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Abstract 
A bilogarithmic hyperbolic cosine method for the evaluation of overlapping formation constants at 
varying (or fixed) ionic strength is devised in this paper and applied to data reported in the ana-
lytical literature, i.e. succinic acid system, Cu(II)-glycine system and Ag(I)-aminobutan-1-ol system. 
The method is based on the linearization of the formation function ñ = f(pH) or ñ = f(pL) data. A 
theoretical slope of unity should be obtained thus proving the correctness of the assumed equili-
bria. An additional advantage of the bilogarithmic method proposed is that it provides a closed 
scale representation of Y and X unlike other plots. This paper forms part of an investigation into the 
uses of bilogarithmic methods and hyperbolic functions in parameter estimation. Methods based on 
the application of spectrophotometric measurements have been the subject of recent studies. 
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1. Introduction 
The exact determination of the thermodynamic formation constants of many dibasic acids is complicated by the 
overlapping [1]-[4] of the successive ionization steps. A great many methods have been derived [5]-[7] for the 
potentiometric evaluation of formation constants of two-step simultaneous equilibria. Of them, methods based 
on the formation function [8]-[12], ñ = f(pH), have been, undoubtedly, the most widely applied. The present pa-
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per describes a procedure for the study of stepwise equilibria in potentiometric titration, which is also based on 
Bjerrum’s function. Data (ñ, pH) are linearized according to a bilogarithmic mathematical model via a hyperbolic 
cosine method relationship. The treatment of the (ñ, pH) data by the procedure derived in this paper does not re-
quire that the ionic strength is maintained constant by addition of inert salt. This paper forms part of an investiga-
tion [9] [13] into the uses of bilogarithmic methods and hyperbolic functions in parameter estimation. Methods 
based on the application of spectrophotometric measurements have been the subject [14]-[16] of recent studies. 

2. Theory 
For a diprotic acid H2R, the average proton number [7] [9] [10] [17] [18] (the average number of proton bound 
per R) is given by 
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where charges have been omitted for convenience. The stepwise thermodynamic formation constants of the acid 
is defined by 
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where parenthesis indicate activities and braces concentrations; f2, f1 and f0 being the activity coefficients of the 
species H2R, HR and R, respectively. 

By combining Equations ((1)-(3)) we get 
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On rearrangement Equation (4), we obtain 
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Two different situations will be considered in that follows depending whether the proton number values were 
lower or higher than the unity. 

2.1. Procedure for Average Number Values Lower Than the Unity 
By dividing Equation (5) by (H)3/2, a further rearrangement leads to 
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By multiplying and dividing the right hand of Equation (6) by 
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Making 
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and taking into account that 

e ecosh
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Equation (8) may be converted into 
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where pH = −log(H). By taking logarithmic on both sides of Equation (11), on rearranging we finally get 
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Thus, a representation of the left term of Equation (12) against the term into brackets of the right hand should 
give a straight line (Y = a0 + a1X), obtained by linear regression [19]-[22], whose slope is the unity and the in-
tercept with the X-axis is equal to ( )1 2– log log 2T TK K+ , from which the 1log TK  may be estimated as 
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The application of Equations ((12) and (13)) requires, however, the previous knowledge of 2log TK . Different 
values of 2log TK  may be assumed and the entire procedure then applied. The best value of 2log TK  may be 
taken as that satisfies an optimization criterion, e.g. that minimizes the mean quadratic error (MQE) in ñ meas-
urements 
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where N is the number of data pairs, and ñ is calculated from Equation (4) once both logK values are known, 
This task is easily carried out with the aid of an Excel spreadsheet. 

In those cases in which the ionic strength is held constant by addition of an inert salt, e.g. potassium chloride 
or potassium nitrate 0.1 M, Equation (12) is converted into 

( )( )

2

2
1

ln10 1log cosh log log
2 2

log 3log log log 2
2 21 2

B

B
B

n pH K
n

K nK pH
n n

   −   + −    −     
      = − + + + −    − −    







 

                (15) 

where 1
BK  and 2

BK  are mixed or Bronsted constants, whose dependence on ionic strength can be expressed by 
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1
cK  and 2

cK  are the stoicheiometric constants and fH the activity factor of hydrogen ion. Note that the ñ values 
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when ionic strength is held constant are given by 
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2.2. Procedure for Average Number Values Greater Than Unity 
In these situations, by dividing Equation (5) by (H)1/2, on rearrangement we get 
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By multiplying through 
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Equation (19) is converted into 
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Taking into account the definition of hyperbolic cosine first and taking decadic logarithms on both sides of 
the resulting equation then, a posterior rearrangement leads to 
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When the left term of Equation (22) is plotted against the term into brackets of the right hand, a straight line 
(Y = a0 + a1X) of unity slope should be obtained, from which the value of 2log TK  may be estimated as 
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Nevertheless, before Equation (22) can be applied, 1log TK  must be known. A procedure analogous to that 
suggested in the previous section may be followed in order to circumvent this difficulty. 

If the ionic strength is maintained constant during the titration then 
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The basis of this discussion has been protonation reactions, but the same principles apply for metal complexa-
tion reactions M + L = ML and ML + L = ML2 
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being the formation function or Bjerrum index in this case 
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2.3. Ionic Strength Expression 
Taking into account that V0 millilitres of the diprotic acid H2R at a concentration CA moles/liter, haven been ti-
trated with a volume V of titrant, e.g. a strong monoacid base BOH, of concentration CB moles/liter, the compu-
tation of ionic strength may be made assuming the Speakman [23] expression corrected by the volume, as a first 
approximation. Then, if CBV < CAV0 
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In those cases in which CBV > CAV0 we get 
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The Debye-Hückel equation [24]-[26] (or other more sophisticated one) may be employed for the ionic activ-
ity coefficients and unity assumed for the activity of the uncharged molecule H2R 
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                                  (30) 

where A and B are constants of the Debye-Hückel theory, and ä is the so-called ion-size parameter, or some ex-
tended form of the empirical Debye-Hückel equation as the Davies equation [27]. The activity coefficient may 
be evaluated if required by standard iteration to constant fi. 

2.4. Error Analysis 
In those cases in which ñ < 1, the straight line intersect the X-axis at the point 
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from which we may evaluate the value of 1log TK  once the value of 2log TK  is known. 
By applying the law of random error propagation [28] we get 

( )
0 11 2

2 2
2 2 2 20 0

0 12 4 3log log
1 1 1

1 1 2 cov ,
2T T a aK K

a a
s s s s a a

a a a
 + = + − 
 

.                    (32) 

Taking into account [19]-[22] [28] the expressions for ( )0

2
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An estimate of the uncertainty of these calculations is given by 
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In those cases in which ñ > 1 then 
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and the application of the random error propagation law gives in this case  
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2.5. Choice of Starting Values 
Two principal difficulties should be self-evident. Primarily the present analysis requires a prior estimate of the 
individual stability constants. On this respect, preliminary values of 1log TK  and 2log TK  may be evaluated [9] 
[29] from Equations ((35) and (36)) by considering three well defined points on the titration curve at ñ = 0.5, 1.0, 
and 1.5 

( )( )1 1.0log 2 3 sinh ln log 3TK pH pH= + ∆ −                        (38) 

( )( )2 1.0log 2 3 sinh ln log 3TK pH pH= − ∆ −                        (39) 

where 

( ) ( )0.5 1.5 0.5 1.0 1.0 1.52 2ñ ñ ñ ñ ñ ñpH pH pH pH pH pH pH= = = = = =∆ = − = − = − .             (40) 

Expressions (35) and (36) are only approximate because of the influence of varying ionic strength. In addition, 
it is always disadvantageous to calculate stability constant from a minimum amount of experimental data. As a 
matter of fact, however, even the pH values of ñ = 0.5 and ñ = 1.5 may be taken as starting point for 2log TK  
and 1log TK  values, respectively. 

3. Applications 
In order to check the usefulness of the method it has been applied to a variety of systems previously described in 
the literature. Systems chosen for study were representative of the most difficult experimental situation encoun-
tered in practice. All have log K values similar in magnitude thus being very suitable for the purpose of this 
work. Experimental details and [pH,V] and [pL,ñ] data employed are given in that follows: 

I. Succinic acid [24]: CR = 0.005 M; V0 = 100 mL, CB = 0.1 M (KOH); T = 25˚. Data [V, pH]: [1.00, 3.677; 
1.25, 3.767; 1.50, 3.853; 1.75, 3932; 2.00, 4.009; 2.25, 4.081; 2.50, 4.153; 2.75, 4.223; 3.00, 4.291; 3.25, 4.361; 
3.75, 4.498, 4.00, 4.569; 6.00, 5.135; 6.25, 5.204; 6.50, 5.273; 6.75, 5.342; 7.00, 5.412; 7.25, 5.480; 7.50, 5.554; 
7.75, 5.629; 8.00, 5.208; 8.25, 5.789; 8.50; 5.881; 8.75, 5.981; 9.00, 6.099]. 

II. Cu(II)-Glicine system [18] at T = 25˚C. Data [pL, ñ]: [8.667, 0.250; 8.607, 0.270; 8.549, 0.296; 8.492, 
0.326; 8.423, 0.351; 8.358, 0.385; 8.294, 0.426; 8.221, 0.463; 8.150, 0.511; 8.076, 0.564; 7.993, 0.620; 7.902, 
0.681; 7.803, 0.749; 7.715, 0.807; 7.630, 0.872; 7.215, 1.169; 7.084, 1.251; 6.975, 1.139; 6.838, 1.425; 6.708, 
1.515; 6.565, 1.606; 6.380, 1.697; 6.192, 1.788; 5.886, 1.880]. 

III. Silver(I)-4-aminobutan-1-ol [30] [31] at T = 20˚C and I = 0.5. Data [pL, ñ]: [4.198, 0.261; 4.121, 0.327; 
4.058, 0.392; 4.000, 0.458; 3.950, 0.523; 3.906, 0.589; 3.861, 0.654; 3.818, 0.719; 3.780, 0.785; 3.740, 0.850; 
3.700, 0.915; 3.59, 1.110; 3.549, 1.110; 3.516, 1.238; 3.477, 1.303; 3.389, 1.429; 3.292, 1.553; 3.173, 1.671; 
3.023, 1.779; 2.824, 1.862]. 

Figure 1 shows the application of the bilogarithmic hyperbolic cosine method (BHCM) to the succinic acid 
system. The residuals obtained were [− + + + − + − − − + − + +] and [+ + − + − − − + − + + + −] for ñ < 1 and ñ > 
1, respectively, then show no special pattern. A well defined unity slope, 1.0009 ± 0.0043 and 0.9985 ± 0.0024, 
respectively, was obtained in both cases. The results obtained by means of the BHMC method are in good 
agreement with the values obtained by Albert and Serjeant [25] by applying a computerized FORTRAN method.  

The ideal methodology devised for H2R/HR/R systems may be applied to simultaneous complex systems 
ML2/ML/M. In this case the data available are (pL, ñ). Figure 2 and Figure 3 show the application of the 
BHMC method to the Cu(II)-glycine and Ag(I)-4-aminobutan-1-ol systems, respectively. Irving and Rossotti 
(18) obtained for the Cu(II)-glycine system (Table 1) values of log K1 of 8.12 to 8.16 and log K2 of 6.73 to 6.78. 
The results obtained in this paper are [8.177 - 8.143] for log K1, and [6.772 to 6.645] for log K2. The values ob-
tained for ñ < 1 and ñ > 1 differ in 0.034 and 0.127 log units, for log K1 and log K2, respectively. The slopes of 
our method in both cases are close to 1 (0.9787 ± 0.0271 for ñ < 1 and 0.9878 ± 0.0134 for ñ > 1). 
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Figure 1. Top left: Mean quadratic error (MQE) as a function of log K2 assumed (ñ < 1). Top right: Bilogarithmic plot (ñ < 1) 
for the succinic acid system. Bottom left: Mean quadratic error (MQE) as a function of log K1 assumed (ñ > 1). Bottom right: 
Bilogarithmic plot (ñ > 1) for the succinic acid system. 

 
A well defined slope (1.0073 ± 0.0136) was obtained for the system Ag(I)-4-aminobutan-1-ol (ñ > 1) and 

values of log K1 and log K2 of 3.416 ± 0.002 and 3.896 (assumed), respectively. Lansbury et al. [30] and Unwin 
et al. [31] obtained values of 3.41 and 3.89, respectively, using computerized methods based on the use of 
weighted least squares, and response surfaces, respectively. The results obtained by applying the BHMC method 
proposed in this paper coincide with those provided by these authors. The Ag(I)-4-aminobutan-ol system, how-
ever, departs from a behaviour model at ñ > 1 values.  

4. Conclusion 
A major goal of scientific experimentation is the discovery of relationships [32] among variables. The evalua-
tion of stability constant by linearized plots on this respect seems to be more prevalent, probably owing to the 
transparency [33] of the methods used. Note that non-linear least squares are not always problem-free. Occasio-
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nally, problems arise [34] because of the choice of the data, initial estimates, convergence or multiple local mi-
nima, and all-typical of non-linear regression. A main advantage of the bilogarithmic method devised in this paper 
is that a theoretical slope of unity should be obtained this proving directly the correctness of the assumed equilibria. 
Significant deviation from this behaviour is indicative of more complicated phenomena. It is interesting to note 

 

 
Figure 2. Top: Graphical representation for the ñ versus pL data. The curve in the figure is calculated with logK1 
and logK2 given in Table 1 (bilogarithmic method). Bottom left and right: logarithmic plots. 

 

 
Figure 3. Top: Graphical representation for the ñ versus pL data. Bottom left and right: Bilogarithmic plots. 
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Table 1. Comparison of results obtained by different methods in the evaluation of formation constants. 

System Method log K1 log K2 Ref. 

Succinic acid 

Computer FORTRAN method 5.634 4.200 [24] 

BHCM (ñ < 1) 5.643 ± 0.008 4.183 This paper 

BHCM (ñ > 1) 5.634 4.199 ± 0.002 This paper 

Cu(II)-Glycine 

Successive approximation method 8.16 6.73 [18] 

Correction term method 8.13 6.78 [18] 

Least squares treatment 8,12 6.77 [18] 

BHCM (ñ < 1) 8.143 ± 0.009 6.772 This paper 

BCHM (ñ > 1) 8.177 6.672 ± 0.005 This paper 

Ag(I)-4-aminobutan-1-ol 

Weighted least squares method 3.41 3.89 [30] 

Computer FORTRAN technique 3.41 3.89 [31] 

BCHM (ñ < 1) 3.416 ± 0.002 3.896 This paper 

BCHM (ñ > 1) 3.495 3.818 ± 0.007 This paper 

 
that by applying other least-squares procedures, it is not possible to determine whether a given pH against frac-
tion titrated curve is characterized only by the assumed reactions. In this respect, when the independent and de-
pendent variables are varied over a number of orders of magnitudes, the points tend usually [17] to be bunched 
together. However, an additional advantage of the bilogarithmic method reported here provides a closed scale 
representation of y and x, unlike other plots. The bilogarithmic hyperbolic tool devised here, for all reasons in-
dicated above, constitutes an appropriate and useful mathematical model for the potentiometric study of simul-
taneous equilibria. 
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