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Abstract. A new method to incorporate qualitative knowledge in semi-
qualitative systems is presented. In these systems qualitative knowledge
may be expressed in their parameters, initial conditions and/or vector
fields. The representation of qualitative knowledge is made by means of
intervals, continuous qualitative functions and envelope functions.

A dynamical system is defined by differential equations with qualitative
knowledge. This definition is transformed into a family of dynamical sys-
tems. In this paper the semiqualitative analysis is carried out by means
of constraint satisfaction problems, using interval consistency techniques.

1 Introduction

In engineering and science, knowledge about dynamical systems may be repre-
sented in several ways. The models constructed for studying them are normally
composed of qualitative as well as quantitative knowledge. Models which only in-
corporate quantitative knowledge (quantitative models) have been well studied.
The techniques developed to analyse and simulate are well known, too.

On the other hand, a great variety of techniques have been studied for repre-
sentation and manipulation of qualitative knowledge, such as algebra of signs,
interval arithmetic, fuzzy sets, and order of magnitude reasoning.

The knowledge composed of quantitative and qualitative knowledge is known
as semiqualitative. Real models contain quantitative, qualitative and semiquali-
tative knowledge, and all of them need to be considered when they are studied.
Therefore, sometimes it is necessary to solve conflicts on the request of accuracy
and flexibility. The models of dynamical systems should provide different levels
of numerical abstraction for their elements. These levels may be purely qualita-
tive descriptions [7], semiqualitative [1], [5], numerical based on intervals [14],
quantitative and mixed of all levels [6].

In the sixties, the methodology of system dynamics was proposed. It incor-
porated qualitative knowledge to models by means of variables and quantitative
functions suitably chosen. But, it is not until the eigthies when the interest for
studying qualitative knowledge independently of its quantitative representation
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emerges. This interest appears around qualitative simulation [7], and qualita-
tive analysis [11]. Mathematical concepts of quantitative analysis of dynamical
systems have been applied into qualitative simulation and analysis (see [8]).

Qualitative methods for studying dynamical systems began at the end of the
last century, by the French mathematician Henri Poincaré. The subsequent evo-
lution of these works has originated the qualitative theory of dynamical systems.
In [10] the techniques to carry out the analysis of the qualitative models were
introduced, that is, the study of equilibrium regions, stability and bifurcation
points.

In this paper, the qualitative knowledge is represented by means of real in-
tervals, continuous qualitative functions and envelope functions. The intervals
include all the real values where the qualitative label of such magnitude is found.
A continuous qualitative function stands for a family of functions defined by
means of landmarks. An envelope function stands for a family of functions in-
cluded between a real superior function and an inferior one.

It is also presented A method to transform semiqualitative models into a
constraint network is presented, as well. The interval constraint satisfaction pro-
blems are solved applying consistency techniques [3].

2 Semiqualitative models

A semiqualitative model is represented by

é(z,z,p), z(to) = xo, Do(p, o) (1)

being z the state variables of the system, p the parameters, £ the variation of
the state variables with the time, @, the constraints in the initial conditions, and
@ the constraints depending on &,z and p. They are expressed by means of the
operators defined in the next section. They are composed of variables, constants,
arithmetic operators, functions, qualitative functions and/or envelope functions.
Therefore the equations (1) stand for a family of dynamical systems depending
on p and xg.

The integration of qualitative knowledge is made by adding constraints to
the network. They are constraints combined with ’and’ and ’or’ operators. This
representation will help us to obtain the behavior of the system if we apply an
appropriate algorithm to solve the resulting constraint network (see [3]).

3 Representation of qualitative knowledge

We shall focus our attention in dynamical systems where there may be qualita-
tive knowledge in their parameters, initial conditions and/or vector field. They
constitute the semiqualitative differential equations of the system.

First, we need to take into account that the representation of the qualitative
knowledge is carried out by means of operators. They have associated real inter-
vals. This representation provides the following advantages: easy integration of



331

qualitative and quantitative knowledge [2]; and it makes possible the definition
of the range of qualitative variables and parameters of the system. This defini-
tion is provided by experts, and it allows for techniques developed on intervals
analysis and constraint satisfaction problem to be used [4], [13] and [3].

3.1 Qualitative parameters and initial conditions

The qualitative representation of parameters and/or initial conditions of dyna-
mical systems may be carried out by means of the qualitative operators U and B.
They represent, respectively, the set of unary and binary qualitative operators.
For example, U = {very negative, moderately negative, slightly negative, slightly
positive, moderately positive, very positive } and B = {much less than, modera-
tely less than, slightly less than, much greater than,...}. Each operator op € U or
op € B has associated a real interval I,,. This real interval denotes a quantity.
It stands for those values where the magnitude has the qualitative label.
The binary qualitative operators are classified in two classes according to their

types:

o Operators related to the difference. They can be ezactly equal to =, smaller
or equal to <, and larger or equal to >.

o Operators related to the quotient. They can be much less than <, mo-
derately less than — <, slightly less than ~<, approzimately equal to ~, slightly
greater than >~, moderately greater than > —, and much greater than >

3.2 Envelope functions

These functions establish a possible range of values for its image for each given
value. They represent the family of functions included between two defined func-
tion, a superior one g : JR — IR and another inferior one g : IR — IR.

Let be y = g(z) an envelope function (see figure 1.a). It is represented by
means of

(9(2),3(x), 1), Veel: g(z)<g(e) (2)

where I is the definition domain in the real line of g, and z is a variable.

3.3 Qualitative continuous functions

Let be y = h(z) a qualitative continuous function. It represents a functional
relationship with z as independent variable, and y as dependent variable.

y:h(;c), hE{Pl,Sl,PQ,...Sk_l,Pk} with Pi:(di,ei) (3)

where each P; is a point. It stands for an important qualitative landmark of h.
Each P; is represented by means of a pair (d;, e;) where d; is the associated qua-
litative landmark to the variable z and e; to y. Points are separated by the sign
s; of the derivative in the interval between a point and the following. The sign
s; is + if the function is strictly monotonic increasing in that interval, — if it is
strictly monotonic decreasing, and 0 if it is constant. The definition of a function
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Fig. 1. Qualitative functions

is always completed with the landmarks which denote the cut points with the
axes, and the points where the sign from the derivative changes (a maximum
or a minimum of h). Qualitative interpretation of h (see figure 1.b) for each P; is:

r=di=>y=¢
Si=+=>e <y<eq1
di<z<dip1 = si=—=6¢>Y>eit1
si=0=>y=e¢

y—h(z) =0 =

A special case of continuous function is that where the sign of all intervals is the
same, that is, s; = ... = sx_; = s. It is a strictly monotononic function. This
function can be expressed in a short way by h = M*{Py, Ps, ..., P}

4 From quantitative and qualitative knowledge to
constraint networks

The qualitative knowledge is added by means of a set of constraints. They are
combined with ’and’ and ’or’ operators. The constraints obtained from qualita-
tive knowledge are:
¢ Qualitative parameters and initial conditions

For each operator, it is obtained a constraint according to its type. Let r
be a new variable generated. I, I are the intervals associated to the unary
and binary operators. Intervals I, are stablished in accordance with [12], and
intervals I, with [9].
* Let u be an unary operator v € U. Let e be an arithmetic expression. The
resulting constraints are

ule)={e—-r=0, rel,

% Let b be a binary operator b € B. Let op the binary operator, and let e, e5 be
two arithmetic expressions. If b is an operator related to the difference (=, <, >)
then the resulting constraints are

bler,e2) ={e1 —e2 op 0
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and if b is an operator related to the quotient,
b(el,eg)E{el—ez*r:O, r €l

o Envelope functions
For each envelope function y = g(z) the constraint (4) is obtained

g9() =ag(z) + (1 -a)g(z) a€l0,1] (4)

This constraint stands for a family of functions included between g and g. It is
interesting to notice that if « = 0 = g(z) = g(z) and if @ = 1 = g(z) = g(z)
and any other value of @ in [0,1] stands for any included value between g(x)_and
7(a).
e Qualitative functions

For each qualitative function y = h(z) defined as (3) is carried out the follo-
wing :
* For each landmark d; or e; appeared in the definition of h, it is added to the
set of variables of the model a new variable with a domain (—o0, +00).
* The following linear constraints due to the definition of h are added to the
constraint network

di <dy<..<dg,e10€e30..0€5_10e€k,
(z=di,y=e1);...; (¢ =dk,y = ex); (5)
(dy <z <dzero1yorer);..;

(k-1 <& < dg,e10k-1Y Ok_16k))

y—h(z)=0=

where (5) is a set of linear constraints combined with and and or operators,
respectively denoted by comma (,) and semicolon (;). The operator ¢ is defined
as

>y if si_1 =s; =+

zo,y=R <y if s_1 =8, =—

r=y if si_1 =85, =0;8_1Fs;
The set of constraints obtained by the inclusion of qualitative knowledge to the
model is formuled as an interval constraint satisfaction problem. As we have
indicated, a constraint-based reasoning method by means of interval consistency
techniques is applied (see [3]). The results obtained are a set of real intervals by
the variables and constraints order among them.

5 An example

Let be two interconnected tanks (see figure 2). The semiqualitative model is

Variables: V= {z1,z2,71,72,5,p}
Landmarks : L = {a, b}
Functions: h; = M*+{(0,0),a,b}
g1 =< 2z,z,[0,00] >
Constraints: 71 = hi(s), 72 =g1(z2), s=1z1 — 2

%1- =p-—ri, %2 =71y —ry, positive medium(p)
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Fig. 2. The interconnected tanks system

The constraint network obtained applying the proposed techniques is

V ={z1,z2,m1,72,5,p,a,b}
0<a, 0<b,

((s<0,71<0); (s=0,r=0);
(s=a,r1=0); (s>a,r1>b)),
re = Ct'(l”z) + (1 - 0)21‘2, a e [0, 1],

d dz
s=z—xy, SPF=p-r, GE=ri—r, peE3f

(0<s<a,0<r<b);

(6)

The concepts introduced in [10] have been applied in order to carry out the
analysis of this model. The constraint network that stands for the equilibrium
regions of the model are replacing the expressions dz;/dt, dzy/dt by zero in (6).
This constraint satisfaction problem has an unique solution, hence there is an
equilibrium region where it is satisfied that

zg € I, zl > z2 (7)

being I, a real interval. If it is applied interval arithmetic to (6), the intervals
obtained for z;,z, are too wide. The equilibrium region is [0.,00] X [0.,00]. In
order to narrow this solution it is applied the consistency techniques [3], and
then it is obtained for z, the interval [1.06487,5.0]. The intervals for z;,s are
positives, and using the constraint s = z; — z2, then results (7) are concluded.
Therefore the solution for I, is closed to the real solution [1.5,5.0].

The results (7) may be interpreted as: the system has an unique equilibrium
where the height of the first tank is higher that the second one. The height of
second tank is in the real interval [1.5,5.].

In a similar way, it is obtained the network that stands for the stability of such
region. This network is also satisfied, hence it is an stable equilibrium region. The
constraint network that define the bifurcations points are not satisfied. Therefore
it is concluded that there are no bifurcations.

6 Conclusions

This paper provides a method for including qualitative knowledge in semiqua-
litative dynamical systems. Qualitative knowledge is represented by means of
intervals, continuous qualitative functions and envelope functions. This know-
ledge helps us to make analysis of that kind of systems.
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We have applied the method proposed to several examples. The obtained
results have been satisfactory. The technique presented is appropriate for pre-
dictive problems in industrial processes where there is qualitative information of
their components. At the moment, we are applying the method to study a real
biometallurgic system.
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