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Summary. In this work, we continue our research in the field of string processing mem-
brane systems - APCol systems. We focus on a relation of APCol systems with PM
colonies - colonies whose agents can only perform point mutation transformations of the
common string, in a vicinity of the agent. The second part is devoted to a connection of
APCol systems and logic circuits using AND, OR and NOT gates.

1 Introduction

There are many different theoretical computational models, where are independent
agents engage in a shared environment or interact with it directly. In this paper,
we continue our research in the examination of connections between such models.
In [26] our research started with the comparison of eco-colonies – composed from
components (grammars) acting in a string, the string is also evolved by environ-
mental rules (0L scheme), P colonies and eco-P colonies – membrane systems with
one-membrane agents and a unordered environment. In this paper, we continue
our study with APCol systems – the model related closely to P colonies – PM
colonies and logic circuits.

APCol systems are formal models of a computing device combining proper-
ties of membrane systems and colonies - parallel distributed systems of formal
grammars. Membrane systems (called P systems, [24]) are biologically inspired
distributed multiset rewriting systems that are characterised by massive paral-
lelism and simple rules. APCol systems were introduced in [4] The reader can find
more information about membrane systems in [23] and in [17] can a reader find
details on grammar systems theory.

An APCol system is formed from agents - collections of objects embedded in a
membrane - and shared environment - string. Agents are equipped with programs
composed of rules that allow agents to interact with objects that are placed inside
them and they form a string. The number of objects inside each agent is set by
definition and it is usually very low up to 3. The string is processed by agents
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and it is used as a communication channel for agents too. Through the string the
agents are able to affect the behaviour of another agent. There is a special object
defined in the APCol system it is denoted by e. It has a special role: whenever it
is introduced in the string, the corresponding input symbol is erased.

The activity of agents is based on rules that can be rewriting, communication
or checking; these three types was introduced in [18]. Rewriting rule a → b allow
agent to rewrite (evolve) one object a to object b. Both objects are placed inside
the agent. Communication rule a↔ b gives to the agent the possibility to exchange
object c placed inside the agent for object d from the string. A checking rule is
formed from two rules r1, r2 of type rewriting or communication. It sets a kind of
priority between rules r1, r2. The agent tries to apply the first rule and if it cannot
be performed, the agent executes the second rule. The rules are combined into
programs in such a way that all object are affected by the execution of the rules.
Consequently, the number of rules in the program is the same as the number of
objects inside the agent.

The computation in APCol systems starts with an input string, representing
the environment, and with each agents having only symbols e in its state. Every
computational step means a maximally parallel action of the active agents: an
agent is active if it is able to perform at least one of its programs, and the joint
action of the agents is maximally parallel if no more active agent can be added
to the synchronously acting agents. The computation ends if the input string is
reduced to the empty word, there are no more applicable programs in the system,
and meantime at least one of the agents is in so-called final state.

We start the paper with the necessary definitions not only of APCol systems,
PM-colonies and logic circuits. We continue with the construction of an APCol
system simulating a PM-colony and with the construction of APCol system suit-
able for simulation of logic circuits. We conclude the paper with final remarks
about future work and open problems.

2 Definitions

Throughout the paper the reader is assumed to be familiar with the basics of
formal language theory and membrane computing. For further details we refer to
[16] and [23].

For an alphabet Σ, the set of all words over Σ (including the empty word, ε),
is denoted by Σ∗. We denote the length of a word w ∈ Σ∗ by |w| and the number
of occurrences of the symbol a ∈ Σ in w by |w|a. For a language L ⊆ Σ∗, the set
length(L) = {|w| | w ∈ L} is called the length set of L. For a family of languages
FL, the family of length sets of languages in FL is denoted by NFL.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns to each
object in V its multiplicity in M . The set of all multisets with the set of objects V
is denoted by V ◦. The set V ′ is called the support of M and denoted by supp(M).
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The cardinality of M , denoted by |M |, is defined by |M | =
∑

a∈V f(a). Any
multiset of objects M with the set of objects V ′ = {a1, . . . an} can be represented
as a string w over alphabet V ′ with |w|ai

= f(ai); 1 ≤ i ≤ n. Obviously, all words
obtained from w by permuting the letters can also represent the same multiset M ,
and ε represents the empty multiset.

2.1 APCol Systems

In the following we recall the concept of an APCol system [4].
As in the case of standard P colonies, agents of APCol systems contain objects,

each being an element of a finite alphabet. With every agent, a set of programs
is associated. There are two types of rules in the programs. The first one, called
an evolution rule, is of the form a → b. It means that object a inside of the
agent is rewritten (evolved) to the object b. The second type of rules, called a
communication rule, is in the form c↔ d. When this rule is performed, the object
c inside the agent and a symbol d in the string are exchanged, so, we can say that
the agent rewrites symbol d to symbol c in the input string. If c = e, then the
agent erases d from the input string and if d = e, symbol c is inserted into the
string.

An APCol system works successfully, if it is able to reduce the given string to
ε, i.e., to enter a configuration where at least one agent is in accepting state and
the processed string is the empty word.

Definition 1. [4] An APCol system is a construct
Π = (O, e,A1, . . . , An), where

• O is an alphabet; its elements are called the objects,
• e ∈ O, called the basic object,
• Ai, 1 ≤ i ≤ n, are agents. Each agent is a triplet Ai = (ωi, Pi, Fi), where

– ωi is a multiset over O, describing the initial state (content) of the agent,
|ωi| = 2,

– Pi = {pi,1, . . . , pi,ki} is a finite set of programs associated with the agent,
where each program is a pair of rules. Each rule is in one of the following
forms:
· a→ b, where a, b ∈ O, called an evolution rule,
· c↔ d, where c, d ∈ O, called a communication rule,

– Fi ⊆ O∗ is a finite set of final states (contents) of agent Ai.

During the work of the APCol system, the agents perform programs. Since
both rules in a program can be communication rules, an agent can work with
two objects in the string in one step of the computation. In the case of program
〈a↔ b; c↔ d〉, a sub-string bd of the input string is replaced by string ac. If the
program is of the form 〈c↔ d; a↔ b〉, then a sub-string db of the input string is
replaced by string ca. That is, the agent can act only in one place in a computation
step and the change of the string depends both on the order of the rules in the
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program and on the interacting objects. In particular, we have the following types
of programs with two communication rules:

• 〈a↔ b; c↔ e〉 - b in the string is replaced by ac,
• 〈c↔ e; a↔ b〉 - b in the string is replaced by ca,
• 〈a↔ e; c↔ e〉 - ac is inserted in a non-deterministically chosen place in the

string,
• 〈e↔ b; e↔ d〉 - bd is erased from the string,
• 〈e↔ d; e↔ b〉 - db is erased from the string,
• 〈e↔ e; e↔ d〉; 〈e↔ e; c↔ d〉, . . . - these programs can be replaced by pro-

grams of type 〈e→ e; c↔ d〉.
The program is said to be restricted if it is formed from one rewriting and one

communication rule. The APCol system is restricted if all the programs the agents
have are restricted.

At the beginning of the work of the APCol system (at the beginning of the
computation), there is an input string placed in the environment, more precisely,
the environment is given by a string ω of objects which are different from e.
This string represents the initial state of the environment. Consequently, an initial
configuration of the automaton-like P colony is an (n+1)-tuple c = (ω;ω1, . . . , ωn)
where ω is the initial state of the environment and the other n components are
multisets of strings of objects, given in the form of strings, the initial states the of
agents.

A configuration of an APCoL system Π is given by (w;w1, . . . , wn), where
|wi| = 2, 1 ≤ i ≤ n, wi represents all the objects placed inside the i-th agent and
w ∈ (O − {e})∗ is the string to be processed.

At each step of the computation every agent attempts to find one of its pro-
grams to use. If the number of applicable programs is higher than one, the agent
non-deterministically chooses one of them. At every step of computation, the max-
imal possible number of agents have to perform a program.

By applying programs, the automaton-like P colony passes from one config-
uration to another configuration. A sequence of configurations starting from the
initial configuration is called a computation. A configuration is halting if the AP-
Col system has no applicable program.

The result of computation depends on the mode in which the APCol system
works. In the case of accepting mode, a computation is called accepting if and only
if at least one agent is in final state and the string obtained is ε. Hence, the string
ω is accepted by the automaton-like P colony Π if there exists a computation by Π
such that it starts in the initial configuration (ω;ω1, . . . , ωn) and the computation
ends by halting in the configuration (ε;w1, . . . , wn), where at least one of wi ∈ Fi

for 1 ≤ i ≤ n.
The situation is different when the APCol system works in the generating mode.

A computation is called successful if only if it is halting and at least one agent is in
final state. The string wF is generated by Π iff there exists computation starting
in an initial configuration (ε;ω1, . . . , ωn) and the computation ends by halting in
the configuration (wF ;w1, . . . , wn), where at least one of wi ∈ Fi for 1 ≤ i ≤ n.
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We denote by APColaccR(n) (or APColacc(n)) the family of languages ac-
cepted by APCol system having at most n agents with restricted programs only
(or without this restriction). Similarly we denote by APColgenR(n) the family of
languages generated by APCol systems having at most n agents with restricted
programs only.

APCol system Π can generate or accept set of numbers |L(Π)|.
By NAPColxR(n), x ∈ {acc, gen}, the family of sets of natural numbers ac-

cepted or generated by APCol systems with at most n agents is denoted.
In [4] the authors proved that the family of languages accepted by jumping

finite automata (introduced in [21]) is properly included in the family of languages
accepted by APCol systems with one agent, and it is proved that any recursively
enumerable language can be obtained as a projection of a language accepted by
an automaton-like P colony with two agents.

In [4] the reader can find following theorems about accepting power of APCol
systems:

• The family of languages accepted by APCol system with one agent properly
includes the family of languages accepted by jumping finite automata.

• Any recursively enumerable language can be obtained as a projection of a
language accepted by an APCol system with two agents.

The results about generative power of APCol systems are shown in [2]:

• Restricted APCol systems with only two agents working in generating mode
can accept any recursively set of natural numbers. NAPColgenR(2) = NRE

• A family of sets of natural numbers acceptable by partially blind register ma-
chine can be generated by an APCol system with one agent with restricted
programs. NRMPB ⊆ NAPColgenR(1)

2.2 PM-colonies

In this part we recall the definition of PM-colonies that was introduced in [20].

Definition 2. A PM-colony (of degree n;n ≥ 1) is a construct

π = (E; #;N ;>;R1; . . . ;Rn);

where E is an alphabet (of the environment), # is a special symbol not in E (the
boundary marker of the environment), N = {A1; . . . ;An} is the alphabet of agents
names, > is a partial order relation over N (the priority relation among agents),
and R1; . . . ;Rn are finite sets of action rules of the agents. The action rules can
be of the following forms:
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Deletion: (a;Ai; b)→ (ε;Ai; b), for a ∈ E ∪N ; b ∈ E ∪N ∪ {#},
(a;Ai; b)→ (a;Ai; ε), for a ∈ E ∪N ∪ {#}; b ∈ E ∪N,

Insertion: (a;Ai; b)→ (a; c;Ai; b), for a; b ∈ E ∪N ∪ {#}; c ∈ E ∪N,
(a;Ai; b)→ (a;Ai; c; b), for a; b ∈ E ∪N ∪ {#}; c ∈ E ∪N,

Substitution: (a;Ai; b)→ (c;Ai; b), for b ∈ E ∪N ∪ {#}; a; c ∈ E,
(a;Ai; b)→ (a;Ai; c), for a ∈ E ∪N ∪ {#}; b; c ∈ E,

Move: (a;Ai; b)→ (Ai; a; b), for a ∈ E ∪N ; b ∈ E ∪N ∪ {#},
(a;Ai; b)→ (a; b;Ai), for a ∈ E ∪N ∪ {#}; b ∈ E ∪N,

Death: (a;Ai; b)→ (a; ε; b), for a; b ∈ E ∪N ∪ {#}.

Each action has a premise of the form (a;Ai; b), it specifies the agent and its
neighbouring symbols, and has a consequence where the agent is still present, with
only one exception, when it disappears; the boundary marker cannot be changed
or overpassed.

The state of the environment is described by a string of the form #w#, where
w ∈ (E∪N)∗. The string prE(w) describes the environment without the agent pop-
ulation, prN (w) describes the agent population. One agent can appear in several
copies in the environment.

The agents act on the environment symbols as well as on other agents, in a local
manner, according to the action rules; the agents can also change their position
in the environment, according to the move rules, but they cannot step outside the
boundary markers.

Agents in PM-colony work in parallel manner. Similarly as in the other parallel
working systems, conflicts can occur between agents. If in a word w ∈ (E ∪ N)∗

context overlay of two agents Ai and Aj happens or if agent Aj takes part
in context of agent Ai, we call it direct conflict between agents. If in w the
pairs of agents (A1, A2), (A2, A3), . . . , (An, An+1) are in direct conflict then the
whole set of agents A1, A2, A3, . . . , An, An+1 are in conflict. The conflict of agents
A1, A2, A3, . . . , An, An+1 in PM-colony can be solved by the agent with the great-
est priority, which takes action. So, to solve the conflict, conflicting agents have to
be ordered in such a way, that there is an agent with priority higher then all other
agents in the conflict. Moreover the agent with the greatest priority occurs in the
conflict set only once.

Let A be agent of PM-colony and #w# = xaAby be a configuration of PM-
colony, where a, b ∈ (E ∪ N) ∪ {#}. This occurrence of agent A is active with
respect to configuration #w#, if (1) an action rule exists, whose left side is in the
form (a,A, b), and (2) A is not conflicting with any other agent occurrence, or A
has the highest priority from all agents from those in conflict. An agent occurrence
is inactive, if it is not active.

A derivation step in a PM-colony denoted as ⇒ is a binary relation on a set of
configurations. We write #w# ⇒ #z# if and only if each active agent A in the
string w replaces its context in w by corresponding rule and the resultant string
is #z#. Derivation ⇒∗ is the reflexive and transitive closure of relation ⇒. A
language associated with PM-colony π = (E; #;N ;>;R1; . . . ;Rn) and a starting
state w0 of its environment is defined as
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L(π;w0) = {x ∈ E∗ | w0 ⇒∗ w; x = prE(w)}

2.3 Logic gates and boolean circuits

Boolean circuits are a formal model of the combinational logic circuits. Circuits
consist of wires able to carry one bit, and logical gates connecting such wires and
computing the elementary logical functions, NOT, AND, OR. To simplify circuits
used in practice, more logical gates were introduced: NOR, XOR and NAND. Value
tables and graphical symbols are shown in Table 1.

Name of logic gate Graphical symbol Value table

NOT A F
A F

0 1
1 0

AND

A

B

F
A B F

0 0 0
0 1 0
1 0 0
1 1 1

OR

A

B

F
A B F

0 0 0
0 1 1
1 0 1
1 1 1

Table 1. Graphical symbols and value tables for logic gates

Definition 3. A Boolean circuit α = (V,E, λ) is a finite directed acyclic graph
(V,E), with set of vertices V , and set of directed edges E, and λ : V → {I} ∪
{AND,OR,NOT} a vertex labelling, where I is a special symbol. A vertex x ∈ V
with λ(x) = I has indegree 0 and is called an input. A vertex y ∈ V with outdegree 0
is called an output. Vertices with labels AND and OR have indegree 2 and outdegree
1, while vertices with the label NOT have indegree and outdegree 1.

3 APCol Systems Versus PM-colonies

In this section we construct APCol system simulating derivation steps in PM-
colony. The idea is to perform one derivation step of PM-colony in four phases of
computation in APCol system. In the first phase one agent rewrite all occurrences
of PM-colony agents into new symbols of a type aAb were a, b is a context of current
copy of agent A. In the second phase the agent check whether there is any conflict.
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If the answer is positive, it tries to solve collision. The third phase is performing
phase, when APCol system agent rewrite active and inactive agents into objects in
the way corresponding to executed rules. If there is more than one applicable rule
( PM-colony is non-deterministic) executed rule is chosen non-deterministically.
In the last phase the APCol system agent non-deterministically chooses whether
computation will end and erase all occurrences of PM-colony agents or the system
will continue with the next derivation step - to ensure that APCol system can halt
after every simulated derivation step of PM-colony.

Theorem 1. To every PM-colony π there exist APCol system that can generate
all states of PM-colony.

Proof. Let π = (E; #;N ;>;R1; . . . ;Rn) be a PM-colony operating on a string
w0 ∈ (E ∪ N)∗. We construct APCol system Π = (O, e,A1, . . . , Am), where m
equals to number of rules in π plus 6, as follows:

The agentA1 has initial configuration ee and the subset of programs to initialize
simulation.

A1

1. 〈e→ #′; e→ T 〉
2. 〈#′ ↔ #;T ↔ a〉 for all a ∈ E ∪N ∪ {#}
3. 〈#→ P ; a→ a〉
4. 〈P ↔ e; a↔ T 〉 for all a ∈ E ∪N ∪ {#}
5. 〈T →↑; e→ e〉
APCol system starts computation on the string #w0# = #aw1#. Agent A1

is in the initial configuration ee. In the first step it rewrites its contents to #′T
using the program 1. At the second step The agent replace the first two symbols
from the string by its contents. After second step the contents of the agent A1 #a
and the string in the environment is #′Tw1#. In the next step agent rewrites #
to P and exchange its contents by T from a string. The configuration of the agent
is eT and the string has a form #′Paw1#.

The agent A2 is supporting agent; It generates the auxiliary objects consumed
by agent A1. Set P2 contains following programs:

A2

A. 〈e→↓; e→ e〉
B. 〈↓↔ P ; e→ e〉

step string agent A1 agent A2

applicable
programs
of A1

applicable
programs
of A2

0. #aw1# ee ee 1. A.
1. #aw1# #′T ↓ e 2. −
2. #′Tw1# #a ↓ e 3. −
3. #′Tw1# Pa ↓ e 4. −
4. #′Paw1# eT ↓ e 5. B
5. #′ ↓ aw1# ↑ e Pe 6. C
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Phase 1. - Context detection

After symbol ↓ appears in the string #′ ↓ aw1#, agent A1 goes through the string
from the left to the right end and rewrites occurrences of PM-colony agents A by
symbols aAb where a, b are neighbouring symbols (aAB is substring of the input
string).
A1

6. 〈↑↔↓; e↔ a〉
for all a ∈ E ∪N

7. 〈a↔↑; ↓↔ e〉
for all a ∈ E

8.
〈
a→ A; ↓→ L

〉
for all a ∈ N

9.
〈
A→ A;L↔↑

〉

A2

C. 〈P → L′; e→ e〉
D. 〈L′ ↔ b; e↔ L〉

for all b ∈ E ∪ i N j

i, j ∈ E ∪N ∪ {#}
E. 〈b→ b;L→ Lb〉
F. 〈b↔ L′;Lb ↔ e〉
G. 〈L′′ → R′; e→ e〉

A1

10.
〈
A→ A; ↑↔ L′

〉
11.
〈
A→ A;L′ → L′′

〉
12.
〈
A→ A;L′′ ↔↑

〉
13.
〈
A→ A; ↑↔ Lb′

〉
14.
〈
A→ b′A;Lb′ → R

〉
15. 〈 b′A → b′A;R↔↑〉
16. 〈 b′A → b′A; ↑↔ R′〉
17. 〈 b′A → b′A;R′ → R′′〉
18. 〈 b′A → b′A;R′′ ↔↑〉
19. 〈 b′A → b′A; ↑↔ Rc′〉

where b, c ∈ E ∪N
20. 〈 b′A → b′Ac′ ;Rc′ →↓〉

where b, c ∈ E ∪N
21. 〈 b′Ac′ ↔ e; ↓↔↑〉

where b, c ∈ E ∪N
22. 〈↓→ Ex; #→ #〉
23. 〈Ex ↔↑; #↔ e〉

A2

H. 〈R′ ↔ R; e↔ c〉
c ∈ E ∪N

I. 〈R→ Rc; c→ c〉
J. 〈Rc ↔ R′′; c↔ e〉
K. 〈R′′ → L′; e→ e〉

Agents A1 and A2 helps each other to change all occurrences of PM-colony
agents to more complex symbols capturing agent neighbouring symbols. In follow-
ing table, a, b ∈ E and A ∈ N .
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step string agent A1 agent A2

applicable
programs
of A1

applicable
programs
of A2

5. #′ ↓ aAbw1# ↑ e Pe 6. C.
6. #′ ↑ Abw1# ↓ a L′e 7. −
7. #′a ↓ Abw1# ↑ e L′e 6. −
8. #′a ↑ bw1# ↓ A L′e 8. −
9. #′a ↑ bw1# AL L′e 9. −

10. #′aLbw1# A ↑ L′e − D.
11. #′L′bw1# A ↑ aL 10. E.
12. #′ ↑ bw1# AL′ aLa 11. −
13. #′ ↑ bw1# AL′′ aLa 12. −
14. #′L′′bw1# A ↑ aLa − F.
15. #′aLabw1# A ↑ L′′e 13. G.
16. #′a ↑ bw1# ALa R′e 14. −
17. #′a ↑ bw1# aAR R′e 15. −
18. #′aRbw1# aA ↑ R′e − H.
19. #′aR′w1# aA ↑ Rb 16. I.
20. #′a ↑ w1# aAR

′ Rbb 17. −
21. #′a ↑ w1# aAR

′′ Rbb 18. −

step string agent A1 agent A2

applicable
programs
of A1

applicable
programs
of A2

22. #′aR′′w1# aA ↑ Rbb − J.
23. #′aRbbw1# aA ↑ R′′e 19. K.
24. #′a ↑ bw1# aARb L′e 20. −
25. #′a ↑ bw1# aAb ↓ L′e 21. −
26. #′a aAb ↓ bw1# ↑ L′e 6. −

Phase 2. - Determining agents as active or inactive

In the second phase agents A1 and A3 read the string from right to the left and
they search for conflicts. Inactive agents are marked by yXz, active agents has
the label in a form yXz.
A1

24. 〈↑→⇑; e→l〉
25. 〈l→⇓;⇑↔ #〉
26. 〈⇓↔ e; #↔⇑〉

A3

i. 〈e→l; e→ e〉
ii. 〈l↔ Ex; e→ e〉
iii. 〈Ex →m; e→ e〉
iv. 〈m↔⇓; e→ e〉
v. 〈⇓→ e; e→ e〉

A1

To skip a ∈ E
27. 〈⇑↔ a; e↔m〉
28. 〈m↔ e; a↔⇑〉
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A1

If A1 consumes bAc, A ∈ N ; b, c ∈ E ∪N ∪ {#}
29. 〈⇑↔ bAc; e→m〉
30. 〈 bAc → bA

′
c;m→mA〉

bA
′
c =

〈
bAc for b, c ∈ E or b, c ∪N and b < A, c < A

bAc otherwise
31. 〈mA↔⇑; bA

′
c ↔ e〉

A1

If mA is sent to the string and next symbol is a ∈ E
32. 〈⇑↔ a; e↔mA〉
33. 〈mA→⇓A; a→ a〉
34. 〈⇓A↔ e; a↔⇑〉
A1

If mA is sent to the string and next symbol is bBc

35. 〈⇑↔ bBc; e↔mA〉
36. 〈 bBc → bB

′
c;mA→ Y 〉 ;

bB
′
c =

〈
bBc for B > A and {b, c ∈ E or b, c ∈ N and b < A, c < A}
bBc otherwise

Y =

〈mB for B > A
mA for A > B
m{A,B} otherwise

37. 〈X ↔⇑; bB
′
c ↔ e〉

A1

If mM (M is a subset of N) is sent to the string and next symbol is bBc

35′. 〈⇑↔ bBc; e↔mM 〉
36′. 〈 bBc → bB

′
c;mM→ Y 〉 ;

bB
′
c =

〈 bBc if B is greatest element of M ∪ {B} and
b, c ∈ E or b, c ∪N and
b, c is not greatest element of M ∪ {b, c}

bBc otherwise

Y =

〈mB for B > A
mA for A > B
m{A,B} otherwise

37′. 〈X ↔⇑; bB
′
c ↔ e〉

A1

If ⇓A is sent to the string and next symbol is a ∈ E
38. 〈⇑↔ a; e↔⇓A〉
39. 〈a→ a;⇓A→m〉 ;
40. 〈m↔⇑; a↔ e〉
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A1

If ⇓A is sent to the string and next symbol is bBc

41. 〈⇑↔ bBc; e↔⇓A〉
42. 〈 bBc → bB

′
c;⇓A→ X〉 ;

bB
′
c =

〈
bBc for B > A and {b, c ∈ E or b, c ∪N and b < A, c < A}
bBc otherwise

X =

〈mA for A > B
BA for B > A
eA otherwise

43. 〈X ↔⇑; bB
′
c ↔ e〉

If the next symbol to be checked is boundary object #′ the agent A4 finishes
the second phase.
A5

AA. 〈e→ D; e→ e〉
AB. 〈D ↔ #′; e↔ X〉 ;X ∈ {m;mA;⇓A}
AC. 〈X → C; #′ → #′〉
AD. 〈#′ ↔ D;C ↔ e〉

When symbol BA or symbol eA appears in the string agent A5 starts to work
by consuming the symbol and replacing it by two symbols: ⇑A for agent A6 that
moves right to set PM-colony agent A as inactive and the second symbol for agent
A1 to continue computation.
A5

a. 〈e→ Z; e→ e〉
b. 〈Z ↔ BA; e→ e〉
c. 〈Z ↔ eA; e→ e〉
d. 〈BA →mB ; e→⇑A〉
e. 〈eA →m; e→⇑A〉
f. 〈mB↔ Z;⇑A↔ e〉
g. 〈m↔ Z;⇑A↔ e〉
A6

I. 〈e→ B; e→ e〉
II. 〈B ↔⇑A; e↔ X〉 ;

X ∈ E ∪ { bBc | b, c ∈ E ∪N ∪ {#,#′}, B ∈ N − {A}}
III. 〈X ↔ B;⇑A↔ e〉
IV. 〈B ↔⇑A; e→ bAc〉
V.

〈
⇑A→ e; bAc → bAc

〉
V I.

〈
bAc ↔ B; e→ e

〉
Phase 3. - Simulation of execution of the rules

This phase starts with arrows change. Instead of ⇑ and m the agent A1 uses � and
�. The change is done by agent A1 and A5.
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A1

44. 〈⇑↔ C; e→ e〉
45. 〈C →�; e→ e〉
46. 〈�↔�; e→ e〉

A5

h. 〈Z ↔ #′; e↔⇑〉
i. 〈#′ → #′;⇑→�〉
j. 〈#′ ↔ Z;�↔ e〉

The agent A1 reads the string from the left to the right, it skips symbols from
E ∪N , changes bAc to A and sends messages to performing agent to add, move,
rewrite or delete symbols.
A1

47. 〈�↔�; e↔ a〉 a ∈ E ∪N
48.
〈
�↔�; e→ bAc

〉
49. 〈a↔�;�↔ e〉
50.
〈
�→�; bAc → A

〉
51. 〈A↔�;�↔ e〉
52. 〈�↔�; e→ bAc〉

Using the program 52 agent A1 consumes symbol corresponding to active agent.
For every rule of PM-colony there exists sets of programs of agent A1 and one agent
performing the action.

If the rule is deletion of the form
(a;Ai; b)→ (ε;Ai; b), for a ∈ E ∪N ; b ∈ E ∪N ∪ {#},
(a;Ai; b)→ (a;Ai; ε), for a ∈ E ∪N ∪ {#}; b ∈ E ∪N,

the programs are following:
A1

53. 〈 aAb → A;�→ Dxy〉
xy is La or Rb depending on which side the symbol have to be deleted

54. 〈A↔ e;Dxy ↔�〉
Adel

A1. 〈e→ J ; e→ e〉
A2. 〈J ↔ Dxy; e→ e〉 ;
A3. 〈DLa → dLa; e↔�〉
A4. 〈dLa ↔ A;�↔ J〉
A5. 〈A→ A; J → J0〉
A6. 〈J0 ↔ dLa;A↔ e〉
A7. 〈dLa ↔ a′; e↔ J0〉 a′ is a if a ∈ E or a′ is daA
A8. 〈J0 → J1; a′ → e〉
A9. 〈J1 → J2; e↔ dLa〉
A10. 〈J2 → J ; dLa → e〉
A11. 〈DRb → dRb; e↔�〉
A12. 〈�↔ J ; dRb ↔ b′〉 b′ is b if b ∈ E or b′ is Abd
A13. 〈b′ → e; J → J0〉
A14. 〈J0 → J1; e↔ dRb〉
A15. 〈J1 → J ; dRb → e〉

If the rule is insertion of the form
(a;Ai; b)→ (a; c;Ai; b), for a; b ∈ E ∪N ∪ {#}; c ∈ E ∪N,
(a;Ai; b)→ (a;Ai; c; b), for a; b ∈ E ∪N ∪ {#}; c ∈ E ∪N,

the programs are following:
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A1

55. 〈 aAb → A;�→ Ixy〉
xy is Lc or Rc depending on which side the symbol have to be inserted

56. 〈A↔ e; Ixy ↔�〉
Ains

A1. 〈e→ J ; e→ K〉
A2. 〈J ↔ A;K ↔ ILc〉 ; A13. 〈J ↔ IRc;K → c〉 ;
A3.

〈
ILc → I0Lc;A→ A

〉
A14.

〈
IRc → I0Rc; c→ c

〉
A4.

〈
I0Lc ↔ J ;A↔ K

〉
A15.

〈
c↔ J ; I0Rc ↔ e

〉
A5.

〈
J ↔ I0Lc;K → c

〉
A16.

〈
J ↔ I0Rc; e→�

〉
A6.

〈
I0Lc → I1Lc; c→ c

〉
A17.

〈
I0Rc → K;�↔ J

〉
A7.

〈
c↔ J ; I1Lc ↔ e

〉
A8.

〈
J ↔ I1Lc; e↔ A

〉
A9.

〈
I1Lc → I2Lc;A→ A

〉
A10.

〈
A↔ J ; I2Lc ↔ e

〉
A11.

〈
J ↔ I2Lc; e→�

〉
A12.

〈
I2Lc → K;�↔ J

〉
If the rule is substitution of the form
(a;Ai; b)→ (c;Ai; b), for b ∈ E ∪N ∪ {#}; a; c ∈ E,
(a;Ai; b)→ (a;Ai; c), for a ∈ E ∪N ∪ {#}; b; c ∈ E,

the programs are following:
A1

57. 〈 aAb → A;�→ Sxy〉
xy is Lc or Rc depending on which side the symbol have to be replaced

58. 〈A↔ e;Sxy ↔�〉
Asubs

A1. 〈e→ J ; e→ e〉
A2. 〈J ↔ SLc; e→ e〉 ; A11. 〈J ↔ SRc; e→ e〉 ;
A3. 〈SLc → sLc; e→�〉 A12. 〈SRc → sRc; e→ c〉
A4. 〈sLc ↔ A;�↔ J〉 A13. 〈c↔ J ; sRc ↔ b〉
A5. 〈A→ A; J → J0〉 A14.

〈
J → J0; b→�

〉
A6. 〈J0 ↔ a;A↔ sLc〉 A15.

〈
J0 → J1;�↔ sRc

〉
A7.

〈
sLc → s0Lc; a→ c

〉
A16.

〈
J1 → J ; sRc → e

〉
A8.

〈
s0Lc ↔ J0; c↔ e

〉
A9.

〈
J0 → J1; e↔ s0Lc

〉
A10.

〈
J1 → J ; s0Lc → e

〉
If the rule is move of the form
(a;Ai; b)→ (Ai; a; b), for a ∈ E ∪N ; b ∈ E ∪N ∪ {#},
(a;Ai; b)→ (a; b;Ai), for a ∈ E ∪N ∪ {#}; b ∈ E ∪N,

the programs are following:
A1

59. 〈 aAb → A;�→Mxy〉
xy is LA or RA depending on which side the symbol have to be moved

60. 〈A↔ e;Mxy ↔�〉
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Amov

A1. 〈e→ J ; e→ e〉
A2. 〈J ↔MLA; e→ e〉 ; A10. 〈J ↔MRA; e→ e〉 ;
A3. 〈MLA → mLA; e→�〉 A11. 〈MRA → mRA; e→ e〉
A4. 〈mLA ↔ A;�↔ J〉 A12. 〈e↔ J ;mRA ↔ b′〉 b′ is b if b ∈ E or b′ is Abd
A5. 〈A→ A; J → J0〉 A13.

〈
J → J0; b′ → O

〉
O is b if b ∈ E or O is B

A6. 〈A↔ a; J0 ↔ mLA〉 A14. 〈O ↔ A; J0 ↔ mRA〉
A7.

〈
mLA → m0

LA; a→ a
〉
A15. 〈A→ A;mRA →�〉

A8.
〈
a↔ J0;m0

LA → e
〉

A16. 〈A↔ e;�↔ J0〉
A9.

〈
J0 → J ; e→ e

〉
A17. 〈J0 → J ; e→ e〉

If the rule is death of the form (a;Ai; b)→ (a; ε; b), for a; b ∈ E ∪N ∪ {#}
the programs are following:
A1

61. 〈 aAb → e;�↔�〉
In the last phase agent A1 detects that the whole string is rewritten and it is

time to non-deterministically choose if computation will be halted or will continue
by simulating of following derivation step.
A1

62. 〈�↔�; e↔ #〉
63. 〈�→ U ; #↔�〉
64. 〈U → V ;�→↓〉
65. 〈U → F ;�→ F 〉
66. 〈V ↔ #′; ↓↔ e〉
67. 〈#′ ↔ V ; e→↑〉
68. 〈V → e; ↑→↑〉

The computation of the APCol system can halt only when in corresponding
state of the PM-colony there is no applicable rule or in the case that program 56.
is executed.

4 Boolean Circuits and APCol Systems

In this part, we show how APCol systems can simulate the functioning of logic
gates. The input is always inserted into the string. Because there is no inner
structure in the APCol systems, we use direct addressing. It means that every
input symbol obtains index determining which agent will consume it. The result
will be find on the string at the end of computation.

Theorem 2. The functioning of logic gates NOT, OR and AND can be simulated
by APCol systems with only one agent.

Proof. The first we show how APCol system for logic gate NOT is constructed.
Let NOT gate has an input with index i. We can simulate NOT gate with only
one agent with following restricted programs:
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1. 〈e↔ 0i; e→ 1out〉 3. 〈e↔ 1i; e→ 0out〉
2. 〈0i → e; 1out ↔ e〉 4. 〈1i → e; 0out ↔ e〉

Formally, we define APCol system ΠNOT = (O, e,ANOT ),
where O = {e, 1i, 0i, 1out, 0out}, ANOT = (ee, PAND), the set of programs is de-
scribed above and initial string is formed from only one symbol 1i or 0i. The result
is obtained after computation halts and it is placed in the string.

Simulation of the AND gate is done by APCol system with only one agent and
following programs:
5. 〈e↔ 0i; e↔ 0i〉 6. 〈e↔ 1i; e↔ 0i〉 7. 〈e↔ 1i; e↔ 0i〉
8. 〈e↔ 1i; e↔ 1i〉 9. 〈0i → 0out; 0i → e〉 10. 〈1i → 0out; 0i → e〉
11. 〈1i → 1out; 1i → e〉

These programs can work only for boolean circuit with only one gate, because
we expect that symbols of input are neighbouring. If we change the programs in
such a way that they contains at most one communication rule. In this case they
do not use context (one agent changes only one symbol on the string in one step).
12. 〈e↔ 0i; e→ e〉 13. 〈e↔ 1i; e→ e〉 14. 〈e↔ 0i; 0i → 0〉
15. 〈e↔ 1i; 1i → 1〉 16. 〈e↔ 1i; 0i → 0〉 17. 〈e↔ 0i; 1i → 1〉
18. 〈0i → 0out; 0→ e〉 19. 〈1i → 1out; 1→ e〉 20. 〈1i → 0out; 0→ e〉
21. 〈0i → 0out; 1→ e〉 22. 〈0out ↔ e; e→ e〉 23. 〈1out ↔ e; e→ e〉

Formally, we define APCol system ΠAND = (O, e,AAND),
where O = {e, 1i, 0i, 1out, 0out}, AAND = (ee, PAND), the set of programs is formed
from programs 12.-23. and initial string contains only one symbol 1i or 0i. The
result is obtained after computation halts and it is placed in the string.

Simulation of the OR gate is done with programs very similar to programs of
agent simulating AND gate. It is done by APCol system with only one agent and
following programs:
24. 〈e↔ 0i; e→ e〉 25. 〈e↔ 1i; e→ e〉 26. 〈e↔ 0i; 0i → 0〉
27. 〈e↔ 1i; 1i → 1〉 28. 〈e↔ 1i; 0i → 0〉 29. 〈e↔ 0i; 1i → 1〉
30. 〈0i → 0out; 0→ e〉 31. 〈1i → 1out; 1→ e〉 32. 〈1i → 1out; 0→ e〉
33. 〈0i → 1out; 1→ e〉 34. 〈0out ↔ e; e→ e〉 35. 〈1out ↔ e; e→ e〉

Formally, we define APCol system ΠOR = (O, e,AOR),
where O = {e, 1i, 0i, 1out, 0out}, AOR = (ee, PAND), the set of programs is formed
from programs 24.-35. and initial string contains only one symbol 1i or 0i. The
result is also obtained after computation halts and it is placed in the string.

We can proceed to formulate a Boolean circuit simulation theorem:

Theorem 3. For every Boolean circuit there exists an APCol system that can
simulate its functioning and for input string formed from input signals of Boolean
circuit APCol system generates correct output.

Let α = (V,E, λ) be a boolean circuit. We associate with each gate a label from
a set {1, . . . , |V |}. Let (x1, . . . , xp) be the vector of input signals for the boolean
circuit. The correspoding initial string of APCol system is formed from objects
x0j ; 1 ≤ j ≤ p. For simulation of the whole boolean circuit, we cannot only put
the corresponding agents together. The output of one agent can be the input for
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more agents. To obtain more input symbols we modify input objects consumed by
agents (we use X ′i instead of Xi), output objects are in a form Xi – output from
the agent i. We also add one more agent generating inputs for those agents which
are connected with output of i-th agent. We deal with three cases: i-th agent is
connected with one agent, with two agents or with m agents, m > 2. Let y be
the index of agent with output and zifor 1 ≤ i ≤ m are indices of agents with
input connected to agent y or corresponding to the initial input; X ∈ {0, 1}. We
construct programs for agent A|V |+1 = (ee, P|V |+1) generating inputs.

Programs for three variants of generated number of inputs
One input Two inputs

36. 〈e↔ Xy; e→ X ′z1〉 38. 〈e↔ Xy; e→ X ′z1〉
37. 〈X ′z1 ↔ e;Xy → e〉 39. 〈X ′z1 ↔ e;Xy → X ′z2〉

40. 〈X ′z2 ↔ e; e→ e〉

m inputs; m > 2
41. 〈e↔ Xy; e→ X ′z1〉
42. 〈X ′z1 ↔ e;Xy → X2y〉
43. 〈e→ X ′z2;X2y → X2y〉
44. 〈X ′z2 ↔ e;X2y → X3y〉
45. 〈e→ X ′zk;Xky → Xky〉 for 2 < k ≤ m
46.
〈
X ′zk ↔ e;Xky → X(k+1)y

〉
for 2 < k ≤ m− 1

47. 〈X ′zm ↔ e;Xmy → e〉
The agents associated to logic gates can consume only input symbols of a type

X ′i, where X is 0 or 1 and i is label of gate. At the beginning of computation
there are only symbols of type Xi present in the input string of APCol system.
The only agent with applicable program is agent A|V |+1 – program 36., 38. or
41. In the next step agent A|V |+1 put the first input symbol (X ′zk), where zk is
label of corresponding gate. From this step agents associated with gates started
to do their work – rewriting their own inputs into outputs – and agent A|V |+1 is
rewriting their output to inputs. If the boolean circuit is defined correctly, at the
end of computation there are only symbols X ′out in the string corresponding to the
output of boolean circuit.

5 Conclusion

In this paper we continue with our research devoted to relationship of APCol
systems which are devices derived from P colonies and P systems in general with
classical formal models used not only in theoretical computer science. For this
paper we have chosen PM-colonies and boolean circuits. We showed that APcol
systems with two agents can simulate PM-colonies with strict conflict solving. In
the second part we showed that even APCol systems are without inner structure
they can substitute boolean circuits.



112 Two Notes on APCol Systems

Acknowledgements.

This work was supported by The Ministry of Education, Youth and Sports from the
National Programme of Sustainability (NPU II) project IT4Innovations excellence
in science - LQ1602, and by the Silesian University in Opava under the Student
Funding Scheme, project SGS/13/2016.

References

1. Ceterchi, R., Sburlan, D.: Simulating Boolean Circuits with P Systems, pp. 104–
122. Springer Berlin Heidelberg, Berlin, Heidelberg (2004), http://dx.doi.org/

10.1007/ 978-3-540-24619-0 8
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L. Ciencialová, L. Cienciala 113

14. Gheorghe, M., Konur, S., Ipate, F.: Kernel P Systems and Stochastic P Sys-
tems for Modelling and Formal Verification of Genetic Logic Gates, pp. 661–675.
Springer International Publishing, Cham (2017), http://dx.doi.org/ 10.1007/

978-3-319-33924-5 25

15. Greibach, S.: Remarks on blind and partially blind one-way multicounter machines.
Theoretical Computer Science 7(3), 311 – 324 (1978)

16. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation (3rd Edition). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA (2006)
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