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Abstract. Clustering phenomena are well known in nuclear physics for stable nuclei, both α-
conjugate (N=Z, A=2N), like 8Be, 16O, 20Ne, and non-α-conjugate, like 6Li and 7Li. In general,
it is expected that light exotic nuclei may also exhibit cluster behavior. Moving out of the valley
of stability configurations can be found where at least one of the clusters is unbound or weakly
bound, thus not satisfying the strong internal correlation requirement of classical clusters. This
is so-called exotic clustering. The study of such systems presents many difficulties, due, mainly,
to the low intensities typical of radioactive ion beams. Therefore, few significant experimental
studies have been performed so far. In this work we searched for α-cluster states in 19Ne above
its α-decay threshold measuring, for the first time, the 15O(4He,4He) elastic scattering excitation
function. Moreover, this study classified low-energy states in Ne in the astrophysically important
region in this HCNO-break-out nucleus.

1. Introduction

In recent years the isotope 19Ne has attracted much interest. This is mainly due to the
astrophysical importance of the 15O(α,γ)19Ne reaction rate that was identified as a break out
from the hot-CNO cycles and a trigger for the following rapid proton capture that populate
masses higher then neon [1]. Therefore, the structure of the low-energy spectrum of 19Ne close
to the 15O+α threshold (Sα=3.528 MeV) is very important. Moreover, the states in 19Ne near
the proton threshold (Sp=6.411 MeV), are again important, as the destruction of the key radio-
nuclide 18F [2], occurs mainly via the 18F(p,α)15O reaction.
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Neon isotopes exhibit strong α-clustering phenomena, even in the ground states. Neon-20 [3, 4, 5]
and 21Ne [6, 7] are two of the best examples of nuclear clustering known to date. Therefore,
it is important to extend this cluster study to the neutron poor side of the neon isotopes that
is, at the moment, almost totally unknown concerning the clustering point of view. This is
needed in order to understand if such clustering phenomena persist in 19Ne and, if so, to what
extent. The present work reports the direct measurement of 15O+α elastic scattering using the
technique of Thick Target Inverse Kinematics scattering [8] to investigate the structure of the
low-lying-energy levels of 19Ne. The method as implemented here allows the elastic scattering
excitation function to be measured and enables to measure the α reduced α-width directly across
a large excitation-energy range using a single beam energy. The nature of the technique makes
it ideally suited to use with low-intensity, large-energy-profile radioactive ion beams.

2. The Experimental Technique

The TTIK method [9, 8, 10] with a gas target consists of delivering the beam into a reaction
chamber filled with gas (typically 4He) at such a pressure as to fully stop the beam. At the
same time the gas acts as both target and degrader of the beam energy. The interaction between
projectile and target nuclei can occur at different depths in the chamber along the beam direction,
and thus at different energies. Thanks to the different stopping power of the gas for heavy
projectiles and light recoils, the light recoiling particles can reach the telescopes placed at the
downstream end of the chamber with respect to the entrance window. From the measurement
of the recoil energy one can deduce the interaction position along the beam direction and thus
the energy of the scattering event. This relationship is unequivocal if the detected light recoils
originate from elastic scattering. The α-particles are detected at small angles covering the 0◦

region in the laboratory system, corresponding to the region around 180◦ in the center-of-mass.
In this condition it is possible to extract the elastic scattering angular distribution in the region
where the Coulomb scattering is minimized over the resonant elastic scattering. This technique
is particularly suitable for measuring elastic scattering excitation functions with radioactive
beams since it strongly reduces the beam time request with respect to the thin target technique.

2.1. The Experimental Apparatus

The 15O radioactive ion beam was delivered by the EXOTIC facility [11, 12] at the Laboratori
Nazionali di Legnaro (LNL, Italy) by means of the in-flight technique. A primary 80 MeV
15N5+ beam was delivered by the LNL-XTU tandem Van de Graaff accelerator and impinged on
a H2 cryogenic gas target at a pressure of 1 bar and a temperature of 24◦, corresponding to an
equivalent target thickness of about 1.35 mg/cm2 of H2. The

15O beam [13], produced by means
of the two-body reaction p(15N,15O)n (Qval=-3.54 MeV), was selected and purified from the
scattered primary 15N beam and other contaminant nuclei by mean of several optical elements: a
30◦-bending magnet, a Wien-filter, two quadrupole triplets and several collimators. Two parallel
plate avalanche counters (PPACs) [14] were placed downstream prior to the beam entering the
scattering chamber. The PPACs were utilized for on-line monitoring of the secondary 15O
beam profile, to provide an event-by-event reconstruction of the trajectory of the beam and for
timing purposes. Finally, 15O beam entered the the scattering chamber filled with 4He gas at
a pressure of 467 mbar, that was separated from the high vacuum beam line by a 2.2 µm thick
Havar window. The 15O beam intensity was in the range 1-2×104 particles/s with ≈99% purity.
The 4He gas pressure and the temperature were continuously monitored by two capacitance
manometers with an accuracy of 0.3% and a thermocouple device with 0.1 K sensitivity. The
detection apparatus, illustrated in Fig. 1, consisted of two Double-Sided Silicon Strip Detectors
(DSSSDs) from the EXPADES detector array [14]. The detectors were placed, the first at 0◦

and the second off 0◦ as shown in figure 1.
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Figure 1. (color online) Schematic view of the experimental apparatus. The detection system
consisted of two DSSSDs and two PPACs required for the time-of-flight measurement and beam
tracking.

3. Data Analysis

The goal of the analysis is the reconstruction of the elastic scattering excitation function from
the energy of the detected α-particles and their impact point on the detectors. The data coming
from the two detectors were divided into three angular ranges. The first one corresponding to
the whole detector placed at 0◦ while the dector off 0◦ was divided in two angular ranges.

The first step is the identification of α-particles produced in elastic scattering events. This
was performed through measurements of the time-of-flight between the entering of the particle
in the scattering chamber and the following recoiling particle on a DSSSD.

The final results are summarized in Fig. 2 showing the three excitation functions obtained
from the two detectors, all three reveal the presence of resonances. Unfortunately the elastic
scattering excitation functions corresponding to the detector off 0◦ have low statistics and very
low resolution. This is mainly due to the fact that the effects of the energy and angular spread
of the beam profile are larger for particles that are scattered at larger angles. Moreover due to
the low statistics obtained for the detector off 0◦ the angular range is relatively high and this can
be a further cause of resolution worsening. Due to the low statistics and low resolution the data
at larger angle were not used in the R-matrix calculation (see section 4) for the identification of
the spins and parities of the resonances observed in the elastic scattering excitation function.

4. Results and Conclusions

In order to determine the main properties of the observed resonances: widths, partial decay
branches, energies and spins, an R-matrix calculation was performed. A comprehensive
description of the R-matrix theory can be found in Ref. [15]. A full R-Matrix fit was performed
using Azure2 [16] which uses the Brune transformation. This was done for 0◦ (θcm = 180◦).
The statistics at the other angles were too poor to provide any constraint to the fit. Instead, the
spins and energies of states from the mirror nucleus, 19F [17], were used as a starting point for
the fit; a powerful technique, with a good agreement between the energy levels in each nucleus. A

two channel calculation were performed to fit the data: 15O(1
2

−

) + α(0+) and 18F(1+) + p(1
2

+
),

with channel radii for the ith decay channel, ri = r0(A
1

3

recoil +A
1

3

i ). and r0=1.4 fm. Levels in the
5.3 – 8.9 MeV excitation-energy region have been investigated, with a number of newly observed
states in this work. Furthermore, partial widths have been extracted for the observed levels, for
many of them it is the first time measure-width data has been available. Reliable cross sections
have been measured across the full range of levels populated representing important input to
reaction-rate models.
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Figure 2. Elastic scattering excitation function for 15O+4He at the three different angular
values: from top to down ∼180◦, ∼160◦, ∼155◦
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