. Falc�ona, Ra�ul M. Falc�onb�and Juan N�u~neza

The setMn(K) of n-dimensional Malcev magma algebras over a �nite �eld K can be identi�ed with algebraic sets de�ned by

zero-dimensional radical ideals for which the computation of their reduced Gr�obner bases makes feasible their enumeration

and distribution into isomorphism and isotopism classes. Based on this computation and the classi�cation of Lie algebras

over �nite �elds given by De Graaf and Strade, we determine the mentioned distribution for Malcev magma algebras of

dimension n � 4. We also prove that every 3-dimensional Malcev algebra is isotopic to a Lie magma algebra. For n = 4,

this assertion only holds when the characteristic of the base �eld K is distinct of two. Copyright c
 2016 John Wiley &

Sons, Ltd.
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1. Introduction

Non-associative algebras have a special importance in terms of Mathematics, as well as for their multiple applications in Natural

Sciences and Engineering [1, 2]. This paper deals in particular with the open problem of enumerating and classifying Malcev

magma algebras, with possible application in quantum mechanics and string theory. A magma is a �nite set endowed with a binary

operation. Throughout the paper we suppose this set to be [n] = f1; : : : ; ng and we denote the inner law as �. An n-dimensional

algebra A over a �eld K is said to be a magma algebra if there exists a basis fe1; : : : ; eng of the algebra and a magma ([n]; �)

such that eiej = ci jei �j for each pair of elements i ; j � n and some structure constant ci j 2 K. The algebra A is then said to be

based on the magma ([n]; �). This is said to be a Malcev magma algebra if it also constitutes a Malcev algebra [3, 4], that is,

u2 = 0, for all u 2 A, and

((uv)w)u + ((vw)u)u + ((wu)u)v = (uv)(uw); for all u; v ; w 2 A: (1)

Every Malcev algebra is, therefore, antisymmetric, that is, uv = �vu, for all u; v 2 A. Besides, (1) is equivalent to the so-called

Malcev identity

M(u; v ; w) = J(u; v ; w)u � J(u; v ; uw) = 0; for all u; v ; w 2 A; (2)
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where J is the Jacobian de�ned as J(u; v ; w) = (uv)w + (vw)u + (wu)v , for all u; v ; w 2 A. If the characteristic of the base

�eld K, which is denoted by char(K), is distinct of two, then both identities (1) and (2) are equivalent to the Sagle identity

S(u; v ; w; y) = ((uv)w)y + ((vw)y)u + ((wy)u)v + ((yu)v)w � (uw)(vy) = 0; for all u; v ; w; y 2 A: (3)

Unlike Malcev identity, which is not linear in its �rst argument u 2 A, Sagle identity is linear in the four arguments u; v ; w; y 2 A

and invariant under cyclic permutations of the variables.

If the Jacobi identity, J(u; v ; w) = 0, is satis�ed for any three vectors u, v and w of an algebra, then this is called a Lie algebra

(a Lie magma algebra if this is also a magma algebra). Otherwise, the algebra is said to have a Jacobi anomaly. In quantum

mechanics, the existence of Jacobi anomalies in the underlying non-associative algebraic structure related to the coordinates and

momenta of a quantum non-Hamiltonian dissipative system was already claimed by Dirac [5] in the process of taking Poisson

brackets. In string theory, for instance, one such an anomaly is involved by the non-associative algebraic structure that is de�ned

by coordinates (x) and velocities or momenta (v) of an electron moving in the �eld of a constant magnetic charge distribution,

at the position of the location of the magnetic monopole [6]. In particular, J(v1; v2; v3) = �
�!
r �
�!
B (x), where

�!
r �
�!
B (x) denotes

the divergence of the magnetic �eld
�!
B (x). The underlying algebraic structure constitutes a non-Lie Malcev algebra [7], with the

commutation relations [xa; xb] = 0, [xa; vb] = i�ab and [va; vb] = i�abcBc(x), where a; b; c 2 f1; 2; 3g, �ab denotes the Kronecker

delta and �abc denotes the Levi-Civita symbol. If the magnetic �eld is proportional to the coordinates, the latter can be normalized

and Bc(x) can then be supposed to coincide with xc . The resulting algebra is then called magnetic [8]. A generalization to electric

charges has recently been considered [9] by de�ning the products [xa; xb] = �i�abcEc(x; v), where the electric �eld E as well

as the magnetic �eld B must depend not only on coordinates but also on velocities. Remark that both magnetic and electric

algebras constitute magma algebras.

A main open problem in the theory of Malcev algebras is their enumeration and distribution into isomorphism classes

[10, 11, 12]. Over �nite �elds, this problem has already been dealt with for Lie algebras of dimension up to six. Particularly, De

Graaf [13] made use of Gr�obner bases and computational algebraic geometry in order to determine the distribution of solvable

Lie algebras of dimension up to four over any �eld, whereas Strade [14] obtained that of nonsolvable Lie algebras of dimension

up to six over a �nite �eld. The classi�cation of nilpotent Lie algebras of dimension up to six over any �eld is also known [15].

The authors in this last reference indicated explicitly that some of their results were inspired by Gr�obner basis computations.

In this paper, similarly to the methodology exposed by De Graaf [13], we make use of computational algebraic geometry as an

approach to deal with the classi�cation of the sets Ln(K) andMn(K) of n-dimensional Lie magma algebras and Malcev magma

algebras, respectively, over a �nite �eld K. We deal not only with the distribution into isomorphism classes, which is the usual

criterion, but also with the more general distribution into isotopism classes, which constitutes a �rst attempt in this regard to

the best of the authors knowledge. The concept of isotopism of algebras was introduced by Albert [16], who indicated that two

algebras (A; �) and (A0; �) are isotopic if there exist three nonsingular linear maps f , g and h between A and A0 such that

f (u) � g(v) = h(u � v); for all u; v 2 A: (4)

The triple (f ; g; h) is said to be an isotopism between both algebras A and A0, which is denoted as A ' A0. If f = g = h, then

this constitutes an isomorphism, which is denoted as A �= A0. To be isotopic is an equivalence relation among algebras of the

same dimension and constitutes, therefore, a generalization of the concept of isomorphism. In his original paper, Albert dealt

with isotopisms of division algebras, alternative algebras and Lie algebras. Shortly after, Bruck [17] dealt with isotopisms of

quasigroup algebras, which constitute magma algebras in which division is possible. Since the manuscripts of Albert and Bruck,

a wide amount of papers have dealt with isotopisms of distinct types of algebras as division algebras [18, 19, 20, 21], alternative

algebras [22, 23], Lie algebras [24, 25], Jordan algebras [26, 27, 28, 29, 30, 31, 32], genetic algebras [33, 34], absolute valued

algebras [35, 36], structural algebras [37] and real 2-dimensional commutative algebras [38]. Nevertheless, there does not exist

any study on the distribution of Malcev algebras into isotopism classes.

The structure of the paper is the following. In Section 2 we expose some preliminary concepts and results on isotopisms

of algebras, Malcev magma algebras and computational algebraic geometry. Section 3 deals with those ideals of polynomials
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whose algebraic sets are identi�ed with the sets of n-dimensional Lie and Malcev magma algebras. We describe in particular two

algorithms whose implementation enable us to determine the enumeration of Malcev magma algebras and their distribution into

isomorphism and isotopism classes. This distribution is explicitly determined in Section 4 for dimension n 2 f3; 4g.

2. Preliminary results

In this section we expose some basic concepts and results on isotopisms of algebras, Malcev algebras and computational algebraic

geometry that are used throughout the paper. For more details about these topics we refer to the original articles of Albert [16],

Malcev [3] and Sagle [4] and to the monographs of Cox, Little and O'Shea [39, 40].

2.1. Isotopisms of algebras

Let A be an algebra over a �eld K. This algebra is called abelian if all its structure constants are zero. This constitutes a trivial

magma algebra for which all the products of the corresponding magma are zeros.

Lemma 2.1 The n-dimensional abelian algebra is not isotopic to any other n-dimensional algebra.

Proof. Let (f ; g; h) be an isotopism between an n-dimensional non-abelian algebra of basis fe1; : : : ; eng and the n-dimensional

abelian algebra. Let i ; j � n be such that eiej 6= 0. Then, 0 = f (ei)g(ej) = h(eiej) 6= 0, which is a contradiction. 2

The derived algebra of the algebra A is the subalgebra A2 formed by the set of elements uv such that (u; v) 2 A� A. The

derived series of the algebra A is de�ned as

C1(A) = A � C2(A) = A2 � : : : � Ck(A) = (Ck�1(A))
2 � : : : (5)

The algebra A is said to be solvable if there exists a positive integer m such that Cm+1(A) � 0. The smallest such an integer

is called the solvability index of the algebra. This index and the dimension of each vector subspace Ck(A) are preserved by

isomorphisms. Nevertheless, this is not true in general for isotopisms, for which we can only assure the next result.

Lemma 2.2 Let A and A0 be two isotopic n-dimensional algebras. Then, dim(A2) = dim(A02).

Proof. Let (f ; g; h) be an isotopism between both algebras A and A0. The regularity of f and g involves that f (A) = g(A) = A0.

Hence, A02 = f (A)g(A) = h(A2) and the result follows then from the regularity of h. 2

Let us suppose now that A is a Lie algebra. The centralizer of a subset S � A is the vector subspace CA(S) = fu 2 A j uv =

0; for all v 2 Sg � A. The center of A is the set Z(A) = CA(A). The next results show the way in which isotopisms preserve

centralizers and centers of Lie algebras.

Lemma 2.3 Let (f ; g; h) be an isotopism between two Lie algebras A and A0. Let S be a subset of L. Then,

a) f (CA(S)) = CA0(g(S)).

b) g(CA(S)) = CA0(f (S)).

c) dim(CA(S)) = dim(CA0(f (S))) = dim(CA0(g(S))).

Proof. Let u 2 CA(S). Then, f (u)v = h(ug�1(v)) = h(0) = 0, for all v 2 g(S) and hence, f (CA(S)) � CA0(g(S)). Reciprocally,

if u 2 CA0(g(S)), then f �1(u)v = h�1(ug(v)) = h�1(0) = 0 and hence, CA0(g(S)) � f (CA(S)). Thus, f (CA(S)) = CA0(g(S)).

The regularity of f and g involves the same dimension of both vector subspaces. Item (b) and the fact of being dim(CA(S)) =

dim(CA0(f (S))) in item (c) hold similarly from the antisymmetry of L. 2
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Proposition 2.4 Let A and A0 be two isotopic Lie algebras. Then, f (Z(A)) = Z(A0) and dim(Z(A)) = dim(Z(A0)).

Proof. The result is an immediate consequence of Lemma 2.3 from the de�nition of center of a Lie algebra. 2

Let n be the dimension of the Lie algebra A. For each positive integer m � n, we de�ne

dm(A) := minfdimCA(S) : S is an m-dimensional vector subspace of Ag: (6)

Dm(A) := maxfdimCA(S) : S is an m-dimensional vector subspace of Ag: (7)

We prove now that both values are preserved by isotopisms.

Proposition 2.5 Let A and A0 be two isotopic n-dimensional Lie algebras and let m � n be a positive integer. Then,

dm(A) = dm(A
0) and Dm(A) = Dm(A

0).

Proof. Let (f ; g; h) be an isotopism between A and A0 and let S be an m-dimensional vector subspace of A such that dm(A) =

dimCA(S). The regularity of g involves the set g(S) to be m-dimensional. Besides, from Lemma 2.3, CA0(g(S)) = f (CA(S)).

Hence, dm(A) � dm(A
0). The equality follows similarly from the isotopism (f �1; g�1; h�1) between A0 and A. The invariance of

Dm holds analogously. 2

We �nish with a remark on isotopisms of magma algebras. Let A and A0 be two isotopic n-dimensional magma algebras over

a �eld K and let ([n]; �) and ([n]; �) be the respective magmas on which both algebras are based. If fe1; : : : ; eng and fe
0
1; : : : ; e

0
ng

are the respective bases of A and A0, then every isotopism (f ; g; h) between both algebras is characterized by three nonsingular

matrices F = (fi j), G = (gi j) and H = (hi j), with entries in the �eld K, so that �(ei) =
∑n

j=1 �i je
0
j , for all � 2 ff ; g; hg and

i 2 f1; : : : ; ng. Then,

ci jh(i �j)k =
∑

s;t�nj s�t=k

fisgjtc
0
st ; for all i ; j; k � n; (8)

where ci j and c 0
st are structure constants of A and A0, respectively.

2.2. Malcev magma algebras

Every Malcev magma algebra in the current paper is described by means of a basis of vectors satisfying the conditions exposed

in the next result.

Lemma 2.6 Let n � 3. Every n-dimensional non-abelian Malcev magma algebra based on a magma ([n]; �) holds, up to

isomorphism, one of the next two non-isomorphic possibilities

a) e1e2 = e2, or

b) e1e2 = e3 and there does not exist a non-zero structure constant ci j such that i � j 2 fi ; jg.

Proof. Since the algebra is not abelian, there exists at least one non-zero structure constant. If there exist two distinct positive

integers i ; j � n such that ci j 6= 0 and i � j = j , then we consider the isomorphism that maps ei and ej to ci je1 and e2, respectively,

and preserves the rest of basis vectors. We get in this way the product e1e2 = e2. Otherwise, we take a non-zero structure constant

cuv and the isomorphism that maps eu, ev and eu�v to cuve1, e2 and e3, respectively, in order to get the product e1e2 = e3. 2

Every Malcev algebra is binary-Lie, that is, any two of its elements generate a Lie subalgebra. As a consequence, every

Malcev algebra of dimension n � 3 is a Lie algebra. Particularly, the only 1-dimensional Malcev algebra is the abelian and the

only 2-dimensional non-abelian Malcev algebra is, up to isomorphism, the magma algebra determined by the product of basis

vectors e1e2 = e2. The next theorem deals with the distribution of 3-dimensional Malcev magma algebras over a �nite �eld into

isomorphism classes. In the statement of the result, each isomorphism class is labeled according to the notation given by De

Graaf [13] and Strade [14] in their respective classi�cations of solvable and non-solvable Lie algebras, but we have chosen for

its description a basis that follows the conditions exposed in Lemma 2.6.
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Theorem 2.7 Every 3-dimensional Malcev magma algebra over a �nite �eld K is isomorphic to exactly one of the next algebras

a) The 3-dimensional abelian Lie algebra L1.

b) The solvable Lie algebras

� L2 �= e1e2 = e2 and e1e3 = e3.

� L3
0
�= e1e2 = e2.

� L4
a
�= e1e2 = e3 and e1e3 = ae2, for all a 2 K.

Here, L4
a
�= L4

b if and only if there exists � 2 K n f0g such that a = �2b.

c) The non-solvable Lie algebras

� W (1; 2)(1) �= e1e2 = e2, e1e3 = e3 and e2e3 = e1, whenever char(K) = 2.

� sl(2;K) �= e1e2 = e2, e1e3 = �e3 and e2e3 = e1, whenever char(K) 6= 2.

Proof. The mentioned classi�cations of Lie algebras obtained by De Graaf and Strade enable us to assure that each Lie algebra

of the list constitutes an isomorphism class inM3(K). In order to assure that there does not exist any other isomorphism class,

it is required to prove that none of the next 3-dimensional solvable Lie algebras is a magma algebra

L3
a
�= e1e2 = e2 + ae3 and e1e3 = e2; with a 2 K n f0g: (9)

We prove this fact in Proposition 4.1. 2

For dimension n = 4, there exists, up to isomorphism, a unique non-Lie Malcev algebra [41] when char(K) 62 f2; 3g. This

coincides with the next solvable magma algebra

M0 �= e1e2 = e2, e1e3 = �e3, e1e4 = �e4 and e3e4 = �e2.

The distribution ofM4(K) into isomorphism classes is exposed in the next result, which is again based on the classi�cations of

De Graaf and Strade.

Theorem 2.8 Let K be a �nite �eld. Every Malcev magma algebra A 2M4(K) is isomorphic to exactly one of the next algebras

a) The non-Lie Malcev algebra M0.

b) The 4-dimensional abelian Lie algebra M1.

c) The solvable Lie algebras

� M2 �= e1e2 = e2, e1e3 = e3 and e1e4 = e4.

� M3
�1
�= e1e2 = e2, e1e3 = e4 and e1e4 = e3.

� M3
0
�= e1e2 = e2, e1e3 = e4 and e1e4 = e4.

� M4 �= e1e2 = e2 and e1e3 = e2.

� M5 �= e1e2 = e3.

� M6
0;0
�= e1e2 = e2, e1e3 = e4 and e1e4 = e2.

� M7
0;0
�= e1e2 = e3 and e1e3 = e4.

� M7
a;0
�= e1e2 = e3, e1e3 = e4 and e1e4 = ae2, for all a 2 K n f0g.

Here, M7
a;0
�= M7

b;0 if and only if there exits � 2 K n f0g such that a = �3b.

� M7
0;a
�= e1e2 = e3, e1e3 = e4 and e1e4 = ae3, for all a 2 K n f0g.

Here, M7
0;a
�= M7

0;b if and only if there exits � 2 K n f0g such that a = �2b.

� M8 �= e1e2 = e2 and e3e4 = e4.

� M11
1;0
�= e1e2 = e2, e1e4 = 1e4, e2e4 = e3 and e3e4 = e2, whenever char(K) = 2.

� M12 �= e1e2 = e2, e1e3 = 2e3, e1e4 = e4 and e2e4 = �e3, whenever char(K) 6= 2.

� M13
0
�= e1e2 = e2, e1e3 = e3, e1e4 = e2 and e2e4 = �e3.
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� M14
a
�= e1e2 = e3, e1e3 = ae2 and e2e3 = e4, for all a 2 K n f0g.

Here, M14
a
�= M14

b if and only if there exists � 2 K n f0g such that a = �2b.

d) The non-solvable Lie algebras over a �eld of characteristic two

� W (1; 2) �= e1e2 = e2, e1e3 = e3, e2e3 = e1 and e3e4 = e2.

� W (1; 2)(1) � Z(A) �= e1e2 = e2, e1e3 = e3 and e2e3 = e1.

e) The non-solvable Lie algebra over a �eld of characteristic distinct of two

� gl(2;K) �= e1e2 = e2, e1e3 = �e3, e2e3 = e1, e2e4 = e2 and e3e4 = �e3.

Proof. The classi�cation given by De Graaf and Strade for solvable and non-solvable 4-dimensional Lie algebras over �nite �elds

implies that all these algebras constitute distinct isomorphism classes. In order to assure that the distribution is exhaustive, it is

required to prove that none of the next 4-dimensional solvable Lie algebras is isomorphic to a magma algebra

M3
a : e1e2 = e2; e1e3 = e4 and e1e4 = �ae3 + (a + 1)e4; with a 62 f0;�1g: (10)

M6
a;b : e1e2 = e2 + ae3 + be4; e1e3 = e4 and e1e4 = e2; for all (a; b) 2 K

2 n (0; 0): (11)

M7
a;a : e1e2 = e3; e1e3 = e4 and e1e4 = ae2 + ae3; for all a 2 K n f0g: (12)

M9
a0 : e1e2 = e2 + a0e3; e1e3 = e2; e2e4 = e2 and e3e4 = e3; whenever char(K) = 2 and

a0 2 K is such that T 2 � T � a0 has not root in K:
(13)

M13
a : e1e2 = e2 + ae4; e1e3 = e3; e1e4 = e2 and e2e4 = �e3; for all a 2 K n f0g: (14)

We prove this fact in Proposition 4.4. 2

2.3. Computational algebraic geometry

Let X and K[X] be, respectively, the set of n variables fx1; : : : ; xng and the related multivariate polynomial ring over a �eld

K. The algebraic set de�ned by an ideal I of K[X] is the set V(I) of common zeros of all the polynomials in I. The ideal I is

zero-dimensional if V(I) is �nite. It is radical if every polynomial f 2 K[X] belongs to I whenever there exists a natural number

m such that f m 2 I. Let < be a monomial term ordering on the set of monomials in K[X]. The largest monomial of a polynomial

f in I with respect to < is its leading monomial LM(f ), whose coe�cient in f is the leading coe�cient LC(f ). The leading term

of f is the product LT(f ) = LC(f ) � LM(f ). The ideal generated by all the leading monomials of I is the initial ideal I<. Those

monomials that are not in I< are called standard monomials of I. Regardless of the monomial term ordering, if the ideal I is

zero-dimensional and radical, then the number of standard monomials in I coincides with the Krull dimension of the quotient

ring K[X]=I and with the number of points of the algebraic set V(I).

A Gr�obner basis of I with respect to < is any subset G of polynomials in I whose leading monomials generate the initial

ideal I<. This is reduced if all its polynomials are monic and no monomial of a polynomial in G is generated by the leading

monomials of the rest of polynomials in the basis. There exists only one reduced Gr�obner basis of the ideal I, which becomes an

optimal way to count their number of standard monomials. Its decomposition into �nitely many disjoint subsets, each of them

being formed by the polynomials of a triangular system of polynomial equations makes also possible to enumerate the elements

of the algebraic set V(I) [42, 43, 44]. The reduced Gr�obner basis of an ideal I can always be computed from Buchberger's

algorithm [45]. Similar to the Gaussian elimination on linear systems of equations, this consists of a sequential multivariate

division of polynomials, also called reduction or normal form computation, which is based on the construction of the so-called S-

polynomials S(f ; g) = lcm(LM(f );LM(g))(f =LT(f )� g=LT(g)), for all f ; g 2 I, where lcm denotes the least common multiple.

In particular, a subset G of polynomials in I is a Gr�obner basis if S(f ; g) reduces to zero after division by the polynomials in

G, for all f ; g 2 G. Buchberger's algorithm can be implemented on ideals de�ned over any base �eld, but its involved exact

arithmetic becomes faster on �nite �elds. It is due to the large numbers that appear in general as intermediate coe�cients
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during the computation of the reduced Gr�obner basis and which constitute a major factor in the computational cost of the

algorithm. Derived from Buchberger's algorithm, a pair of more e�cient direct methods are the algorithms F4 and F5 [46, 47]

and the algorithm slimgb [48]. The latter is based on F4 and reduces the computation time and the memory usage by keeping

small coe�cients and short polynomials during the sequential division of polynomials. In any case, the computation of a reduced

Gr�obner basis is always extremely sensitive to the number of variables [49, 50].

3. Algebraic sets related to Malcev magma algebras

In this section we identify the sets Ln(K) and Mn(K) of n-dimensional Lie and Malcev magma algebras over a �nite �eld K

with the algebraic set of an ideal of polynomials. Let X and K[X] respectively be the set of n3 variables fckij : i ; j; k � ng and its

related multivariate polynomial ring over K. Let A be the n-dimensional algebra over K[X] with basis fe1; : : : ; eng so that

eiej =

n∑
k=1

ckijek ; (15)

for all i ; j � n. Let us also consider

i. The coe�cient li jkl 2 K[X] of el in the Jacobi identity J(ei ; ej ; ek) = 0, for all i ; j; k � n.

ii. The coe�cient muijk 2 K[X] of ek in the Malcev identity M(u; ei ; ej) = 0, for all u 2 A and i ; j � n.

iii. The coe�cient si jklm 2 K[X] of em in the Sagle identity S(ei ; ej ; ek ; el) = 0, for all i ; j; k; l � n, whenever char(K) 6= 2.

Finally, let us de�ne the ideal

I = h cji i j i ; j � n i+ h ckij � ckji j i ; j; k � n i+ h ckij c
k 0

i j j i ; j; k; k
0 � n such that k < k 0 i � K[X]: (16)

Theorem 3.1 The sets Ln(K) and Mn(K) are respectively identi�ed with the algebraic sets de�ned by the zero-dimensional

radical ideals in K[X]

IL = h li jkl : i ; j; k; l � n i+ I and IM = hmuijk : u 2 A; i ; j; k � n i+ I:

If char(K) 6= 2, then the setMn(K) is also identi�ed with the algebraic set de�ned by the zero-dimensional radical ideal in K[X]

IS = h si jklm : i ; j; k; l ; m � n i+ I:

Besides, jLn(K)j = dimK(K[X]=IL) and jMn(K)j = dimK(K[X]=IM) (= dimK(K[X]=IS) if char(K) 6= 2).

Proof. We prove the theorem for Malcev magma algebras and the ideal IM . The other cases follow similarly. Observe that each

zero (c111; : : : ; c
n
nn) 2 V(IM) constitutes the structure constants of an n-dimensional algebra A with basis fe1; : : : ; eng such that

eiej =
∑n

k=1 c
k
ij ek and M(u; ei ; ej) = 0, for all i ; j � n and u 2 A. The generators of I � IM involve A to be a magma algebra

such that u2 = 0, for all u 2 A. The linearity of M(u; v ; w) in the two last arguments involves A to be a Malcev algebra.

Since the base �eld K is �nite, the ideal IM is zero-dimensional and the a�ne variety V(IM) is a �nite subset of Kn3 . If K is

isomorphic to a Galois �eld GF(q), then, from Proposition 2.7 of [39], the ideal IM is also radical, because the unique monic

generator of IM \K[c
k
ij ] is the polynomial (ckij)

q � ckij , which is intrinsically included in each one of the ideals and is square-free. As

a consequence, the number of zeros in the algebraic set V(IM) coincides with the Krull dimension of the quotient ring K[X]=IM

over K. 2
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Corollary 3.2 Let K be a �nite �eld isomorphic to the Galois �eld GF(q). The run time that is required by the Buchberger's

algorithm in order to compute the reduced Gr�obner bases of the ideals IL, IM and IS in Theorem 3.1 are, respectively,

qO(n
3) +O(n8); maxf3; qgO(n

3) +O(q2n) and qO(n
3) +O(n10):

Proof. The result follows straightforward from Proposition 4.1.1 exposed by Gao in [51], once we observe that all the generators

of the three ideals in Theorem 3.1 are sparse in K[X]. According to that result, the run time that is required by the Buchberger's

algorithm in order to compute each reduced Gr�obner basis is qO(v) +O(g2l), where v , g and l are, respectively, the number of

variables, the number of generators of the corresponding ideal that are not of the form (ckij)
q � ckij and the longest length of

these generators. 2

The previous result discards the use of the ideal IM whenever char(K) 6= 2. We have made use of the open computer algebra

system for polynomial computations Singular [52] and the algorithm slimgb [48] to compute the reduced Gr�obner bases of the

ideals in Theorem 3.1 and hence, their respective algebraic sets and Krull dimensions. To this end, we have implemented four

subprocedures called Prod, JacobiId,MalcevId and SagleId and a main procedure calledMalcevAlg. All of them have been included

in the library malcev.lib, which is available online at http://personales.us.es/raufalgan/LS/malcev.lib. The subprocedure

Prod outputs the list of polynomials corresponding to the coe�cient of each basis vector in the product between two arbitrary

vectors of the algebra A. Similar lists of polynomials are output by the rest of subprocedures. Their respective pseudocodes are

exposed in Algorithms 1-4.

Algorithm 1 Polynomials related to the product of two vectors in A.

1: procedure Prod(u; v)

2: for k  1; n do

3: for i  1; n do

4: for j  i + 1; n do

5: Lk  Lk + (uivj � ujvi)c
k
ij ;

6: end for

7: end for

8: end for

9: return fL1; : : : ; Lng
10: end procedure

Algorithm 2 Polynomials related to the Jacobi identity in A.

1: procedure JacobiId(u; v ; w)

2: L1 P rod(P rod(u; v); w);

3: L2 P rod(P rod(v; w); u);

4: L3 P rod(P rod(w; u); v);

5: for i  1; n do

6: L1i  L1i + L2i + L3i ;

7: end for

8: return L1

9: end procedure

Algorithm 3 Polynomials related to the Malcev identity in A.

1: procedure MalcevId(u; v ; w)

2: L1 P rod(JacobiId(u; v ; w); u);

3: L2 JacobiId(u; v ; P rod(u; w));

4: for i  1; n do

5: L1i  L1i � L2i ;

6: end for

7: return L1

8: end procedure

8 Copyright c
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Algorithm 4 Polynomials related to the Sagle identity in A.

1: procedure SagleId(u; v ; w; y)

2: L1 P rod(P rod(P rod(u; v); w); y);

3: L2 P rod(P rod(P rod(v; w); y); u);

4: L3 P rod(P rod(P rod(w; y); u); v);

5: L4 P rod(P rod(P rod(y; u); v); w);

6: L5 P rod(P rod(u; w); P rod(v; y));

7: for i  1; n do

8: L1i  L1i + L2i + L3i + L4i � L5i ;

9: end for

10: return L1

11: end procedure

In case of being interested in computing an algebra containing a speci�c structure constant ckij 2 K, we include the polynomial

ckij � ckij in the corresponding ideal of Theorem 3.1. This aspect has been incorporated in the main procedure MalcevAlg, whose

pseudocode is exposed in Algorithm 5. This procedure receives as input

1. The dimension n of the algebra.

2. The order q of the base �eld K.

3. A list C of tuples of the form (i ; j; k; ckij ), where i ; j; k � n, i < j and ckij 2 K.

4. A positive integer opt1 � 2 so that we use the ideal IL if opt1 = 1. Otherwise, we use the ideals IM or IS if char(K) = 2

or char(K) 6= 2, respectively.

5. A positive integer opt2 � 2 that determines as output the Krull dimension of the ideal if opt2 = 1. Otherwise, it determines

the algebraic set de�ned by the ideal.

Algorithm 5 Computation of Lie and Malcev magma algebras.

1: procedure MalcevAlg(n; q; C; opt1; opt2))

2: Depending on the argument opt1, use the subprocedures JacobiId, MalcevId or SagleId to initialize an ideal I as IL, IM
or IS, respectively.

3: for i  1; size(C) do

4: I = I + (c
Ci 3

Ci 1Ci 2
� Ci 4);

5: end for

6: I = sl imgb(I);

7: if opt1 = 1 then

8: return jV(I)j
9: else

10: return V(I)
11: end if

12: end procedure

The correctness and termination of this main procedure is based on those of the algorithm slimgb [48] and hence, on those

of Buchberguer's algorithm [45]. This procedure has been implemented in a system with an Intel Core i7-2600, with a 3.4 GHz

processor and 16 GB of RAM. Its e�ectiveness has been checked by computing the cardinalities that are exposed in Tables 1 and

2. The run time and memory usage are explicitly indicated in both tables. Both measures of computation e�ciency �t positive

exponential models even for dimension n = 4. Nevertheless, we are not interested in the computation of all Malcev magma

algebras, but only in their distribution into isomorphism and isotopism classes. We indicate now how computational algebraic

geometry can also be used to determine this distribution.

Let us consider the sets of variables

X = ff11; : : : ; fnng and Y = X [ fg11; : : : ; gnn; h11; : : : ; hnng:

Math. Meth. Appl. Sci. 2016, 00 1{15 Copyright c
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Run time Used memory

q jM3(GF(q))j IL IM=S IL IM=S

2 32 0 s 0 s 0 MB 0 MB

3 123 0 s 0 s 0 MB 0 MB

5 581 0 s 0 s 0 MB 0 MB

7 1,567 0 s 0 s 0 MB 0 MB

11 5,891 0 s 0 s 0 MB 0 MB

13 9,613 0 s 0 s 0 MB 0 MB

17 21,137 0 s 0 s 0 MB 0 MB
...

...
...

...
...

...

499 498,492,523 0 s 0 s 0 MB 0 MB

Table 1. Computation of jM3(GF(q))j.

q jL4(GF(q))j Run time Used memory jM4(GF(q))j Run time Used memory

2 853 0 s 0 MB 897 6 s 0 MB

3 7,073 1 s 0 MB 7,073 8 s 0 MB

5 89,185 11 s 0 MB 89,377 41 s 0 MB

7 445,537 20 s 3 MB 445,969 55 s 2 MB

11 3,803,041 91 s 17 MB 3,804,241 154 s 427 MB

13 8,412,193 183 s 676 MB 8,413,921 258 s 859 MB

17 30,247,297 595 s 1,2 GB 30,250,369 752 s 1,5 GB

Table 2. Computation of jL4(GF(q))j and jM4(GF(q))j.

These variables play the role of the entries in the nonsingular matrices F , G and H related to a possible isotopism (f ; g; h) between

two Malcev magma algebras of respective bases fe1; : : : ; eng and fe
0
1; : : : ; e

0
ng. Let pi jk and qi jk be the respective polynomials

in K[X] and K[Y ] that constitutes the coe�cients of ek in the expressions f (ei)f (ej)� f (eiej) and f (ei)g(ej)� h(eiej), for all

i ; j; k � n. The next result holds analogously to Theorem 3.1.

Theorem 3.3 Let K be a �nite �eld isomorphic to the Galois �eld GF(q) and let A and A0 be two n-dimensional Malcev magma

algebras over K. The sets of isomorphisms and isotopisms between both algebras are respectively identi�ed with the algebraic

sets de�ned by the zero-dimensional radical ideals

IA;A0 = h pi jk : i ; j; k � n i+ h det(F )q�1 � 1 i � K[X]:

JA;A0 = h qi jk : i ; j; k � n i+ h det(F )q�1 � 1; det(G)q�1 � 1; det(H)q�1 � 1 i � K[Y ]:

Besides, jV(IA;A0)j = dimK(K[X]=IA;A0) jV(JA;A0)j = dimK(K[Y ]=JA;A0). 2

We have included the procedure isoMalcev in the previously mentioned library malcev.lib in order to compute the algebraic

sets and the Krull dimensions in Theorem 3.3. Having as output the number of isomorphisms or that of isotopisms between two

Malcev magma algebras A and A0, this procedure receives as input

1. The dimension n of both algebras.

2. The order q of the base �eld.

3. A list L1 formed by tuples (i ; j; k; ckij ) that indicates the non-zero structure constants of the Malcev algebra A.

4. A list L2 formed by tuples (i ; j; k; c 0k
ij) that indicates the non-zero structure constants of the Malcev algebra A0.

5. A positive integer opt � 2 that enable us to use the ideal IA;A0 if opt = 1, or the ideal JA;A0 if opt = 2.
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Algorithm 6 shows how the procedure isoMalcev is implemented to determine the distribution of a set of Malcev magma

algebras into isomorphism and isotopism classes.

Algorithm 6 Computation of the isomorphism (isotopism, resp.) classes of a set of Malcev algebras.

Require: A set M of Malcev magma algebras.

Ensure: S, the set of isomorphism (isotopism, resp.) classes of S

1: S = ;.
2: while M 6= ; do
3: Take A 2 M.

4: M := M n fAg.
5: S := S [ fAg.
6: for A0 2 M do

7: if jV(IA;A0)j > 0 (jV(JA;A0)j > 0, resp.) then

8: M := M n fA0g.
9: end if

10: end for

11: end while

12: return S.

4. Classi�cation of Malcev magma algebras of small dimensions

We have implemented the procedures and algorithms of the previous section to determine the distribution of 3- and 4-dimensional

Malcev magma algebras into isomorphism and isotopism classes.

4.1. 3-dimensional Malcev magma algebras

The next result �nishes the proof of Theorem 2.7 about the distribution ofM3(K) into isomorphism classes.

Proposition 4.1 None of the algebras that are described in (9) is isomorphic to a Lie magma algebra.

Proof. Let a 2 K n f0g. Let f be an isomorphism between the algebra L3
a and a Malcev magma algebra A and let F = (fi j) be

the nonsingular matrix related to f . This algebra A should have a 2-dimensional derived algebra and its solvability index should

be 2. The implementation of Algorithm 5 into a case study that takes into account Lemma 2.6 and the Jacobi identity involves

A to be isomorphic to one of the next two magma algebras

a) e1e2 = e3 and e1e3 = �e2.

b) e1e2 = e2 and e1e3 = �e3.

In both cases, � 2 K n f0g. The implementation of the procedure isoMalcev enable us to compute for each case the corresponding

reduced Gr�obner basis in Theorem 3.3. In (a), the normal form of the polynomial that is related to the determinant of the

corresponding matrix F modulo this reduced Gr�obner basis is zero whatever the number � and the characteristic of the base

�eld are. This means that F is a singular matrix, which is a contradiction with being f an isomorphism. Hence, L3
a is not

isomorphic to a Malcev magma algebra of type (a). On the other hand, in (b), the previous normal form is the polynomial

(1� �)f11f32f33. The regularity of the matrix F involves that � 6= 1. Besides, the reduced Gr�obner basis involves the identity

a� = a. Since � 6= 1, it must be a = 0, what is a contradiction with the hypothesis. Hence, L3
a is not isomorphic either to a

Malcev magma algebra of type (b). 2

Even if not every 3-dimensional Malcev algebra is isomorphic to a Lie magma algebra, the next result shows that this statement

is true in case of dealing with isotopisms instead of isomorphisms.

Proposition 4.2 Every 3-dimensional Malcev algebra is isotopic to a Lie magma algebra.
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Proof. The result holds from the fact that, for all a 2 K n f0g, the Lie algebras L3
a and L

2 are isotopic by means of the isotopism

(Id; Id; h), where h(e1) = e1, h(e2) = e3 and h(e3) = �
1
a
(e3 � e2). 2

The next result indicates the distribution of 3-dimensional Malcev magma algebras over a �nite �eld into isotopism classes.

In the proof and hereafter, any linear map between two n-dimensional algebras that is linearly de�ned from a permutation of the

indices of their basis vectors is denoted by the corresponding permutation of the symmetric group Sn. Thus, for instance, given

two 3-dimensional algebras of respective bases fe1; e2; e3g and fe
0
1; e

0
2; e

0
3g, the permutation (23) 2 S3 maps e1 to e 01, e2 to e 03

and e3 to e 02. Besides, Id denotes the trivial linear map between algebras of the same dimension.

Theorem 4.3 Let K be a �nite �eld. There exist four isotopism classes ofM3(K). They correspond to the abelian algebra and

the algebras L2, L3
0 and

� W (1; 2)(1) if char(K) = 2.

� sl(2;K), otherwise.

Proof. From Proposition 4.2, it is enough to study the distribution into isotopism classes of the Lie algebras in Theorem 2.7.

Particularly, from Lemma 2.2, the algebras W (1; 2)(1) and sl(2;K), with a 3-dimensional derived algebra, are not isotopic to any

other Malcev magma algebra of a distinct isomorphism class. Similarly, the algebra L2, with a 2-dimensional derived algebra, can

only be isotopic to L4
a, with a 2 K n f0g; whereas the algebra L3

0, with an 1-dimensional derived algebra, can only be isotopic

to L4
0. Speci�cally, it is straightforward veri�ed that the triple (Id; Id; h) such that h(e2) = e3 and h(e3) = ae2 is an isotopism

between L2 and L4
a, whereas the triple (Id; Id; (23)) is an isotopism between L3

0 and L4
0. 2

4.2. 4-dimensional Malcev magma algebras

The next result concludes the proof of Theorem 2.8 about the distribution of 4-dimensional Malcev magma algebras into

isomorphism classes.

Proposition 4.4 None of the 4-dimensional Lie algebras that are described in (10{14) is isomorphic to a Malcev magma algebra.

Proof. The implementation of Algorithm 5 into a case study that takes into account the derived series and centers of a Malcev

algebra, together with the Jacobi identity, enable us to assure that any possible 4-dimensional Malcev magma algebra with a

2-dimensional derived algebra and solvability index 2 is isomorphic to exactly one of the algebras M3
0 , M

6
0;0, M

7
0;a (with a 2 K)

or M13
0 . Hence, the Lie algebras M6

0;b (with b 2 K n f0g) and M9
a0 are not isomorphic to any Malcev magma algebra. Further,

a similar case study enable us to assure that none of the algebras M3
a , M

6
a;b, M

7
a;a and M13

a , with a; b 2 K such that a 6= 0, is

isomorphic to a Malcev magma algebra. This is due to the fact that any possible 4-dimensional Malcev magma algebra with a

3-dimensional derived algebra is isomorphic to one of the algebras M2, M3
�1 or M7

a;0 if its solvability index is 2 or to M11
1;0, M

12

or M14
a if its solvability index is 3. In both cases, a 2 K n f0g. 2

We �nish our study by focusing on the distribution of 4-dimensional Malcev magma algebras into isotopism classes.

Proposition 4.5 Every 4-dimensional Malcev algebra over a �nite �eld K of characteristic distinct of two is isotopic to a Malcev

magma algebra. If char(K) = 2, then this assertion holds except for those Malcev algebras that are isomorphic to the Malcev

algebra M9
a0 .

Proof. Let K be a �nite �eld. The implementation of the procedure isoMalcev in Algorithm 6 gives us the next isotopisms

among the Malcev magma algebras described in Theorem 2.8 and those in (10{14). For each pair of isotopic algebras we show

an isotopism (f ; f ; h), which is described by means of those basis vectors that are not preserved by the transformations f and h.

a) M2 ' M3
a ' M6

b;c , for all a; b; c 2 K such that a 62 f0;�1g and b 6= 0. Here,

� The triple (Id; Id; h) such that h(e3) = e4 and h(e4) = �ae3 + (a + 1)e4 is an isotopism between M2 and M3
a , for all

a 2 K n f0;�1g.
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� The triple (Id; Id; h) such that h(e2) = e2 + be3 + ce4, h(e3) = e4 and h(e4) = e2 is an isotopism between M2 and M6
b;c ,

for all b; c 2 K such that b 6= 0.

b) M0 ' M13
a , for all a 2 K n f0g. Here, the triple (f ; f ; h) such that f (e2) = h(e2) = e3, f (e3) = �e4, f (e4) = e2 � e4,

h(e3) = e2 and h(e4) = �ae4 is an isotopism between M0 and M13
a , for all a 2 K n f0g.

A case study based on the same implementation of the procedure isoMalcev also enables us to assure that, if char(K) = 2,

then the Malcev algebra M9
a0 is not isotopic to any Malcev magma algebra with a 2-dimensional derived algebra and solvability

index 3. 2

The proof of Proposition 4.5 enables us to assure that isotopisms do not preserve Jacobi anomalies. Speci�cally, we have proved

that the non-Lie Malcev algebra M0 is isotopic to any Lie algebra M13
a , with a 2 K n f0g. The next result holds straightforward.

Theorem 4.6 Any 4-dimensional Malcev algebra is isotopic to a Lie algebra. 2

The distribution of 4-dimensional Malcev algebras into isotopism classes is exposed in the next �nal result.

Theorem 4.7 Let K be a �nite �eld. There exist eight isotopism classes ofM3(K). They correspond to the abelian algebra and

the algebras M0, M2, M3
0 , M

4, M8, M13
0 and M14

1 .

Proof. From Proposition 4.5, it is enough to study the distribution into isotopism classes of the Lie magma algebras in Theorem

2.8. This distribution has been obtained again from the implementation of the procedure isoMalcev in Algorithm 6 together with

the results exposed in Subsection 2.1. For each pair of isotopic algebras we show an isotopism (f ; f ; h), which is described by

means of those basis vectors that are not preserved by the transformations f and h. Besides, each class is described according

to the dimension of their derived algebras and centers and the isotopism invariants described in (6-7).

a) dim(C2(M)) = 1: M4 ' M5. Here, the triple (f ; f ; (23)) such that f (e3) = e2 + e3 is an isotopism between both algebras.

b) dim(C2(M)) = 2:

� dim(Z(M)) = 0:

{ d3(M) = 0: M13
0 .

{ d3(M) = 1: M8.

� dim(Z(M)) = 1: M3
0 ' M6

0;a ' M7
0;b, for all a; b 2 K such that b 6= 0. Here,

{ The triple (f ; f ; h) such that f (e4) = �e2 + e3 + e4 and h(e2) = e2 � ae4 is an isotopism between M3
0 and M6

0;a,

for all a 2 K.

{ The triple (f ; f ; (23)) such that f (e4) = e3 + e4 is an isotopism between M3
0 and M7

0;b, for all b 2 K n f0g.

c) dim(C2(M)) = 3:

� dim(Z(M)) = 0:

{ D3(M) = 1: If char(K) = 2, then M0 ' M11
1;0 ' W (1; 2). Otherwise, M0 ' M12. Here,

� If char(K) = 2, then the triple ((14)(23); (14)(23); Id) is an isotopism between M0 and M11
1;0, whereas the

triple ((1324); (1324); (143)) is an isotopism between M0 and W (1; 2).

� If char(K) 6= 2, then the triple (f ; f ; h) such that f (e2) = e3, f (e3) = �2e4, f (e4) = e2 + e4, h(e2) = 2e3,

h(e3) = 2e4 and h(e4) = �e2 � e4 is an isotopism between M0 and M12.

{ D3(M) = 3: M2 ' M3
�1 ' M7

a;a ' M7
c;0, for all a; c 2 K n f0g. Here,

� The triple (Id; Id; (34)) is an isotopism between M2 and M3
�1.

� The triple (Id; Id; h) such that h(e2) = e3, h(e3) = e4 and h(e4) = ae2 + ae3 is an isotopism between M2 and

M7
a;a, for all a 2 K n f0g.

� The triple (Id; Id; h) such that h(e2) = e3, h(e3) = e4 and h(e4) = ce2 is an isotopism between M2 and M7
c;0,

for all c 2 K n f0g.
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� dim(Z(M)) = 1: M14
1 ' M14

a , for all a 2 K n f0g. If char(K) = 2, then M14
1 ' W (1; 2)(1) � Z(L). Otherwise, M14

1 '

gl(2;K). Here,

{ The triple (Id; Id; h) such that h(e2) = ae2 is an isotopism between M14
1 and M14

a , for all 2 K n f0g.

{ If char(K) = 2, then the triple (Id; Id; (1432)) is an isotopism between M14
1 and W (1; 2)(1) � Z(L).

{ If char(K) 6= 2, then the triple (f ; f ; h) such that f (e4) = e1 + e4, h(e1) = e4, h(e2) = �e3, h(e3) = e2 and

h(e4) = e1 is an isotopism between M14
1 and gl(2;K). 2

5. Conclusions and further studies

We have de�ned in this paper distinct zero-dimensional radical ideals whose related algebraic sets are uniquely identi�ed with

the setMn(K) of n-dimensional Malcev magma algebras over a �nite �eld K. The computation of their reduced Gr�obner bases

together with the classi�cation of Lie algebras over �nite �elds given by De Graaf and Strade have enabled us to determine the

distribution ofM3(K) andM4(K) not only into isomorphism classes, which is the usual criterion, but also into isotopism classes.

Particularly, we have proved the existence of four isotopism classes in M3(K) and eight isotopism classes inM4(K). Besides,

we have proved that every 3-dimensional Malcev algebra over any �nite �eld and every 4-dimensional Malcev algebra over a

�nite �eld of characteristic distinct of two is isotopic to a Lie magma algebra. Keeping in mind the obtained results, the study of

magma algebras by means of computational algebraic geometry constitutes a good �rst approach to the distribution of Malcev

algebras over �nite �elds into isomorphism and isotopism classes. In this regard, the study of the sets M5(K) and M6(K) is

established as a further work that complements the already known classi�cation of 5- and 6-dimensional Malcev algebras in case

of non-solvability [14] and nilpotency [15].
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