
Controller Area Network domotic prototype using GPRS  
and Ethernet interfaces for virtual monitoring applications 

Francisco Cortés1, Sergio Gallardo1, Federico Barrero1, Sergio Toral1. 

 1Electronic Engineering Department. University of Seville. 
Avda. Camino de los Descubrimientos, s/n. 41092. Seville, Spain 

Tel.:+34 954 48 73 68, fax:+34 954 48 73 73, e-mail: sgallardo@gte.esi.us.es, fbarrero@gte.esi.us.es, 
toral@gte.esi.us.es 

Abstract. Nowadays there are three basic 
technological supports which are suffering an enormous 
development. First we could mention field buses 
applications, which are getting more and more important 
in domotics. The second one, Web and Internet 
applications, is becoming popular and accessible in the 
last time. Finally, the third support, based on GSM 
networking, make one of the most important 
development focus up to now. The proposed system is 
based on the mentioned idea, the importance of the nexus 
between these three technological supports, developing a 
domotic system using CAN, a field bus which has been 
used mainly in automotive, and interconnected to the 
Internet employing Ethernet networks and GSM nodes 
via GPRS protocol. 

Keywords. 

Field bus, domotic, DSP, Ethernet, GSM/GPRS 

1. Introduction

The increasing complexity of control systems and
especially the development of distributed control [1] 
demand communication systems suitable for their needs. 
This, joined to the necessity of open control systems and 
the evolution of the communication technologies, 
contributed the growing of the field buses, spreading 
quickly due to the advantages that they offer in contrast 
to traditional systems. On the other hand, Internet 
applications are becoming very popular in a fast and 
continuous way, under Ethernet applications, and due to 
the GPRS protocol, mobility in communications is a 
reality [2,3]. The third point which is one’s duty 
nowadays refers to the new technologies, understood as a 
social revolution which is being incorporated in daily life 
quickly. These three technological supports have been 
joined in order to implement a domotic system using 
field buses and interconnected to users through the GSM 
telephony network, using the GPRS protocol, and via 

Ethernet for non-mobile applications. This prototype, 
designed by the Department of Electronic Engineering, 
focused on a home frame domotic system, being easily 
expandable to other fields of application, such as 
industry, security, automotive, sailing, etc. Particularly, it 
is going to be described the case of a home security 
system. In order to validate this system, a scale model is 
being designed so that it can be used as a prototype for 
testing purposes. 

The system features will be the following ones: 

1) Expandable. Being able to include new
sensors and actuators without changing
neither the protocols nor the software stored
in existing elements.

2) Open. With clear specifications so that anyone
can develop their own hardware and include it
in the system.

3) Remotely controlled. To monitor the state of
the house and to allow the intervention in the
system from any PC connected to the Internet
and from mobile terminals.

4) With a model. In order to achieve a test bench
closer to reality and a place to validate the
system.

2. Field buses and domotics

There are several field buses which have been used in 
domotics for the last years, such as X10, EHS, BatiBUS 
and Lonworks. In the following lines some of them are 
going to be explained. 
X10 is a standard which takes advantage of the existing 
electric infrastructure in the house in order to control 
devices. It uses bursts at 120 KHz which are transmitted 
everytime the signal of the electric network reaches 0V, 
this allow an average transmission bit rate of 50 bit/s. In 
spite of being very easy to install, the speed of this 
system is very low and it has a reduced functionality. 
X10 basically allows the user to switch on/off a device 
and control the brightness of lights. 



EHS is an open standard developed in Europe which can 
use the electric infrastructure or a separated pair. It sends 
the information using a FSK modulation and it is able to 
reach bit rates up to 2400 bit/s. One interesting feature of 
this standard is the fact that EHS devices can be 
configured automatically (Plug&Play technology).   
BatiBUS uses a medium access technique similar to 
CAN (CSMA/CA, Carrier Sense Multiple Access with 
Collision Avoidance) but it is only able to work up to 
4800 bit/s. The user has to configure manually the 
address of every BatiBUS device, like in X10. 
Lonworks can be classified as a high performance field 
bus and it is intended to be used in domotic applications. 
It allows devices to be interconnected in a hierarchical 
architecture where the different subnet are integrated to 
make a big domotic network with connections to the 
Internet. It supports several transmission mediums and 
can work at high speed (Up to 1.25 Mbit/s). Although it 
is said by Echelon, the company which designed it, that 
Lonworks is an open standard, the reality shows that it 
can be only operated by using a certain kind of 
processors registered by Echelon and called “Neuron 
Chip”. Lonworks provides fast and robust networks but 
on the other hand, they are expensive and complex. 
CAN meets many of the advantages of other field buses 
in a really open standard. It is simple, cheap and it gives 
more freedom to design protocols of the higher layers. 
This, joined to the features described below, made us 
choose CAN as a support for communications inside the 
domotic system. 
 
3.   CAN (Controller Area Network) 
 
CAN [4] is a kind of field bus designed by Bosch and it 
is widely used in automotive.  This field bus is very 
simple because it is made of only two wires where data is 
transmitted in differential mode, reaching a speed up to 1 
Mbit/s. All this makes CAN easy to install and robust. 
Remember it was intended to be used in environments 
with strong electromagnetic fields. 
The two main features of CAN are: 
 

1) At the data link layer, CAN protocol does not 
use identifiers as node addresses but they 
introduce the content of the message. For 
example: We could assign an identifier for 
temperature measurements, another for speed, 
etc. Therefore, point to multipoint 
communications can be established because 
only the nodes interested in that message will 
receive it. 

2) The medium access type is CSMA/CA, so it 
does not spend when a collision occurs due to 
collisions are resolved by using a bitwise 
arbitration that wins the node with higher 
priority without modifying any bit the winner 
node has transmitted. A similar mechanism is 
used in ISDN “D” channels. 

 
CAN also have error detection mechanisms in the link 
layer frames such as CRC and acknowledgement fields. 
Its “fault confinement” mechanism can also isolate 

defective nodes in order not to obstruct messages from 
other nodes. 
 
4.   System Topology 
 

 
 

Fig. 1. System structure 
 
The previous figure shows the distribution of the 
elements inside the system. We can point out the master 
element, which is responsible for the system control. The 
device which carries out the functions of the master 
element is a Texas Instruments® DSP, concretely a 
TMS320F2812. The master element performs the 
following functions: 
 

1) It stores and manages the general information 
about the system, such as the distribution of 
sensors and actuators over the sectors or rooms, 
IP address, subnet mask, password, telephone 
numbers to send alarms to, etc. For this purpose 
it has a EEPROM memory. 

2) It manages identification numbers of all 
elements (sensors and actuators). 

3) It sends user commands to the elements and 
picks up all data which has been applied by the 
user. 

4) It generates alarms if the corresponding 
conditions occur. 

 
Up to now we have installed sensors and actuators in our 
prototype that produce a kind of information which 
cannot be considered as a high computational load for the 
DSP. In spite of this, in the future, the system might need 
to process some signals with complex algorithms and that 
is the reason why we have chosen a DSP for our 
prototype. In fact, we are thinking about introducing a 
web cam in the system and carrying out some image 
processing tasks. 
 
Another of the most important elements in the system is 
the Communication element. It is basically a Rabbit 
Semiconductors® RCM2200 module and it contains a 
Rabbit 2000 processor. This module is intended to be 
connected to 10/100BaseT Ethernet networks, and it has 
a RJ-45 connector incorporated for this purpose. This 
was one of the reasons why we decided to choose this 
module for communication tasks. This module also 



controls the GM29, a Sony-Ericsson® GSM/GPRS 
modem, through one of its asynchronous serial ports and 
it is permanently connected to the master element 
through other of its asynchronous serial ports. The 
software created for this module mainly acts as a unified 
server for remote access to the system. Therefore, the 
same server is able to give access to the system both if 
the user uses a PC connected to the Internet or if the user 
uses a GPRS mobile terminal. The RCM2200 module is 
placed over a base board created specifically for this 
project because the module cannot work by itself. This 
board has been designed according to the functions it is 
going to carry out in the system but it is also useful as a 
development system for the Rabbit 2000 if it is used 
outside the prototype.  
 
The GSM/GPRS modem is used basically to send alarm 
messages to the user and the corresponding emergency 
service through SMS messages. We have decided to use 
SMS messages to send alarms because they are received 
almost instantaneously. 
 
The different elements (sensors and actuators) are 
grouped by nodes. Each node can have one or more 
elements. The type of these elements can be different and 
they can be placed in different sectors or rooms. The 
nodes which have been implemented in the prototype 
contain a Microchip® PIC microcontroller because they 
have analog inputs with analog-to-digital converters and 
they have also a CAN module incorporated. Although 
these processors are not intended to make complex 
calculations, they meet all requirements needed to control 
temperature sensors, light sensors, proximity sensors, etc. 
They even include a little EEPROM data memory where 
the identifiers of the elements controlled by the node can 
be stored. CAN nodes have been implemented as generic 
boards with a group of connectors so that any sensor or 
actuator can be attached to the node. It can be done 
provided the signals are adapted previously to meet the 
electrical specifications for the PIC18F248 and the 
software has been carefully modified in order to manage 
the new element without change the behaviour of the 
elements which had already been attached. 
There are three kind of sensors installed in the model: 
 
1) Temperature sensors. Based on type K termocouples. 
2) Ultrasonic proximity sensors. 
3) Light sensors. Based on fotorresistors. 
  
There are three kind of actuators installed in the model: 
 
1) Lights. 
2) Fans 
3) Manual switches 
 
All the system has been installed on a model created for 
this project. This model has a suitable structure for the 
system and can be dismantled and assembled easily. 
 
 
 
5.   Protocols 
  

In order to control the different elements, two protocols 
have been designed. The first one is used in the CAN 
network and it has been called “internal protocol”. The 
other protocol is used between the server and the client 
application through the Internet and it has been called 
“external protocol”. 
 

 
 

Fig. 2. Protocol scheme 
 
The internal protocol is an application layer protocol 
although it is closely bound to the data link layer due to 
the CAN bus features. CAN uses the identifiers of the 
link layer to announce the content of the message. This 
identifier and the data field are in fact the application 
layer PDU. CAN 2.0 B specification has been used 
because it allows 29-bit identifiers. Those 29 bits have 
been structured in three fields: 
 

TABLE I. – Identifier structure. 
TYPE COMMAND NUMBER 
11 bits 10 bits 8 bits 

 
Field TYPE indicates the type of element which has 
originated the message or the type of element which 
should receive the message. Up to 2048 types of element 
are allowed. The lower the field TYPE is, the higher 
priority has the message. The reason for this can be found 
in the fact that dominant bits (0) prevail over recessive 
bits (1), according to the CAN specification, therefore, 
identifiers with lower values have higher priorities. 
Values from 00h to 1Fh have been reserved for urgent 
messages such as alarms, assignation channel, etc.  
 
Any element can create a message to transmit some kind 
of information or to apply for others to carry out a certain 
action. Field COMMAND specifies which action has to 
be performed. This field allows having up to 1024 
different commands for each type of element. Depending 
on the command, parameters may be included in the 
message. In this case, parameters would be placed in the 
data field of the link layer frame. For example: When a 
temperature sensor has to send the measured temperature, 
it uses command number 25 (VTEMP) and sends a byte 
in the data field that contains the value of the measured 
temperature in Celsius degrees.  
There are also some common commands which have to 
be implemented by all the elements. They are used to get 
some general information about the element, like the 
model and the trademark, and to read and modify both 
operation and dependence parameters. These commands 
have reserved values which cannot be used for other 
purposes. 



 
Field NUMBER is used to identify which element has 
sent the message or which element has to receive it if it 
was necessary. When messages are not sent to a 
particular element but a group of elements or when the 
element that sends or receive the message is necessary 
the only one of its type in the system, such as alarm 
messages, there is no point in filling this field, so its 
value has to be 0 in these cases. As this field is 8 bits 
long, there may be up to 255 elements of the same type in  
the system (value 0 is reserved). These numbers are 
assigned by the master element through a Plug & Play 
mechanism.  
Field NUMBER together with field TYPE define 
unambiguously a certain element of the system.  
 
It is evident that everyone who decided to manufacture 
elements for this domotic system should know and 
comply with the rules for the registered types of 
elements, so there should be an entity which published 
that information and assigned values to the new types of 
elements. This problem does not happen only in this 
system, but it appears in other applications such as 
Internet domains, MAC addresses for Ethernet boards, 
etc.  
 
The external protocol is an application layer protocol and 
it operates over TCP. This protocol allows the user to 
control the system both from a PC connected to the 
Internet and from a GPRS mobile terminal. The 
application for PCs is made with Java (J2SE) and the 
application for mobile terminals is made with Java 2 
Micro Edition (J2ME) and it does not implement the 
whole protocol functionality due to the limited resources 
these devices have, therefore, this application can only 
perform basic actions. 
The application for PCs uses a special kind of files called 
“handle files”. These files behave like drivers in 
conventional operative systems and they must be given 
along with every element. Since the application uses 
handle files, the external protocol does not need to be 
modified every time a new type of element is installed 
because these files tell the application how it must 
manage the element and which functions are available for 
that element. In order to perform specific functions, the 
application can compose frames helped by the handle 
files. These external protocol frames wrap an internal 
protocol frame, which is released at the master element. 
From this point, the internal protocol frame runs through 
the CAN network towards the target element. In this way, 
neither the server nor the client application have to know 
the meaning of the wrapped frame.  
According to the nature of the interchanged information, 
three communication schemes have been defined: 
 
1) Value. When the information is a value shorter than 

8 bytes. For example: measured temperature 
2) Block. When the information is a block of bytes 

(more than 8 bytes). This scheme is suitable for 
character strings. For example: Trademark of the 
element. 

3) Series. When the information is made of values sent 
periodically. This scheme is suitable for monitoring 
signals. For example: Monitoring temperature. 

 
After a reset, the master element automatically looks for 
new elements. If it finds a new node, it will assign 
numbers to the new node and the elements which belong 
to that node. Once the numbers have been assigned, the 
node stores them in its non-volatile memory. On the 
other hand, the master element registers the new elements 
in its EEPROM memory. It stores the following 
parameters by each new element: 
 
1) Node which the element belongs to 
2) Number 
3) Type of element 
4) Sector where it has been placed 
 
Obviously, nodes cannot give the last parameter to the 
master by themselves. The SECTOR parameter refers to 
the zone of the house where the element is placed. To 
make it easier, we recommend to assign a sector by each 
room in the house. The SECTOR parameter must be 
given by the user through the client application. When 
there are elements pending on this parameter, the master 
notices it to the communication element so that it can 
notice it as soon as the user connects to the system. 
In order to make the elements to behave correctly, they 
may require the user to specify some parameters. For 
example, a temperature sensor can work as a thermostat 
provided we have specified an upper limit and a lower 
limit. Nodes have to be able to keep this parameters at 
least in RAM memory. They might be stored in non-
volatile memory also, but it is not a good option for some 
parameters because they may change many times and 
non-volatile memories like EEPROM or Flash can be 
programmed only a limited number of times. 
Furthermore, these memories might not be available for 
all nodes. The nodes which have been implemented for 
the prototype only have a 256-byte EEPROM memory. 
The parameters are classified in two groups: operation 
parameters and dependence parameters. Both operation 
and dependence parameters can be read and modified by 
using a set of common commands. 
 
Operation parameters usually contain values which 
determine the general operation of the element. In the 
previous example, parameters “upper limit” and “lower 
limit” would be operation parameters because they 
influence directly the behaviour of the thermostat. It is 
important to say that loading a value in a parameter does 
not imply it is going to be used, so if you modify “upper 
limit” parameter, the temperature sensor is not going to 
behave as a thermostat unless you send the “MTST” 
command (Activate thermostat mode) to that element. 
 
Dependence parameters are used to specify which 
elements are going to influence the behaviour of a certain 
element. This is very useful when there are elements that 
depends on the information given by other elements. For 
example, a fan will depend on the temperature measured 
by a nearby sensor. If the temperature is higher than its 
upper limit, which has been previously determined as a 



operation parameter, the fan will turn on. The node 
associated to the fan will have to reserve an space in its 
memory for the dependence parameter, where it will 
store the number of the temperature sensor specified by 
the user. When working, the fan will listen to that sensor 
and will turn on/off depending on the measured 
temperature.  
 
Handle files contain the information that the application 
need to manage an element. These files are structured in 
five sections in order to provide an organised information 
easily readable by the application: 
 
1) General Features. This section contains general 

information about the element such as the type of 
element. 

2) Operation parameters. This section contains a 
description of each operation parameter available for 
the element. The number of the parameter, the 
mnemonic, the data format, and the parameter 
description are defined for each parameter. 

3) Dependence parameters. This section contains a 
description of each dependence parameter available 
for the element. The number of the parameter, the 
mnemonic, the type of influential element and a 
parameter description are defined for each 
parameter. 

4) Command parameters. This section contains a 
description of each command parameter available for 
the element. Command parameters are not readable 
or writable by using common commands because 
these parameters can be used only with certain 
commands. The information for each command 
parameter is the same than the one for operation 
parameters. 

5) Commands. This section contains a description of 
each command available for the element. The 
command number, the mnemonic, and the list of 
parameters (optional) are defined for each command. 

6) Actions. This section contains a description of each 
action available for the element. Actions are groups 
of related commands that perform an specific task. 
The description of the action, the mnemonic, the 
applied commands, the answer commands and the 
commands able to abort the action are defined for 
each action. 

 
The client application shows the user the operation 
parameters, the dependence parameters and the actions 
available for the selected element. If the user wants to 
modify a parameter, the application gets the data format 
for that parameter from the handle file so that it is able to 
show or ask for the value in a suitable way.  
If the user wants to perform an action, the application 
gets the information about that action so that it is able to 
know which commands it has to wait for and which 
command sequence it has to send to perform the action. 
If actions were not defined, the user should know the 
communication scheme for each command and should 
send and receive manually each command. It is obvious 
that actions simplify the use of the application. 
 
6.   The client – server architecture 

 
At present we are building the client applications, which 
will allow the user to do many things. The application for 
PCs will be able to point the elements over a house map 
and draw the evolution of monitored signals. The 
applications are being made according to the chosen 
option, which is explained below: 
 
The communication element is intended to act as a 
unified server and assist user requests through an specific 
port (5001). In order to access the server, the user must 
have the client application and the handle files installed 
in the PC. The application may generate some 
configuration files such as lists which link the elements 
with their handle files. Of course, the client application 
has to know the IP address of the communication 
element, so this element must have a public IP address in 
order to be accessible from somewhere. This becomes a 
problem when the system is attached to a LAN which 
uses virtual IP addresses and firewalls because the 
application cannot connect to such virtual addresses and 
firewalls usually  do not allow transmitting data using 
that port. There are many applications which need to be 
installed to work, this has its advantages and 
disadvantages. Among the advantages we can point out 
the freedom and simplicity when designing and the 
possibility of developing specific protocols that increase 
the functionality. One of the disadvantages is the 
necessity of having the application and the handle files 
installed in the PC. The user should carry all the files in 
order to be able to access the system anywhere. The 
second disadvantage is the necessity of a public IP 
address for the communication element as we have 
explained before. 
 
We also thought about other options. One of them is to 
implement a web server in the communication element in 
order to be able to control the system via a web page. 
Although it is possible to implement web servers in that 
element, functionality would be reduced because some 
web page formats, like HTML, do not offer all the 
flexibility and functionality of a specific protocol and it 
would be more difficult to program. This option also 
needs a lot of memory and the RCM2200 might not have 
enough memory to work properly. In spite of the ease for 
the user, who would not need to set up any program and 
carry any file, the disadvantages are bigger. This option 
has not been totally discarded yet because we are 
studying the possibility of using PHP pages, which add a 
higher functionality, but this would have the problem of 
the lack of memory too. 
 
An option derived from the previous one is to implement 
a simple web server which would serve an HTML page 
with a Java applet. This Java applet would be the client 
application and it would work like the application in the 
chosen option. In this case, a specific protocol could be 
used but the communication element would have to 
implement two servers, the web server and the specific 
domotic server. It would be difficult to program and the 
problem of the lack of memory might appear again.  
 



A better solution based on the previous option is being 
studied. The communication element would implement 
only the specific domotic server, like in the chosen 
option, but the HTML page, the Java applet and the 
handle files would be allocated in a conventional web 
server. The user would not have to set up any program 
and carry any file. This option would keep the 
functionality and would not be very difficult to design 
but it has two problems. The first problem occurs also in 
the chosen option and it has been mentioned before: The 
necessity of having a public IP address for the 
communication element and the problem with firewalls. 
The second problem would appear when the application 
tried to save some configuration information. The 
application might need to update some configuration files 
and the application should provide a mechanism to save 
that configuration information in the conventional web 
server or inside the EEPROM memory of the master 
element if there were enough memory. 
 
7.   Conclusions 
 
Three important ways of development, the NNTT based 
on websites applications, Ethernet & GSM 
communication interfaces and field buses industrial 
protocols are joined in order to obtain a high performance 
system. This tool will be also used as an educative tool in 
training Telecommunication Engineering students. It will 
be versatile, open and expandable.  

 
References 
 
[1] Héctor Kaschel and Ernesto Pinto, “Análisis del 

estado del arte de los buses de campo aplicados al 
control de procesos industriales”. 

[2]  “A world of information in your pocket” Curtis, K.; 
Brown, K.; Pilkington, R.; Personal, Indoor and 
Mobile Radio Communications, 2000. PIMRC 2000. 
The 11th IEEE International Symposium on , 
Volume: 2 , 18-21 Sept. 2000 Pages:1017 - 1021 
vol.2 

[3]  Implementation of mobile information device profile 
on virtual lab. Kumar, A.; Nambi, A.; Information 
Technology: Coding and Computing [Computers 
and Communications], 2003. Proceedings. ITCC 
2003. International Conference on , 28-30 April 
2003. Pages:612 - 616 

[4]  CAN Specification Version 2.0 1991, Robert Bosch 
GmbH, Postfach 30 02 40, D-70442 Stuttgart 

 
 
 

View publication statsView publication stats


