
An Order-Based, Distributed Algorithm for
Implementing Multiparty Interactions

José Antonio Pérez, Rafael Corchuelo, David Ruiz, and Miguel Toro

Universidad de Sevilla, Dpto. de Lenguajes y Sistemas Informáticos
Avda. de la Reina Mercedes, s/n. Sevilla 41.012 (Spain)

jperez@lsi.us.es, www.lsi.us.es/˜tdg

Abstract. Multiparty interactions have been paid much attention in
recent years because they provide the user with a useful mechanism
for coordinating a number of entities that need to cooperate in order
to achieve a common goal. In this paper, we present an algorithm for
implementing them that is based on the idea of locking resources in a
given order. It improves on previous results in that it can be used in
a context in which the set of participants in an interaction cannot be
known at compile time, and setting up communication links amongst
interaction managers is costly or completely impossible.

Keywords: Multiparty interactions, coordination algorithms, open sys-
tems, α–core.

1 Introduction

Since Hoare’s workon communicating sequential processes [Hoa85], interactions 
have become a fundamental feature in many languages for distributed comput-
ing. Often, they are biparty because they do only involve two entities that need 
to synchronise before exchanging data, but this concept can be easily extended 
to an arbitrary number of entities that need to agree and cooperate to achieve 
a common goal. These interactions are usually said to be multiparty, and they 
provide a higher level of abstraction because they allow to express complex co-
operations as atomic units.

A taxonomy of languages offering linguistic support for multiparty interac-
tions can be found in [JS96], and one of the most recent ones is IP [FF96]. It has 
also attracted the attention of the designers of the well–known Catalysis method 
[DW99], which is a next generation approach for the systematic UML–based, 
business–driven development of component–based systems. Catalysis has been 
used by Fortune 500 companies in fields including finance, telecommunication, 
insurance, manufacturing, embedded systems, process control, flight simulation, 
travel and transportation, or systems management, thus proving the adequacy 
of this novel interaction model in so different application domains.

In this paper, we present an algorithm that deals with the multiparty syn-
chronisation problem. Our solution improves on others in that it does not require 
the set of entities participating in an interaction to be defined at compile time,



there is no need for communication links amongst interaction managers, and en-
tities are not directly dependent on each other, which makes our solution suited
for open contexts.

The organisation of the paper is as follows: the interaction model we deal
with is presented in Section 2; the algorithm is presented in Section 3; we glance
at other author’s work in Section 4, and finally, our main conclusions are drawn
in Section 5.

2 The Multiparty Interaction Model in a Nutshell

In this section, we introduce the main features of the multiparty interaction
model we deal with. It is quite usual in the languages described in [JS96], being
the only difference that the identity of the entities that can participate in an
interaction is only known at run time. We think that this feature makes the
model more general and introduces a number of problems that have not been
addressed by other authors.

In this context, the terms entity or participant refer to any computing artifact
that is able to perform local computations and decides autonomously when it is
interested in participating in a number of interactions. Multiparty interactions
are usually provided as guards in multi-choice commands, so that an entity
may be willing to participate in several interactions at the same time, although
only one shall be finally executed. This model is thus well-suited to coordinate
processes, threads, objects or components, as well.

Each interaction is identified by an interaction name, and has a fixed number
of participants referred to as its cardinality. Often, we refer to interactions with
cardinality n as n–party interactions. In general, n can be assumed to be greater
or equal than two, although the results we show work well with single-party
interactions. For an n–party interaction to become enabled, n participants need
to be offering participation in it. Once several entities have been coordinated,
communication depends completely on the constructs provided by the language
under consideration, but most have been designed so that it is relatively easy to
determine data communication requirements.

Roughly speaking, a multiparty interaction can be viewed as a set of data
exchange actions that need to be executed jointly and coordinatedly by a num-
ber of entities, each of which must be ready to execute its own action so that
the interaction can occur. An attempt to participate in an interaction delays
an entity until all other participants are available, and after an interaction is
executed, the participating entities exchange some data and continue their local
computations on their own accord.

It is worth noting that an interaction being enabled does not amount to its
execution. Figure 1 depicts a simple system composed of four participants, a
two–party interaction and a three–party interaction. Notice that participant P1
is offering participation in I1, whereas P3 and P4 are offering participation in I2,
and P2 is offering participation in either I1 or I2. This means that these inter-
actions cannot be executed simultaneously and they are said to be conflicting



ones. Thus an election needs to be held to decide which one should be executed.
The one that is executed is referred to as the winner interaction and the other
as the loser interaction.

P1 P2

P3P4

I1

I2

Fig. 1. A system composed of four participants and two conflicting interactions.

3 Our Proposal: α–core

In this section we present a brief description of our algorithm. Its full formal
description including correctness proof, as well as a performance analysis and a
performance comparison with other proposals can be obtained from the authors.

We call our algorithm α–core, because it is the core of a more general al-
gorithm that we called α. An overview of the α algorithm can be found at
[PCRT02]. The α–core algorithm has been devised to detect enabled interactions
and select as many as possible amongst conflicting ones in a simple, effective way.
It considers an entity that offers participation in more than one interaction as
a shared resource amongst a number of coordinators responsible for managing
those interactions. For an interaction to be executed, its corresponding coordina-
tor must ensure exclusive access to all of its participants, i.e., coordinators must
compete for their shared participants so that they can execute the interaction
they manage.

We assume that each entity participating in an interaction runs indepen-
dently from each other, and that each interaction is managed by a different
independent coordinator. The communication between coordinators and partic-
ipants is modeled by means of asynchronous messages because this communica-
tion primitive is available on almost every platform.

The overall picture of the main ideas behind α–core may be sketched by
means of a simple example. Figure 2 shows a typical scenario for the system
depicted in Figure 1, and Table 1 describes the messages α–core uses. We only
need to make three assumptions about the underlying message passing system:
(i) every message must be received sooner or later, (ii) messages sent from the
same origin to the same destination must be processed in the same order they
were sent, and (iii) messages are stored in a FIFO queue until they are processed.



 Table 1. Messages used by α–core.

Message Description
ACKREF Message sent from a coordinator to acknowledge it has got a

REFUSE message from a participant.
LOCK Message sent from a coordinator to a shared participant to re-

quest exclusive access to it.
OFFER Message sent from a participant to a number of coordinators to

offer them participation in the interactions they manage.
OK Message sent from a participant to a coordinator to notify that

it grants it exclusive access. This message is sent as a reply to a
LOCK message.

PARTICIPATE Message sent from a participant to only one coordinator to in-
form it that it is only interested in the interaction it manages.

REFUSE Message sent from a participant to a coordinator to cancel an
offer.

START Message sent from a coordinator to a locked participant to notify
it that the interaction it manages may start.

UNLOCK Message sent from a coordinator to a shared participant to re-
lease exclusive access.

In this scenario, P1 is the first entity ready to participate in I1. Since it is
only interested in this interaction, it notifies its offer to coordinator I1 by means
of a PARTICIPATE message, and then waits for a START message before
beginning the execution of this interaction. Assume that P2 gets then ready
to participate in either I1 or I2. Since it offers participation to more than one
coordinator, it sends two OFFER messages by means of which the coordinators
that receive them can infer that this participant is shared with others, although
they need not know each other directly.

As soon as coordinator I1 receives the offers from its two participants, it
detects that I1 is enabled and tries to lock P2 by sending it a LOCK message.
There is no need to lock P1 because this participant is interested in only one
interaction; thus it is not a shared participant. Assume that P3 and P4 decide
then to participate in I2 and send a PARTICIPATE message to its coordinator.
It then detects that it is also enabled, and tries to lock P2, too.

Unfortunately, the LOCK message sent to P2 by I1 is received before the
LOCK from I2 arrives. Thus, P2 notifies I1 that it accepts to be locked by
means of an OK message, but it does not acknowledge the lock message received
later from coordinator I2, but records it, just in case I1 cannot be executed.
Coordinator I2 waits until it gets an answer from P2 before going on, thus it
cannot lock a participant if another lock is still pending. When I1 receives the
OK message, it knows that it has exclusive access to its shared participant,
and thus sends a START message to P1 and P2. When the shared participant
P2 receives the START message from I1, it knows that it can execute that



PARTICIPATE
PARTICIPATE

LOCK

LOCKOK

REFUSE

ACKREF

OFFER OFFER

START START

P2P1 P3
P4

PARTICIPATE

I1
I2

Fig. 2. A possible scenario for the system in Figure 1.

interaction and cancels the offer made to I2 by sending it a REFUSE message
that is acknowledged by means of an ACKREF message.

Therefore, the idea behind α–core consists of locking shared participants,
and an interaction may be executed as long as its corresponding coordinator has
acquired exclusive access to all of its shared participants. The problem is that
locks need to be carried out carefully in order to avoid deadlocks. We use an idea
proposed in [EGCS71]: α–core assumes that coordinators may sort their partic-
ipants according to a given immutable property, e.g., their net address, their
Universally Unique Identifier (UUID) [Rog97] or their Universal/Uniform Re-
source Identifier (URI) [BLFM98], so that lock attempts are made in increasing
order. This idea was proven not to produce deadlocks and it is quite effective.

At a first glance, one might think that a solution to the leader-election prob-
lem [FF96] suffices to select amongst conflicting coordinators, but it is not enough
because the set of conflicting interactions is not static, but changes as new con-
flicting interactions become enabled. Another key point is that we do not want
coordinators to know each other in order to make our solution suitable for open
systems, but usual solutions to the leader-election problem, e.g., organising en-
tities in rings, would require neighbouring coordinators to know each other.

4 Related Work

Several solutions to implement multiparty interactions have been proposed. For
instance, the simplest one was presented in [FF96], and it consists of using a
central manager responsible for all interactions. Each participant sends it a ready
message when it arrives at a point where it needs to coordinate its activities with
others, and the manager uses a counter per interaction to determine when they
become enabled on reception of a ready message. If several ones become enabled
by the same ready message, a random variable may be used to select amongst



them. Although this algorithm may be suitable for certain systems, the concerns
of performance and reliability argue for a distributed solution.

The first algorithms for distributed coordination were produced in the context
of CSP, and were restricted to two–party interactions. Later, the problem of
multiparty interactions became of great interest, and Chandy and Misra [CM88]
developed two algorithms that became the basis of Bagrodia’s algorithm [Bag89].
Currently, this algorithm is one of the most cited in this field.

Bagrodia presented a distributed version of the basic centralised algorithm
called EM that uses a number of interaction managers, each one responsible for
managing a subset of interactions. When a participant wants to participate in
a number of interactions, it sends ready messages to the corresponding man-
agers, that have to coordinate in order to achieve mutual exclusion of conflicting
interactions. In this case, mutual exclusion is achieved by means of a circulat-
ing token that allows the manager having it to execute as many non–conflicting
interactions as possible.

Having a circulating token has several drawbacks because it amounts to ad-
ditional network load, even if no interaction is enabled. The token also needs
to circulate amongst managers in a given order, thus organising them in a uni-
directional ring, which may lead to a situation in which a manager can never
execute one of the interactions it is responsible for because it never gets to have
the token at the right time.

In α–core, there is a coordinator, i.e., a manager, per interaction and the
exclusion is achieved by locking participants in a given order. In [EGCS71], this
idea was proven to be correct and that it does not produce deadlocks. α–core
also reduces the possibility of an interaction never being executed because when
a participant is in the LOCKED state and it is unlocked by a coordinator, it
selects the next prospective winner coordinator randomly, thus introducing some
variability in the exclusion problem. In addition, α–core does not require the set
of participants to be known in advance, which is an interesting feature because
it allows our algorithm to be used in open systems.

A modified version of the basic algorithm was also presented in [Bag89]. It
was called MEM, and it combines the synchronisation technique used in EM
with the idea of using auxiliary resources to arbitrate between conflicting inter-
actions. The exclusion problem is solved by mapping the multiparty interaction
problem onto the well-known dining philosophers problem or onto the drinking
philosophers problem [CM84]. In this extension, conflicting managers are con-
sidered to be philosophers that need to acquire a single fork placed between
them in mutual exclusion. The fork is then a shared resource whose acquisition
guarantees mutual exclusion amongst conflicting interactions. A difficulty arises
in MEM because between enablement detection and acquisition of forks, a con-
flicting interaction may have started executing. The complex part of MEM is
the way it uses the information communicated during the mutual exclusion to
detect that an enablement is no longer current.

MEM has an important drawback because the number of forks a manager has
to acquire to guarantee mutual exclusion increases as the number of conflicting
interactions increases. This implies that the probability of acquiring all the forks
decreases accordingly. In α–core, there is no need for virtual resources. Instead



shared processes are considered to be resources that coordinators need to acquire.
Thus, the probability of gaining mutual exclusion decreases as the number of
shared participants increases, but, in general, this is less problematical because
most practical multiparty interactions are three– or four–party. Interactions with
a higher cardinality are not usual, but, even in those cases, there is an upper,
small bound on the maximum number of shared participants.

Both EM and MEM need managers to know each other, which may be con-
sidered a drawback in open systems where new interactions may become avail-
able unexpectedly. In [JS98], another algorithm that does not use interaction
managers and also deals with fairness concerns was recently presented. Unfor-
tunately, participants also need to know each other at compile time and, thus,
that algorithm is not applicable to open systems.

In a chapter of [CRT+99], we presented a previous solution to implement
multiparty interactions that also had coordinators, and a central scheduler re-
sponsible for selecting amongst conflicting ones. Although this solution was suit-
able for some problems in the traffic control area, the central conflict resolutor
is problematical in the general case.

Currently, we are using α–core to implement a run–time system for support-
ing the Aspect–Oriented language CAL [PCRT01,CPT00], which is aimed at
increasing the level of abstraction of a program by considering the concurrent
behaviour of components as an aspect where multiparty interactions are the sole
means for synchronisation and communication.

5 Conclusions and Future Work

The multiparty interaction model captures three main issues in the design of
distributed systems: synchronisation, communication and exclusion. In this pa-
per, we have presented a solution to implement this interaction model, but we
have not addressed the problem of communication because this feature is tightly
coupled with the language we are using.

A variety of solutions exist in the literature, and ours is innovative in the
sense that we do not require the set of active entities in a system to be fixed
and known in advance. In addition, participating entities or interactions do not
depend on each other in our solution, which is an important drawback in other
proposals. This way, our solution can be easily applied in open contexts such as
Internet applications where multiparty interactions can be used to coordinate
an arbitrary number of entities.

The algorithm relies on an idea that was introduced and proven to be correct
years ago in the field of operating systems. Although this idea did not work well
in this field because resources in an operating system are difficult to sort and
usually cannot be requested in increasing order, it has been successfully applied
in α–core. Due to the short length of this paper, we could not present our
experimental results, but we think that those results are satisfactory, and that
our algorithm achieves a good performance.



References

[Bag89] R. Bagrodia. Process synchronization: Design and performance evaluation
of distributed algorithms. IEEE Transactions on Software Engineering,
15(9):1053–1065, September 1989.

[BLFM98] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 2396: Uniform resource
identifiers (URI): Generic syntax, August 1998.

[CM84] K.M. Chandy and Jayadev Misra. The drinking philosophers problem.
ACM Transactions on Programming Languages and Systems, 6(4):632–646,
October 1984.

[CM88] K.M. Chandy and J. Misra. Parallel Program Design: A Foundation.
Addison–Wesley, 1988.

[CPT00] R. Corchuelo, J.A. Pérez, and M. Toro. A Multiparty Coordination Aspect
Language. ACM SIGPLAN, 35(12):24–32, December 2000.

[CRT+99] R. Corchuelo, D. Ruiz, M. Toro, J.M. Prieto, and J.L. Arjona. A Dis-
tributed Solution to Multiparty Interaction, pages 318–323. World Scientific
Engineering Society, 1999.

[DW99] D. F. D’Souza and A.C. Wills. Objects, Componentes, and Frameworks
with UML: The Catalysis Approach. Addison–Wesley, 1 edition, 1999.

[EGCS71] M.J. Elphick E. G. Coffman and A. Shoshani. System Deadlocks. Computer
Surveys, 3:67–68, June 1971.

[FF96] N. Francez and I. Forman. Interacting processes: A multiparty approach to
coordinated distributed programming. Addison–Wesley, 1996.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processess. Prentice Hall, 1985.
[JS96] Y. J. Joung and S. A. Smolka. Strong interaction fairness via randomiza-

tion. In Proceedings of the 16th International Conference on Distributed
Computing Systems, pages 475–483, Hong Kong, May 1996. IEEE Com-
puter Society Press.

[JS98] Y.J. Joung and S.A. Smolka. Strong interaction fairness via randomization.
IEEE Transactions on Parallel and Distributed Systems, 9(2), February
1998.

[PCRT01] J.A. Pérez, R. Corchuelo, D. Ruiz, and M. Toro. A framework for aspect–
oriented multiparty coordination. In New Developments in Distributed
Applications and Interoperable Systems, pages 161–174. Kluwer Academic
Publishers, 2001.

[PCRT02] J.A. Pérez, R. Corchuelo, D. Ruiz, and M. Toro. An enablement detection
algorithm for open multiparty interactions. In ?, editor, Proceedings of the
Symposium on Applied Computing SAC’02, number ? in ?, page ?, Madrid,
Spain, March 2002. ?, ? Appearing soon.

[Rog97] D. Rogerson. Inside COM. Microsoft Press, 1997.


	An Order-Based, Distributed Algorithm for Implementing Multiparty Interactions
	Introduction
	The Multiparty Interaction Model in a Nutshell
	Our Proposal: α–core 
	Related Work
	Conclusions and Future Work
	References


