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Unsupervised web page classification refers to the problem of clustering the pages in a web site so that
each cluster includes a set of web pages that can be classified using a unique class. The existing proposals
to perform web page classification do not fulfill a number of requirements that would make them suit-
able for enterprise web information integration, namely: to be based on a lightweight crawling, so as to
avoid interfering with the normal operation of the web site, to be unsupervised, which avoids the need
for a training set of pre-classified pages, or to use features from outside the page to be classified, which
avoids having to download it. In this article, we propose CALA, a new automated proposal to generate
URL-based web page classifiers. Our proposal builds a number of URL patterns that represent the differ-
ent classes of pages in a web site, so further pages can be classified by matching their URLs to the pat-
terns. Its salient features are that it fulfills all of the previous requirements, and it has been validated
by a number of experiments using real-world, top-visited web sites. Our validation proves that CALA is
very effective and efficient in practice.
1. Introduction

Web page classification refers to the problem of assigning a web
page a class that describes its contents, which has many interesting
applications: enterprise web information integration [25], helping
crawlers find pages about a given topic [13,52], choosing the most
appropriate model to extract information from a web page
[16,28,50], parental control systems [55], removing advertise-
ments [48], or detecting and canonising duplicated URLs [3,34],
to mention a few.

Our focus is on enterprise web information integration. This is a
general term that refers to a variety of techniques whose goal is to
provide a unified view over the data provided by a number of web
applications; the ultimate goal is to allow retrieving information
from these applications as if they were a database. The majority
of such applications provide a keyword-based search form
[26,37]. To integrate the information they deliver, it is necessary
to use wrappers [42]. A wrapper is a piece of software that endows
a web site with a search form with a programmatic interface that
allows executing queries on it. The execution of a query involves
filling and submitting the form, which returns a response page. If
the response page contains the information of interest to answer
the query (that is, the query was precise enough, e.g., ‘‘ISBN
1590338022’’, or ‘‘Samsung Galaxy Note 10.1 WiFi N8010’’), then
an information extractor can be immediately applied to extract
that information [15,51,46,49]; otherwise (that is, the query was
not precise enough, e.g., ‘‘Java’’, or ‘‘Tablet’’), it is common that
web sites return a hub page, which provides listings of links to dif-
ferent pages that may have information of interest. In the latter
case, it is necessary to use a navigator [1,41] to analyse the links
in the hub and determine which ones need to be followed. Web
page classifiers [44,45] play a fundamental role to implement nav-
igators, since they allow discerning programmatically between
both types of pages.

There are many techniques to learn a web page classifier. They
all require to download a subset of web pages, which is commonly
referred to as training set, and analyse some of their features. These
features can be external to the pages (e.g., features in their URLs or
the context where they are linked), or internal (e.g., words or HTML
structure). Some techniques are supervised, i.e., they require a per-
son to pre-classify the pages in the training set, but others are
unsupervised, i.e., their results must be interpreted by a person.

For a learning or classification technique to be useful in the con-
text of enterprise web information integration, it must fulfill three
requirements:

(R1) Lightweight crawling: To learn a classifier it is necessary
to provide a training dataset. Such a dataset is gathered by per-
forming a crawl of the site being analysed. Such a crawl should
be as lightweight as possible since it should not interfere with
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Table 1
Comparison of current URL-based proposals. (R1 = Lightweight crawling; R2
= Unsupervision; R3 = Classify without downloading).

Proposals R1 R2 R3

Brin [14] No No Yes
Kan and Thi [31] No No Yes
Vidal et al. [52] No No Yes
Bar-Yossef et al. [3] No Yes Yes
Baykan et al. [6] No No Yes
Koppula et al. [34] No Yes Yes
Baykan et al. [5] No No Yes
Blanco et al. [13] No Yes No
CALA Yes Yes Yes
the normal operation of the site. Furthermore, web sites change
frequently [20,33] and it is not uncommon that these changes
render the classifier obsolete. Therefore, the classifier must be
learnt not once but several times and performing an extensive
crawling that covers a large portion of a web site becomes
unfeasible.
(R2) Unsupervision: It is important that a person does not need
to pre-classify each page in the training set individually, since
this is an effort-consuming and error-prone task; neither should
he or she provide any additional training information. In other
words, it is important that the techniques used to learn a clas-
sifier be unsupervised or, otherwise, they shall not scale well to
the Web [38].
(R3) Classify without downloading: Downloading a web page
puts a load on the server, takes time, and consumes bandwidth.
That is, it is important that a classifier relies exclusively on
external features of a page in order to classify it, since it would
be inefficient for practical purposes otherwise [31].

Requirements R1 and R2 are related to the process of learning a
classifier, whereas R3 is related to the classification of web pages
using that classifier.

The literature provides a variety of techniques to learn web
page classifiers; they can be broadly classified into the following
categories: Contents-based proposals [7,29,36,47], structure-based
proposals [16,4,2,12,18,53], visual-based proposals [56,19,35],
link-based proposals [11,17,22,57,54], and URL-based proposals
[14,31,6,34,52,3,13]. The proposals in the first three categories rely
on internal features, i.e., they require to download a web page prior
to analysing its contents, structure, or visual features; this makes
them of little interest regarding enterprise web information inte-
gration since they do not fulfill our third requirement. The propos-
als in the fourth category build on analysing the graph of links
amongst the pages of a web site; thus, they require to perform
an extensive crawling in order to learn a classifier, which does
not fulfill our first requirement. The proposals in the fifth category
rely on features of the URLs, which, in principle, makes them more
appropriate for enterprise web information integration; unfortu-
nately, we review them all in Section 2 and our conclusion is that
none of them satisfies the three previous requirements at a time,
which motivated us to work on a new technique called CALA (ClAs-
sifying Links Automatically).

CALA is a proposal to learn a web page classifier that does not
require a previous extensive crawling, it is unsupervised, and it
does not require a page to be downloaded so that it can be classi-
fied. The system relies on two modules, namely: a crawler, which
gathers a small set of hubs from a web site in order to assemble
a training set; and a pattern builder, which uses the previous train-
ing set to build a set of patterns, each of which represents a collec-
tion of URLs that are expected to reference web pages of the same
class. We have performed an experimental analysis and we have
compared the results to two well-known techniques in the litera-
ture: Template Page Model (TPM) by Blanco et al. [12] and Support
Vector Clustering (SVC) by Ben-Hur et al. [8]. Regarding effective-
ness, we achieved precision and recall values that are statistically
similar to the results of TPM and SVC, whereas the F1 values are
better than the results of both techniques. Regarding efficiency,
our timings are similar to those of TPM and considerably faster
than those of SVC.

We presented a two-page abstract of our proposal elsewhere
[27]. In this article, we extend this abstract with an in-depth
description of the algorithms and an experimental analysis that
proves that they are both efficient and effective. The rest of this
article is organised as follows: Section 2 presents the related work
regarding URL-based web page classification; Section 3 defines our
proposal to build URL patterns for web page classification;
Section 4 shows the evaluation of our technique; finally, Section 5
concludes the article.
2. Related work

In this section, we analyse the proposals in the literature to
learn URL-based web page classifiers. A nanve approach is to use
clustering techniques; they rely on a distance function and return
a number of clusters that verify that the inter-distance is maxi-
mum, whereas the intra-distance is minimum. Since URLs can be
naturally represented as strings, the idea would be to use a string
distance. Unfortunately, it has been noticed that using classic
string distances does not work well to classify URLs [13] since
two close URLs may provide information about two different clas-
ses, whereas distant URLs may be related to web pages of the same
class. For example, assume that <MSAS> is an abbreviation for the
domain name academic.research.microsoft.com. There is a minimum
distance between URLs http://<MSAS>/Detail?entitytype=
2&searchtype=2&id=35096884 and http://<MSAS>/Detail?entity-
type=1&search-type=5&id=35096884, but they reference web
pages that are likely to be classified in different classes (publica-
tions of an author and citations made to that author’s papers).
Contrarily, URLs like http://<MSAS>/Author/2542366/charles-ant-
ony-richard-hoare and http://<MSAS>/Author/10540585/yu-li are
far more distant but belong to the same class (authors). It remains
unexplored whether using non-classic distances might improve
the results.

Beyond the previous nanve approach, other authors have
proposed a number of ad hoc techniques that are summarised in
Table 1. In the following paragraphs, we provide additional details
on each proposal.

Brin [14] presented DIPRE, a supervised proposal to extract
structured information from web pages. It considers the Web as
a database of unstructured information, and it aims at gathering
tuples from it (e.g., books). This proposal takes a set of sample tu-
ples as input, and it performs an incremental process that consists
of the following steps: first, it looks for occurrences of the sample
tuples in the Web, i.e., it looks for web pages where the attributes
of one of the tuples occur near to each other. For each occurrence,
the URL of the web page on which it appears and the text that sur-
rounds it are considered the context of the occurrence. Afterwards,
DIPRE uses these contexts to generate patterns that match occur-
rences with a similar context. These patterns include a URL prefix,
which is the longest common prefix to the URLs of the occurrences,
and a text pattern, which is a regular expression that matches the
text surrounding the occurrences. Finally, it looks for tuples in the
Web matching the new patterns. The process iterates until enough
patterns have been generated. Note that DIPRE requires perform-
ing an extensive crawling of the Web to gather as many tuples of
the target relation as possible.

http://%3cMSAS%3e/Detail?entitytype=2&amp;searchtype=2&amp;id=35096884
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Kan and Thi [31] proposed a supervised web page classifier for
pages in different web sites that is based exclusively on features
computed from their URLs. The URLs are tokenised using the stan-
dard RFC 3986 format for URIs, and their tokens are used as fea-
tures; then, more features are computed, such as the position of
each token in the URL, the length of the URL, or the lexical kind
of token (e.g., if it represents a number, a word, or a non-alphabet-
ical symbol). These features are used as input to an entropy maxi-
misation algorithm, a well-known machine learning approach that
is usually applied to text classification [9,43]. To build the classi-
fier, they use large training sets of URLs to achieve good precision
and recall, which requires a previous extensive crawling of the
sites that are being analysed.

Baykan et al. [6,5] presented a supervised web page classifica-
tion proposal that builds exclusively on URLs. They create feature
vectors by tokenising URLs and then use those features to build a
support vector machine and a nanve-bayes classifier. In their
experiments, they use large training sets of URLs, and they require
the user to provide a list of words and URLs that are representative
of every class; furthermore, they also require a sample set of URLs
that are not representative of each class.

Vidal et al. [52] proposed a supervised technique to classify web
pages building on their URL. Their proposal takes a sample page as
input, and returns a set of URL patterns that match the URLs of
pages that are structurally similar to the sample page. It is based
on two steps: site mapping and pattern generation. Site mapping
consists in building a map of the web site, which requires to crawl
the entire site starting from its home page and following every pos-
sible path. They keep a record of the paths in the map that lead (di-
rectly or indirectly) to pages that are similar to the sample page.
The similarity is measured using a tree-edit distance between the
DOM trees underlying the pages. Then, pattern generation consists
of generalising the URLs of the pages in the former paths using reg-
ular expressions, and then selecting the path that leads to the larg-
est number of target pages.

Bar-Yossef et al. [3] proposed a supervised technique to detect
web pages with different URLs that have the same contents, which
has a negative impact on crawling efficiency. To solve this problem,
they classify URLs according to the contents of their target, and
they build regular expressions to define each class of URLs. Then,
those URLs are normalised using a rule mining algorithm. They
need to have a large collection of URLs to achieve good results,
which means that a previous extensive crawling of the web site
must be performed to gather them. A similar proposal was pre-
sented by Koppula et al. [34].

Blanco et al. [13] proposed an unsupervised algorithm to clas-
sify web pages that combines external features and optional inter-
nal features. Their proposal is based on the idea that every web site
is created by populating a number of HTML templates with data
from a database, and that the URLs of those pages are created by
populating a URL template with data from the same database.
Therefore, pages created from the same HTML template have sim-
ilar contents and URLs generated from the same URL template link
to pages with similar contents. They proposed an algorithm that
combines web page contents and its URL as features to cluster
web pages so that each cluster contains pages that were created
using a certain template. Their algorithm is based on the well-
known minimum description length method [23]. They require a
large training set, so they crawl the entire site in their experiments.
Note that to improve the classification efficiency, internal features
can be used, which means that in some cases the page must be
downloaded previously.

From the previous paragraphs, we conclude that none of the
techniques in the literature fulfills the three requirements we have
identified at a time. Our proposal does, since it does not require the
web site to be crawled extensively, but only a small set of hubs, it is
totally unsupervised, and it does not require to download a page to
classify it.

3. Our proposal

In this section, we present our proposal: first, we introduce
some concepts that we use throughout the article; then, we pres-
ent our crawler and our pattern builder. Throughout this article,
we use a mathematical notation that is based on the Z specification
[30]. Furthermore, we use Microsoft Academic Search as a running
example; it is a scholarly web site that offers information about
items that include papers, authors, citations, and publishing hosts,
such as journals or conferences. This web site offers a keyword-
based search form in which a person can write the keywords that
describe the items in which he or she is interested, as depicted in
Fig. 1.

3.1. Preliminaries

Our proposal relies on the analysis of the URLs of the web pages
provided by a number of hubs. Generally speaking, a URL describes
the access protocol and the location of a resource. According to
Berners-Lee et al. [10], a URL like http://<MSAS>/Detail?entity-
type=1&searchtype=5&id=48814179#stats is composed of the fol-
lowing segments: first, a protocol (http); then, an authority or
domain name (<MSAS>); afterwards a sequence of path segments
separated by slash characters (Detail); and two optional sections:
a question mark symbol followed by a query string, and/or a sharp
symbol followed by a fragment. A query string provides informa-
tion about the names and the values of a number of parameters
sent to the web server (entitytype=1&searchtype=5&id=48814179 in-
cludes parameters entityType, searchType, and id with values 1, 5,
and 48814179, respectively). Finally, the fragment is a sequence of
characters that indicates a specific section inside a page (stats).

We define a token as a subsequence of characters that is delim-
ited by separators ://, /, ?, &, =, and #. In other words, a token is a
string of characters that denotes a protocol, a path segment, a
parameter, a value of a parameter, or a fragment. We introduce
URLs and tokens as three given sets in our framework since we
do not need to delve into their structure:

½URL; Token�
Separator ¼¼ f: ==; =; ?;&;¼;#g

We define a pattern as a sequence of tokens, separators, and
wildcards that starts with absymbol and ends with a $ symbol. A
wildcard, which we denote as w, is a placeholder that accounts
for any token. Note that given a URL, it is straightforward to toke-
nise it into a pattern; thus, we do not provide any additional details
on this procedure.

A prefix refers to a subsequence of a pattern that starts at the
first token and extends up to another token in the pattern. Note
that a pattern is similar to a prefix, since both of them are se-
quences of tokens, separators, and wildcards; the only difference
between them is that a pattern ends with a $. We formally define
the previous concepts as follows:

Marker¼¼fH;b;$g
Prefix¼¼fp : seqðToken[Separator[MarkerÞj

#p>1^pð1Þ¼b̂ ð8i : Nji>1^ i6#p�1 �pðiÞ R fb;$gÞ^ last p –bÞg
Pattern¼¼fp : Prefixjlast p¼ $g

A hub page is a web page that results from submitting a key-
word-based search form using some keywords as query, and pro-
vides links to other web pages [32]. Note that hub pages usually
contain a larger number of URLs than other pages since their goal

http://%3cMSAS%3e/Detail?entitytype=1&amp;searchtype=5&amp;id=48814179#stats
http://%3cMSAS%3e/Detail?entitytype=1&amp;searchtype=5&amp;id=48814179#stats


Fig. 1. Search form page in the running example.
is to offer as many results related to the queries as possible.
Regarding our proposal, a hub can be abstracted as a set of patterns
that result from the URLs in the links it provides. A hubset is a col-
lection of hubs that result from submitting a search form using dif-
ferent keywords. We formally define the previous concepts as
follows:

½Word; WebPage�
Hub ¼¼ seq Pattern

Hubset ¼¼ seq Hub

The last preliminary concept comes from statistics. Our crawler
and pattern builder require to discern hubs and tokens whose size
or frequency, respectively, deviate largely from the mean values.
These values are commonly referred to as outliers and they can
be identified very easily using Cantelli’s inequality. Based on this
inequality, we define a lower threshold and an upper threshold be-
low or above which the values of a set can be considered lower or
upper outliers, respectively. The thresholds rely on a given confi-
dence level, which is usually referred to as a. We formally define
these thresholds as follows:
Fig. 2. Algorithm to gather hubs starting from a initial page with a keyword-based
search form.
3.2. Our crawler

Our crawler is responsible for retrieving a set of hubs from a
web site, using the URL of a page with a keyword-based search
form as input. The crawler is based on the algorithm in Fig. 2. It
takes the URL of a page with a keyword-based search form as input
and outputs a hubset. We assume that the following constants
have been set before executing this algorithm: M, which refers to
the number of hubs the algorithm is expected to return; T, which
refers to the maximum number of attempts that the algorithm is
allowed to make in order to gather M hubs; and N, which refers
to the number of keywords that we select from each page.

We make the following conjectures regarding these constants
(these conjectures and others that we establish throughout this
article are corroborated by our experimental results in
Section 4.4):

Conjecture 1 (Value of M). A relatively small number of hubs suffices
to achieve a high precision and recall in our proposal.
Conjecture 2 (Value of T). A relatively small number of attempts suf-
fices to gather M hubs.
Conjecture 3 (Value of N). A relatively small number of keywords
from each page suffices to gather M hubs.

In the following subsections, we describe the ancillary functions
on which the algorithm relies.
3.2.1. Computing keywords
Function computeKeywords takes a web page and a set of words

as input, and returns a set with the N least frequent words in the
page that are not included in the set. We formally define this func-
tion as follows:

To compute the frequencies of each word in wp, we compute
the bag of words using function computeWords, and then we sort
them according to their frequency using function sortBag. Note that
P denotes the set of keywords so far processed in Algorithm gath-
erHubset and that it is passed on to this function as a parameter to
check if any of the N least frequent keywords has already been
used. This way, only the keywords that have not been considered
before and have a low frequency are considered.

In our running example, we gathered the following keywords
from the page in Fig. 1: authors, Advanced, Search, publications, last,
updated, and, week, and Explore, all of which appear once in the page.

3.2.2. Discarding empty hubs
Empty hubs are usually very similar: they display an image and/

or a message to inform the person that his or her query did not



produce any results, that it was incorrect, or that an unrecoverable
error happened, and, optionally, a few links to recommended
items. This implies that their size, in terms of number of patterns,
tends to be smaller than usual and that they can be discarded by
looking for lower outliers. We formally define this function as
follows:

In our running example, non-empty hubs have sizes of around
130.43 patterns with a standard deviation of 25.43 patterns; using
the standard a ¼ 0:05, we get a lower threshold of 19.58, i.e., every
hub with less than 20 patterns is considered to be empty.

3.2.3. Other ancillary functions
Our crawler relies on a few more functions that are straightfor-

ward, but difficult to present within a formal framework. We de-
scribe them below:

download : URL!WebPage. This function takes a URL as input
and returns a copy of the document therein located. A typical
web page usually requires a number of resources so that it
can be rendered, e.g., images, style sheets, or scripts. These
resources are not necessary at all in our proposal, so this func-
tion can discard them safely and return the HTML text only.
computeWords : WebPage! bag Word. This function takes a
web page as input and returns a bag with the words in that
page, excluding tags, scripts, and in-line style definitions. In
order to keep our proposal language-independent, we used
the following unicode regular expression to implement this
function: ((np{L}np{N}+)jnp{N}+np{L})jnp{L})+, where np{L} is a
regular expression that represents unicode characters that are
Fig. 3. Algorithm to mine URL patterns.
letters and np{N} represents unicode characters that are
numbers.
submit : WebPage�Word!WebPage. This function takes a
web page with a keyword-based search form, and a word as
input. It is responsible for finding the keyword-based search
form, filling its unique text field using the word, submitting it,
and returning the response hub page.
computePatterns : WebPage! Hub. This function takes a web
page as input and returns a hub with the patterns in that page,
which are extracted from its links.

3.3. Our pattern builder

The pattern builder relies on the algorithm in Fig. 3. It takes a
hubset hs as input and outputs a set of patterns that represent
the different classes of pages in the input site.

In our running example, algorithm buildPatterns outputs four
patterns, cf. Table 2. In the following subsections, we describe
the ancillary functions on which the algorithm relies.

3.3.1. Initialising prefix set
Function initialisePrefixSet takes a hubset as input and returns a

sequence with the prefixes of the patterns in flat hs, ordered in
increasing order of size. We formally define this function as
follows:

We use a tree notation that is based on PATRICIA trees to repre-
sent sets of prefixes; it allows representing a large collection of
patterns and prefixes compactly. Every node in the tree has a label,
which we denote as ni or si; i 2 N, and a token. Each node, actually,
represents a prefix, which is the sequence of tokens and separators
in the path from the tree root n0 to the node itself. Note that each
path from the tree root to a leaf represents a pattern. From now on,
in the examples, we refer to prefixes in the tree by means of the
corresponding node: ni for tokens or si for separators.

As an example, Fig. 4 represents a subset of the prefixes in our
running example. Note that it is not possible to show the complete
set since it has thousands of prefixes.

3.3.2. Computing siblings
Function computeSiblings takes a hubset hs and a prefix p as in-

put and returns the set of prefixes in flat hs that share a common
prefix with p up to its penultimate element, including p itself.
We formally define this function as follows:

In our running example, prefix n4 ¼ hb, http, ://, <MSAS>, /, Pub-

lication, /, 4117664i has siblings n6 ¼ hb, http, ://, <MSAS>, /, Publica-

tion, /, 5638047i and n8 ¼ hb, http, ://, <MSAS>, /, Publication, /,
1242380i. In Fig. 4, it is easy to find the siblings of a prefix repre-
sented by a node ni by looking for nodes that share an ancestor
with ni.

3.3.3. Computing p-estimators
Function p-estimator takes a hubset hs and a prefix p as input

and returns an estimator of the probability of finding at least one
pattern prefixed by p in a hubset. Since the underlying distribution
of prefixes is unknown and heavily dependent on the web site



Table 2
Patterns built for the running example.

Pattern Class

h^, http, ://, hMSASi, /, Publication, /, w, /, w, $i Paper
h^, http, ://, hMSASi, /, Author, /, w, /, w, $i Author
h^, http, ://, hMSASi, /, Journal, /, w, /, w, $i Journal
h^, http, ://, hMSASi, /, Detail, ?, entityType, =, 1, &, searchType, =, 5,

&, id, =, w, $i
Citation
being analysed, we can compute a p-estimator as the relative fre-
quency of every prefix in hs [24]. We formally define the calcula-
tion of a p-estimator as follows:

p-Estimators range from 0.00 to 1.00. The more frequent a pre-
fix, the higher its corresponding p-estimator. We state the follow-
ing conjecture regarding p-estimators:

Conjecture 4 (Distribution of p-estimators). p-Estimators that are
not near 1.00 are most probably near 1=#hs, whose limit is 0.00 as the
number of hubs increases. In other words, the distribution of p-
estimators has two peaks at 0.00 and 1.00.

In our running example, the p-estimators computed for the pre-
fixes in Fig. 4 are shown in Table 3. As an example, note that prefix
n3 ¼ hb; http; : ==;< MSAS >; =;Publicationi appears in every hub in
hs since this prefix refers to publications and every hub in our run-
ning example includes links to publications. Therefore, its p-esti-
mator is 1.00. Every hub includes a list of publications, and each
publication has at least one author, which means that we can find
at least one pattern prefixed by n3 in every hub. Contrarily, some
publications are published in journals and some others are pub-
lished in conferences, which means that only some of the hubs
contain patterns prefixed by n19. Therefore, the p-estimator of pre-
fix n19 ¼ hb; http; : ==;< MSAS >; =; Journali is not 1.00, but 0.95 in
this case; this estimator is significantly high, but not as high as
the p-estimator of prefix n3.
n39, $n38, $n37, $n36, $n35, $n34, $

n10, Author

n11, 
38181

n12, tim-
berners-
lee

n3, Publication

n4, 
417664

n6,
5638047

n8, 
1242380

n13, 
43723

n14,
tom-
heath

n15, 
255707

n16, 
christian-
bizer

n7,
linked-
data

n9, 
named-
graphs

s3, /

s4, / s6, / s8, /s5, /

s7, /

s9, / s10, /

n5,
dbpedia

ni: Token
si: Separator

Fig. 4. Tree with a subset of the initial
3.3.4. Wildcarding prefixes
Function wildcardPrefixes takes a set of prefixes and a natural

number i as input, and it returns a set in which the input prefixes
have been wildcarded at the ith position, i.e., the token at this po-
sition has been changed into a wildcard of the form H. We formally
define this function as follows:

In our running example, the p-estimator of prefix n4 ¼ hb, http,
://, <MSAS>, /, Publication, /, 4117664i and its siblings n6 ¼ hb, http,
://, <MSAS>, /, Publication, /, 5638047i and n8 ¼ hb, http, ://, <MSAS>,
/, Publication, /, 1242380i is 0.01 according to Table 3. Since they all
have the same value, their mean value is 0.01, and their standard
deviation is 0.00. Therefore, the upper threshold is 0.01 in this case.
Since none of the siblings has a p-estimator higher than the thresh-
old, they are added to the set of prefixes to be wildcarded, includ-
ing the prefixes that have them as a prefix, namely s4; s5; s6;n5;n7,
n9;n34;n35, and n36. Fig. 5(b) shows the siblings of n4 and their
descendants after wildcarding them. Note that we change the
name of node n4 to w2 to emphasise the fact that the final tokens
in prefixes n4;n6, and n8 have been replaced with a wildcard, i.e.,
they three have become a single new prefix that is represented
by node w2. The descendants of prefixes n4, n6, and n8 now share
the same prefix w2.

Fig. 5(a) presents the tree with the resulting prefix set after exe-
cuting algorithm buildPatterns on the running example. Some of
the prefixes in the tree are the result of wildcarding one or more
of the original prefixes using function wildcardPrefixes. Note that
every path from the tree root to a leaf represents a different
pattern.

3.3.5. Updating the prefix set
Function updatePrefixSet takes four sets of prefixes as input:

P; S;W , and W 0. In each iteration of algorithm buildPatterns, these
sets represent, respectively, the ordered prefix set in algorithm
buildPatterns, the set of siblings that have been processed, the set
of prefixes to be wildcarded, and another set in which the prefixes
n46, $

n45, $n44, $n43, $

n42, $n41, $n40, $

n1, http

n2, <MSAS>

n17, 
3535385

n18, s-
ren-auer

n19, 
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n21, 
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n24, 
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n0, T

prefix set in the running example.



Table 3
p-Estimators in the running example.

Node Last token p-Estimator

n0
^ 1.00

s1 :// 1.00
n4 417664 0.01
s4 / 0.01
n8 1242380 0.01
s6 / 1.00
s8 / 1.00
n13 43723 0.02
s10 / 1.00
n17 3535385 0.01
s12 / 1.00
n20 870 0.01
n23 jws 0.01
n24 Detail 1.00
s17 & 1.00
n27 searchType 1.00
s20 = 1.00
n31 5638047 0.01
n1 http 1.00
n3 Publication 0.99
s3 / 0.99
s5 / 1.00
n7 linked-data 0.01
s7 / 1.00
n11 38181 0.01
n14 tom-heath 0.02
n15 255707.00 0.01
n18 s-ren-auer 0.01
n19 Journal 0.95
n21 ijswis 0.01
s14 / 1.00
s16 = 1.00
n26 1.00 1.00
s19 & 1.00
n29 id 1.00
n32 4117664 0.01
n2 hMSASi 1.00
s2 / 1.00
n5 dbpedia 0.01
n6 5638047 0.01
n9 named-graphs 0.01
n10 Author 0.99
n12 tim-berners-lee 0.01
s9 / 1.00
n16 christian-bizer 0.01
s11 / 1.00
s13 / 1.00
n22 889 0.01
s15 ? 1.00
n25 entityType 1.00
s18 = 1.00
n28 5 1.00
n30 1242380.00 0.01
n33 CFP 0.17
have already been wildcarded. The function returns a prefix set
that is the result of updating P by replacing the prefixes to be wild-
carded with their wildcarded version, and subtracting the sibling
prefixes that have been processed in that iteration. We formally
define this function as follows:
1 http://www.alexa.com/topsites.
2 http://www.tdg-seville.info/inmahernandez/Experiment.
3 https://addons.mozilla.org/en-US/firefox/addon/xpath-checker/.
4 http://tdg-seville.info//Download.ashx?id=398.
4. Experimental evaluation

In this section, we report on our experimental evaluation. Our
goal is threefold: first, we aim to prove that our technique is able
to classify web pages with good precision and recall with regard
to other baseline classification techniques; second, we aim to
prove that our technique is very efficient with regard to other tech-
niques; finally, we aim to corroborate the conjectures on which our
proposal relies.

4.1. Dataset definition

We have carried out our experimentation with a collection of
datasets that we chose from the Alexa top 40 web sites that were
written in English and provided a keyword-based search form.
Since the Alexa ranking1 changes daily, we fixed a reference date
to select the sites (February 14, 2011). The dataset included four
additional academic sites, namely: TDG Scholar, Google Scholar,
Microsoft Academic Search, and Arxiv. From each site, we down-
loaded 100 hubs to perform the experiments, i.e., we had 4400 pages
available for experimentation. These datasets are available at the
authors’ web site.2

For each web site, we identified the classes that best described
their pages. For instance, in Amazon, we identified the following
classes: Product, Author, and Review. We did not include every pos-
sible class of pages from each site in the analysis, since some of the
classes were of little interest for the user (e.g., error pages, disam-
biguation pages, advertisement pages, external pages, and the
like); instead, we included just those classes that more accurately
classified the different types of contents of interest that were of-
fered by each site.

Since we had 4400 pages, we decided to use a technique to
automate the labelling of the pages: for each hub, we used a Firefox
plug-in3 to identify XPaths of the links that led to each of the classes
that we selected for every site. Note that it’s relatively simple for a
person to classify a page building on the information that a hub
shows. The labelling took roughly 100 work hours, whereas we esti-
mated that labelling each page individually would have taken more
than 1000 work hours, not to mention that this would have led to
many classification errors and would have been difficult to scale.
The XPath expressions that we identified are available at the author’s
web site.4

4.2. Evaluation design

For the configuration of our crawler, we set the parameters to
the following values: M ¼ 100; T ¼ 5, and N ¼ 10, i.e., we gathered
100 hubs from each site, made a maximum of 5 attempts to down-
load them, and selected 10 keywords from each hub. Other things
equal, increasing M; T , or N did not have an impact on the effective-
ness of our proposal; however, decreasing M; T , or N had a negative
impact when analysing a few sites.

For each dataset, we used our pattern builder and evaluated its
effectiveness. We used 50% of the hubs in each dataset to infer a
set of patterns (training set) and the remaining 50% to validate
our proposal (test set). We set both the confidence level for calcu-
lating outliers a and the similarity threshold b to 0.05. Regarding
the confidence level, recall that it defines the fraction of data in a
distribution that are considered outliers; we selected the standard
value in the literature. Regarding the similarity threshold, recall
that it is a small value that allows considering two close numbers
equal; there is not a standard in the literature, but we found out
through repeated experimentation that setting it to other values
had a slight negative impact on the effectiveness of our proposal.
The same experiments were repeated using our baselines using

http://www.alexa.com/topsites
http://www.tdg-seville.info/inmahernandez/Experiment
http://https://addons.mozilla.org/en-US/firefox/addon/xpath-checker/
http://tdg-seville.info//Download.ashx?id=398


Fig. 5. Prefixes in our running example after pattern mining.

Table 4
Results of the evaluation. P = Precision; R = Recall; F1 = F1-measure; T = CPU learning time (s).

Summary CALA TPM SVC

P R F1 T P R F1 T P R F1 T

Mean 0.98 0.90 0.92 9.02 1.00 0.65 0.70 4.17 0.66 0.94 0.73 3483.99
Std. deviation 0.09 0.19 0.18 10.66 0.00 0.39 0.38 5.81 0.32 0.18 0.27 8230.65

Site Class P R F1 T P R F1 T P R F1 T

Amazon Products 1.00 0.94 0.97 34.06 1.00 0.46 0.63 16.78
Reviews 1.00 0.99 1.00 1.00 0.22 0.36
Authors 1.00 1.00 1.00 1.00 1.00 1.00

DailyMotion Videos 1.00 1.00 1.00 2.78 1.00 0.50 0.67 1.53 0.74 1.00 0.85 613.94
User Profiles 1.00 1.00 1.00 1.00 0.91 0.95 0.23 1.00 0.37

Ehow Articles 1.00 0.99 0.99 2.06 1.00 0.00 0.00 0.86 1.00 1.00 1.00 269.28
Answers Topics 0.92 0.99 0.95 5.06 1.00 0.50 0.67 6.03 0.23 1.00 0.38 12922.00

Questions 1.00 1.00 1.00 1.00 0.98 0.99 0.76 1.00 0.86
Digg Authors 0.99 1.00 1.00 3.80 1.00 0.49 0.66 6.59 0.24 1.00 0.39 392.89

Articles 1.00 1.00 1.00 1.00 0.00 0.00 0.36 1.00 0.53
Comments 1.00 1.00 1.00 1.00 0.33 0.49 0.37 1.00 0.54

Indiatimes Articles 1.00 0.45 0.62 5.42 1.00 0.00 0.00 0.53 0.99 0.70 0.82 1240.00
DailyMail Authors 1.00 1.00 1.00 9.48 1.00 0.50 0.67 7.19 0.11 0.98 0.19 49386.00

Articles 1.00 0.45 0.62 1.00 1.00 1.00 0.43 1.00 0.60
Deviantart Photos 1.00 1.00 1.00 8.86 1.00 1.00 1.00 4.44 0.86 1.00 0.92 7133.13

Tags 0.94 0.31 0.47 1.00 0.50 0.67 0.12 0.96 0.21
Filestube Files 1.00 0.94 0.97 7.97 1.00 1.00 1.00 0.34 0.92 1.00 0.96 69.33
Huffingtonpost Articles 1.00 0.18 0.31 3.73 1.00 0.83 0.90 5.30 1.00 0.99 1.00 145.42
Sourceforge Projects 1.00 1.00 1.00 8.02 1.00 0.96 0.98 0.84 0.62 1.00 0.76 438.84

Reviews 1.00 1.00 1.00 1.00 0.49 0.66 0.36 1.00 0.53
Squidoo Articles 1.00 0.99 1.00 2.08 1.00 0.00 0.00 2.27 0.60 1.00 0.75 96.52

User Profiles 1.00 1.00 1.00 1.00 0.49 0.66 0.35 1.00 0.52
Torrentz Files 1.00 1.00 1.00 3.33 1.00 1.00 1.00 0.17 0.98 1.00 0.99 1172.50
Guardian Authors 0.65 1.00 0.99 11.17 1.00 1.00 1.00 7.55 0.58 1.00 0.73 1206.13

Articles 0.35 1.00 0.02 1.00 0.87 0.93 1.00 0.64 0.78
Archive Articles 1.00 0.98 0.99 13.28 1.00 0.98 0.99 0.23 0.98 1.00 0.99 728.22
Isohunt Files 1.00 0.97 0.98 4.94 1.00 0.98 0.99 2.69 0.48 0.96 0.64 5400.06

Comments 1.00 1.00 1.00 1.00 1.00 1.00 0.49 1.00 0.66
Yelp Businesses 1.00 0.79 0.88 7.59 1.00 1.00 1.00 24.61 1.00 1.00 1.00 263.58
Metacafe Videos 1.00 0.76 0.86 4.20 1.00 0.25 0.40 4.41 0.50 1.00 0.67 1316.25

Topics 1.00 0.97 0.99 1.00 1.00 1.00 0.27 0.99 0.42
User Profiles 1.00 0.91 0.95 1.00 0.48 0.65 0.20 1.00 0.33

Etsy Products 1.00 0.95 0.97 21.55 1.00 0.52 0.69 2.78
Stores 1.00 1.00 1.00 1.00 0.42 0.60



also a half of the hubs as the training set and the other half as the
test set.

In Section 2, we compared our system with other proposals in
the related work from a theoretical point of view. We did not find
any available implementation of the techniques described in Sec-
tion 2, so we had to resort to the following state-of-the-art classi-
fication techniques:

Template Page Model Classification Scheme, or TPM for short
[12]: It is a supervised structure-based web page classifier, that
detects common templates in a set of training pages. We imple-
mented this proposal in the lab using Java. The proposal relies
on a similarity threshold that was set to 0.75 following the
authors’ recommendation. We chose TPM to prove that our
unsupervised technique is as effective as a state-of-the-art
technique without requiring the effort to provide a pre-classi-
fied training set, and without having to download a page to
classify it.
Support Vector Clustering, or SVC for short [8]: It is an unsu-
pervised URLbased clustering technique that is based on Sup-
port Vector Machines. We chose this clustering technique
because it does not require setting a number of clusters before-
hand and it is particularly suitable for clustering web pages
since it can deal with large sets of classification features; in this
context, each feature corresponds to a token in a pattern and
counts its frequency in the datasets. We used a modified ver-
sion of RapidMiner [40] in which we implemented a validation
module; we used the suggested parameter values: radial kernel
with c ¼ 1:00, a kernel cache of size 200, a minimum of 2 pages
per cluster, a convergence of 0.001, and a maximum of 100,000
Table 5
Results of the evaluation (Cont.) P = Precision; R = Recall; F1 = F1-measure; T = CPU learni

Summary CALA TP

P R F1 T P

BBC News 1.00 0.57 0.73 3.66 1.0
Videos 1.00 1.00 1.00 1.0

Alibaba Products 1.00 0.89 0.94 22.23 1.0
Target Products 1.00 1.00 1.00 47.50 1.0
TDG Scholar Authors 1.00 1.00 1.00 6.03 1.0

Hosts 1.00 1.00 1.00 1.0
Papers 1.00 0.25 0.40 1.0

Ms. Academic Authors 1.00 0.85 0.92 7.89 1.0
Papers 1.00 0.98 0.99 1.0

Google Scholar Citations 1.00 1.00 1.00 5.28 1.0
Arxiv Authors 1.00 1.00 1.00 20.81 1.0

Papers 1.00 1.00 1.00 1.0
Abstracts 1.00 0.88 0.94 1.0

Livejournal News 1.00 0.64 0.78 3.30 1.0
Xing User Profiles 1.00 1.00 1.00 2.08 1.0
Odesk User Profiles 1.00 1.00 1.00 4.70 1.0

Skills 1.00 1.00 1.00 1.0
ArticlesBase Authors 1.00 1.00 1.00 3.41 1.0
Freelancer Projects 1.00 1.00 1.00 4.47 1.0
PlentyOfFish User Profiles 1.00 1.00 1.00 6.16 1.0
Slideshare Files 0.92 1.00 0.96 3.00 1.0
Netlog User Profiles 1.00 1.00 1.00 3.72 1.0
Drupal Projects 1.00 0.68 0.81 3.14 1.0

Authors 1.00 1.00 1.00 1.0
Newegg Products 1.00 1.00 1.00 47.38 1.0
Overblog Articles 1.00 0.78 0.88 0.66 1.0
Chip News 1.00 1.00 1.00 6.75 1.0
Battle.net Forum Posts 1.00 1.00 1.00 1.95 1.0
Fiverr Ads 0.96 1.00 0.98 4.16 1.0
Fotolia Photos 1.00 1.00 1.00 12.00 1.0
People Styles 1.00 0.70 0.74 4.25 1.0

Babies 1.00 0.69 0.73 1.0
Covers 1.00 1.00 1.00 1.0
Articles 1.00 0.84 0.84 1.0

Indeed Jobs 1.00 1.00 1.00 4.27 1.0
Gamefaqs Boards 1.00 1.00 1.00 8.61 1.0
iterations. We chose SVC to prove that our proposal performs
better than a state-of-the-art unsupervised technique building
solely on URL-based features.

The experiments were run on a cloud computer that was
equipped with a four-threaded 64-bit 2.93 GHz Intel i7 processor,
16 GiB of RAM, Oracle Java Development Kit 1.6.0_25, and Win-
dows 7 Pro 64-bit.

4.3. Evaluation results

Tables 4 and 5 report on the results of our experiments. The col-
umns report on the precision (P), recall (R), the F1 measure

F1 ¼ 2 P R
PþR

� �
, and the learning time in CPU seconds (T). The first

two rows provide a summary of these measures in terms of mean
values and standard deviations. A dash in a cell means that the cor-
responding technique was not able to learn a classifier in one
week’s time.

Regarding P and R, we used a technique by [39] to calculate
them in a non-supervised fashion; that is, we did not assume an
a priori correspondence between each URL pattern and one of
the classes. Instead, intermediate precision and recall were calcu-
lated for every possible combination of pattern/class, and the final
precision and recall were the weighted means of the intermediate
values, where the weight was the number of URLs that the pattern
and class of each combination had in common. By doing so, we
were taking into account the possibility that our patterns included
URLs from more than one class of pages, and vice versa.

We were able to draw the following conclusions: regarding
effectiveness, CALA outperforms the other techniques regarding
ng time (s).

M SVC

R F1 T P R F1 T

0 0.00 0.00 2.31 0.37 0.98 0.54 12.33
0 0.00 0.00 0.45 1.00 0.62
0 1.00 1.00 4.36 1.00 1.00 1.00 20057.52
0 1.00 1.00 12.77 0.98 1.00 0.99 6203.02
0 1.00 1.00 1.38 0.86 1.00 0.92 5371.48
0 1.00 1.00 0.14 0.99 0.25
0 0.00 0.00 1.00 0.68 0.81
0 0.96 0.98 2.83 0.74 1.00 0.85 3226.16
0 0.50 0.67 0.24 1.00 0.39
0 1.00 1.00 1.23 1.00 1.00 1.00 22.72
0 0.25 0.40 9.53 0.73 0.18 0.29 3124.00
0 0.00 0.00 0.17 0.18 0.17
0 0.92 0.96 0.10 0.19 0.13
0 0.00 0.00 1.22 1.00 1.00 1.00 2234.27
0 1.00 1.00 0.77 1.00 1.00 1.00 294.36
0 0.49 0.66 2.61 0.52 1.00 0.68 701.22
0 1.00 1.00 0.42 1.00 0.59
0 1.00 1.00 2.00 0.92 1.00 0.96 53.89
0 1.00 1.00 26.33 0.96 1.00 0.98 223.30
0 0.85 0.92 0.25 1.00 1.00 1.00 3137.06
0 1.00 1.00 1.30 0.92 1.00 0.96 82.94
0 0.85 0.92 0.59 1.00 1.00 1.00 19.38
0 0.00 0.00 1.14 0.60 1.00 0.75 901.63
0 1.00 1.00 0.36 1.00 0.53
0 0.91 0.95 3.02 1.00 1.00 1.00 1109.52
0 1.00 1.00 0.53 0.92 1.00 0.96 92.77
0 0.98 0.99 2.48 1.00 1.00 1.00 4.47
0 0.74 0.85 3.36 1.00 1.00 1.00 42.91
0 0.91 0.95 0.73 0.96 1.00 0.98 752.00
0 1.00 1.00 0.84 1.00 1.00 1.00 5722.91
0 0.00 0.00 3.77 0.50 0.83 0.62 1689.41
0 0.00 0.00 0.50 0.87 0.64
0 0.33 0.50 0.43 1.00 0.60
0 1.00 1.00 0.57 1.00 0.73
0 0.00 0.00 2.45 1.00 1.00 1.00 486.26
0 0.98 0.99 0.48 1.00 1.00 1.00 6077.89



Fig. 6. Graphs showing the precision–recall of the three techniques.
F1; Fig. 6(a) illustrates this conclusion since the majority of points
that correspond to CALA are very close to the upper right corner,
whereas the points that correspond to the other techniques are
more scattered. Fig. 6(b) provides a zoom on the right upper corner
of the scatter plot (P P 0:90;R P 0:90). Note that 72% of the data
points from CALA are located in this corner, whereas it only con-
tains 48% of the data points from TPM and 34% of the data points
from SVC. Note too that the results in Tables 4 and 5 support the
idea that CALA is more effective regarding learning time than the
other unsupervised technique (SVC), and that it is comparable to
TPM which is supervised and requires to download a page before
classifying it. Fig. 7(a) and (b) illustrates this idea. Note that times
range from 0.66 to 47.50 s in the case of CALA, whereas they range
from 0.17 to 26.33 in the case of TPM. On the contrary, learning
times range from 4.47 to 49,386 s (more than 13 h) in the case of
SVC. Therefore, CALA and TPM behave more homogeneously
regarding learning times, and their learning times are significantly
lower than those of SVC.

To confirm that the conclusions we have drawn from our empir-
ical evaluation are valid, we need to perform a statistical ranking
[21]. The first step is to determine if the evaluation results are nor-
mally distributed and have equal variances; in such a case, we
must perform a parametrical analysis and in other case a non-para-
metrical analysis. We have conducted a Shapiro–Wilk test at the
standard significance level a ¼ 0:05 on every measure and we have
found out that none of them behaves normally. For instance, Shap-
iro–Wilk’s statistic regarding the normality of CALA’s precision is
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Fig. 7. CPU learning times of the three tech
W ¼ 0:22, whose p-value is 0.00; this is a strong indication that
the data is not distributed normally. This is not surprising at all;
a quick look at the scatter plot in Fig. 6(a) makes it clear that this
cloud of points are far from a Gaussian circle.

As a conclusion, we have performed a non-parametric analysis,
which consists of the following steps: (i) compute the rank of each
technique from the evaluation data; (ii) determine if the differ-
ences in ranks are significant or not using Iman–Davenport’s test;
and (iii) if the differences are significant, then compute the statis-
tical ranking using Bergmann–Hommel’s test on every pair of
techniques.

Table 6 presents the results of the analysis. Note that the p-va-
lue of Iman–Davenport’s statistic is nearly zero in every case,
which is a strong indication that there are statistically significant
differences in the ranks we have computed from our experiments.
It then proceeds to rank the techniques pairwise using Bergmann–
Hommel’s test. For the sake of readability, we also provide an ex-
plicit ranking in the last column. Note that our proposal ranks
the first regarding F1, which means that it achieves a better
trade-off between precision and recall than the other techniques.
Regarding P and R the differences with TPM and SVC (which are
the proposals that rank the first in each variable, respectively) do
not seem to be statistically significant. Regarding efficiency, our
proposal is a thousand orders of magnitude faster than SVC.
Although it is slower than TPM, note that since TPM uses struc-
ture-based features, it has to download a page before classifying
it. Therefore, although the learning time is faster, the classification
niques: (a) Histogram and (b) Boxplot.



Table 6
Results of our statistical ranking.

Sample ranking Iman–Davenport Bergmann–Hommel’s Statistical ranking

Tech Rank p-Value Tech CALA TPM SVC Tech Rank

P
TPM 1.57 1.61E�16 CALA – 4.73E�01 6.85E�10 CALA 1
CALA 1.69 TPM – – 1.70E�11 TPM 1
SVC 2.74 SVC – – – SVC 2

R
SVC 1.64 1.42E�06 CALA – 7.23E�04 1.39E�01 CALA 1
CALA 1.89 TPM – – 3.53E�06 SVC 1
TPM 2.46 SVC – – – TPM 2

F1
TPM 1.54 4.69E�06 CALA – 3.28E�04 1.84E�05 CALA 1
CALA 2.15 TPM – – 3.53E�01 TPM 2
SVC 2.31 SVC – – – SVC 2

T
TPM 1.18 2.90E�33 CALA – 1.99E�03 9.82E�08 TPM 1
CALA 1.84 TPM – – 1.12E�16 CALA 2
SVC 2.98 SVC – – – SVC 3
time is slower. As a conclusion, our experiments prove that there is
enough statistical evidence to conclude that our proposal outper-
forms the others.

4.4. Corroboration of conjectures

In this section, we corroborate the conjectures on which our
proposal relies.

Value of M: We conjectured that a relatively small number of
hubs suffices to achieve a good effectiveness. Our experiments
corroborate this hypothesis since examining more than 100
hubs did not result in better efficiency.
Value of T: We set a maximum number of attempts in Algo-
rithm gatherHubset and conjectured that a relatively small
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Fig. 8. Distribution of p-estimators in our exp
number of attempts suffices to gather enough hubs. In our
experiments, we managed to gather 100 hubs per site in a max-
imum of five attempts, which corroborates our conjecture.
Value of N: We conjectured that a relatively small number
of keywords from the initial search page and subsequent
hubs suffices to gather enough hubs. Our experiments cor-
roborate this hypothesis since we managed to gather 100
hubs per site in every case by selecting only 10 words from
each hub.
Distribution of p-estimators: We conjectured that the distri-
bution of p-estimators has two peaks at 0.00 and 1.00. Fig. 8
depicts the distribution of p-estimators in our datasets; roughly
94:62% of the values range from 0.00 to 0.05, 1.63% range from
0.05 to 0.10 and 2.24% range from 0.95 to 1.00. Note that the
graph is expressed in terms of a logarithmic scale.
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5. Conclusions

In this article, we have presented CALA, a proposal to automat-
ically generate URL-based web page classifiers that can be used in
the context of enterprise web information integration systems. Our
proposal takes the URL of a web page with a keyword-based search
form as input, and it outputs a set of patterns that represent the
URLs of pages that belong to the same class. Our system fulfills
three important requirements regarding enterprise web informa-
tion integration: it performs a lightweight crawling to gather a
sample of hubs automatically; it is unsupervised, since it learns a
classifier from a training set of non-classified hubs that are gath-
ered automatically from the web site, and it is based exclusively
on URL features, so a page can be classified without downloading
it previously.

We have validated our proposal using a collection of datasets
that were gathered from 44 real-world web sites that we have
made publicly available. We have built a set of patterns for each
web site, and we have used them to classify further pages; we
achieved an average precision of 98% and average recall of 90%.
The times required to build those patterns were reasonable, similar
to those of a supervised technique with which we compare ours.
These results suggest that our proposal seems promising enough
for real-world web page classification, that it is efficient in practice,
that the patterns it builds are able to classify web pages accurately,
and that it minimises the number of irrelevant pages that are
downloaded, which makes it suitable for enterprise web informa-
tion integration contexts.
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