
A Knowledge Extraction Process Specification for Today’s non-semantic Web∗

J.L. Arjona, R.Corchuelo and M. Toro
Departamento de Lenguajes y Sistemas Informáticos

Avda. de la Reina Mercedes s/n. Sevilla, E-41012 (Spain)
{arjona, corchuelo, mtoro}@lsi.us.es

Abstract

The semantic web shall enable web agents an efficient,
precise, and comprehensive extraction of knowledge. Nev-
ertheless, this new web is not likely to be adopted in the
immediate future.

In this article, we present a specification of a new frame-
work in order to extract knowledge from today’s dynamics
non-semantic web. Our proposal is novel in that it asso-
ciates semantics with the information extracted, which im-
proves agent interoperability; it can also deal with changes
to the structure of a web page, which improves adaptability;
furthermore, it achieves to delegate the knowledge extrac-
tion procedure to specialist agents, easing software devel-
opment and promoting software reuse and maintainability.

1. Introduction

In recent years, the web has consolidated as one of the
most important knowledge repositories. A major challenge
for web agents has become sifting through an unwieldy
amount of data to extract meaningful information. This
process is difficult because of the following reasons: first,
the information on the web is mostly available in human-
readable forms that lack formalised semantics that would
help agents use it [3]; second, the information sources are
likely to change their structure, which usually has an impact
on their presentation but not on their semantics [4, 15].

The Semantic Web implies a transition from today’s web
to a web in which machine reasoning will be ubiquitous and
devastatingly powerful. This transition is achieved by anno-
tating web pages with meta–data that describe the concepts
that define the semantics associated with the information in
which we are interested. Ontologies play an important role
in this task, and there are many ontological languages that

∗The work reported in this article was supported by the Spanish Inter-
ministerial Commission on Science and Technology under grants PCB-02-
001 and TIC2000-1106-C02-01.

aim at solving this problem, e.g., DAML+OIL [10], SHOE
[16] or RDF-Schema [5]. The Semantic Web shall simplify
and improve the accuracy of current information extraction
techniques tremendously. Nevertheless, this extension re-
quires a great deal of effort to annotate current web pages
with semantics, which suggests that it is not likely to be
adopted in the immediate future [8].

In this article, we present a specification of a new so-
lution in order to extract semantically-meaningful informa-
tion from today’s non-semantic web. We address this is-
sue by developing knowledge channels, or KCs for short.
They are agents [20] that allow to separate the extraction of
knowledge from the logic of an agent, and they are able to
react to knowledge inquiries (reactivity) from other agents
(social ability), and act in the background (autonomy) to
maintain a local knowledge base (KB) with knowledge ex-
tracted from a web site (proactivity). In order to allow for
semantic interoperability, the knowledge they manage ref-
erences a number of concepts in a given application domain
that are described by means of ontologies.

The rest of the paper is organised as follows: Next sec-
tion glances at other proposals and motivates the need for
solutions to solve the problems behind knowledge extrac-
tion; Section 3 presents the case study used to illustrate our
proposal and some initials concepts related to knowledge
representation; Section 4 gives the reader an insight into
our proposal; finally, Section 5 summarises our main con-
clusions.

2. Related work

Wrappers [6, 11, 14, 18] are one of the the most pop-
ular mechanisms for extracting information from the web.
They are algorithms that use a number of extraction rules
generated by means of automated learning techniques such
as inductive logic programming, statistical methods, and in-
ductive grammars to extract information from similar pages
automatically.

Although induction wrappers are suited to extract in-
formation from the web, they do not associate semantics

with the data extracted, this being their major drawback [1].
Thus, we call current inductive wrappers syntactic because
they extract syntactic information devoid of semantic for-
malisation that expresses its meaning.

Another problem appears when we work with wrappers,
the problem is due to the dynamism embodied in current
web sites. Wrappers are based on some properties of a
web page or in characteristics of the information to extract.
Changes in a web page can invalidate a wrapper. Therefore,
it is necessary to have mechanisms (verification algorithms)
that detect if the information extracted is valid, making it
possible that the extraction rules could be regenerated if
there are changes in the layout of a web page [12, 18].

Our solution builds on the best of current inductive wrap-
pers, and extends them with techniques that allow us to deal
with web knowledge. Using inductive wrappers allows us
take advantage of all the work developed in this arena, as
boosted techniques or verification algorithms.

3. Preliminaries

3.1. A case study

We illustrate the problem to solve by means of a
simple real example in which we are interested in ex-
tracting information about the score of golfers in a
PGA Championship. This information was given at
http://www.golfweb.com. Figure 1 shows a web page
from this site.

Figure 1. A web page with information about
scores in a golf championship.

Note that the implied meaning of the terms that appear
in this page can be easily interpreted by humans, but there
is not a reference to the concepts that describe them pre-
cisely, which complicates communication and interoper-
ability amongst software applications [2, 3]. Other issue

is that the layout and the aspect of a web page may change
unexpectedly, which may invalidate unexpectedly the auto-
matic extraction methods used so far [4, 15].

3.2. Dealing with knowledge

There are many formalisms to dealt with knowledge,
namely: semantic networks [19], frames systems [17],
logic, decision trees, and so on. Their aim is to represent
ontologies, which are specifications of concepts and rela-
tionships amongst them in a concrete domain. Ontologies
[7] allows us to specify the meaning of the concepts about
which we are extracting information. Some authors have
specified a formal model for ontologies; our formalisation
builds on the work by Heflin in his PhD dissertation [9].

Let L be a logical language; an ontology is a tuple
(P, A), where P is a subset of the vocabulary of predicate
symbols of L and A is a subset of well–formed formula in L
(axioms). Thus, an ontology is a subset of L in which con-
cepts are specified by predicates and relationships amongst
then are specified as a set of axioms.

In Appendix A, we specify1 some concepts related to
logical languages that establish the basis of our model. In
our proposal, a logical language (L) is characterized by a
vocabulary of constant identifiers (Identc), a vocabulary of
variable identifiers (Identv), a vocabulary of function iden-
tifiers (Identf), a vocabulary of predicate identifiers (Ident p)
and a (in)finite set of well–formed formula (Wff), which is
a subset of the formula derived from L. For the sake of
simplicity, we assume that Identf = ∅.

Next schema specifies an ontology. Three constrains are
imposed: the former states that P and A are non–empty sub-
sets of the set of predicate symbols and well–formed for-
mula of L, respectively; the second, asserts that axioms are
defined using the predicate symbols in P2; the latter asserts
that the set of axioms is consistent. Predicate � references a
theorem prover; let be F : P Wff , and f : Wff then F � f is
satisfied if f is formally provable or derivable from F, thus
f belongs to the set of all Well–formed formula that we can
obtain from F (theory of F).

Ontology
P : P Identp

A : P Wff

P �= ∅ ∧ A �= ∅

∀ f : A • PredSyms(f) ⊆ P

¬ ∃ g : Wff • A � g∧ A � ¬ g

An instance of a concept, specified in an ontology, is an in-
terpretation of this concept over some domain. In informa-

1In this paper we use notation Z as a formal specification language,
because it is an ISO standard, and an extremely expressive language.

2The function PredSyms is specified in Appendix A. It returns the set
of predicate symbols in a formula.

tion extraction this domain is established by the information
to be extracted.

We model instances as ground predicate atoms. Thus,
they are well–formed formula. We specify the set of all in-
stances that we can derive from an ontology by the function
GroundPredicateAtoms:

GroundPredicateAtoms : Ontology → P Wff

∀ o : Ontology • GroundPredicateAtoms(o) =

{f : Wff ; ip : Identp; sc : seq1 Term; ic : Identc |
(f = atom(pred(ip, sc))∧
∀ c : Term | c ∈ sc • c = const(ic)∧
PredSyms(f) ⊆ o.P) • f}

A Knowledge Base (KB) is a tuple (O, K), where O is an
ontology and K a set of instances of concepts specified in
O. A KB is specified as follows:

KB
O : Ontology
K : P Wff

∀ f : K • PredSyms(f) ⊆ O.P
K ∈ GroundPredicateAtoms(O)

The constrains imposed assert that the instances are
formed with predicated defined in the ontology and they are
ground predicate atoms.

Example 1 The following object defines a KB in our study
case (for the sake of readability, we do not use the abstract
syntax in Appendix A. The mapping between this syntax and
the usual logic symbols is straightforward):

KB0 = 〈| O � 〈| P � {Person, Golfer, Score, Position},
A� {∀ x • Golfer(x) ⇒ Person(x),

∀ x • ∃ y • Golfer(x) ⇒ Score(x, y),

∀ x • ∃ y • Golfer(x) ⇒ Position(x, y)} |〉,
K � {Golfer(Rich Beem), Score(Rich Beem, 278),

Position(Rich Beem, 1)} |〉
The ontology has four predicate symbols called Person,

Golfer, Score and Position; the first axiom asserts that ev-
ery Golfer is a Person; the second one states that every
Golfer has a Score, where y represents the total number
of points obtained; the last one asserts that every Golfer
has a Position y in the championship. The instances in KB0

can be interpreted using the ontology, and they asserts that
Rich Beem is a golfer, and he is the first in the ranking with
278 points.

4. Our proposal

Our proposal is a framework agent developers can use
to extract information with semantics from non–annotated,

changing web pages so that this procedure can be clearly
separated from the rest in an attempt to reduce development
costs and improve maintainability. This frameworks gives
the mechanisms to develop core web agents called knowl-
edge channels. Figure 2 illustrate this idea.

KB

KC

WEB
Agent Society

Figure 2. Knowledge Channels.

A KC is responsible for managing a local knowledge
base (KB). This knowledge is extracted from a web site us-
ing semantic wrappers. Before storing the knowledge in the
KB, it is verified using semantic verification to check the
existing relations amongst the different concepts that give
semantics to the information extracted. Thus, a KC can an-
swer inquiries from other agents that need some knowledge
to accomplish its goals.

4.1. Knowledge extraction

A semantic wrapper is an extension to current syntactic
wrappers, as show in Figure 3. Thus, we first need to define
such wrappers formally.

Web
page

Syntactic
Wrapper Extracted

Information

Semantic
Translator

Knowledge

Semantic Wrapper

K

Figure 3. A semantic wrapper.

A syntactic wrapper is a function that takes a web page
as input, and returns structured information.

Next schema specifies a syntactic wrapper:

[String, WebPage]
Datum == P String
Data == seq Datum
Information == P Data

Wrapper :

WebPage
→ Information

dom Wrapper �= ∅

A syntactic wrapper is modelled as a partial function be-
cause its domain is a subset of web pages. This subset de-
fines the scope of the wrapper, and it references the web
pages in which the wrapper can be used. The output is

modelled as data type Information, which is a set of data
type Data. Data is sequence of Datum, it allows us to have
a structured vision of the data to be extracted and to set a
location for each datum. Data type Datum represents facts,
and it is specified as a set of strings; this allows us to deal
with multi–valuated attributes (attributes that can take 0 or
more values).

If we were interested in extracting information about the
position and score of golfers in a PGA championship, a syn-
tactic wrapper will output the following Information from
the web page in Figure 1:

{〈{Rich Beem}, {278}, {1}〉, 〈{Tiger Woods}, {279}, {2}〉,
〈{Chris Riley}, {283}, {3}〉, 〈{Justin Leonard}, {284}, {4}〉,
. . .}

Using syntactic wrappers allows us to apply syntactic
verifiers to the information extracted3. They are algorithms
that aims at decide if the wrapper works correctly, or on
the contrary, is it invalid because of changes in the web
page structure. For instance, the algorithm Rapture [13]
defined by Kushmerick uses statistical features, such as
length, number of words, number of special characters etc.
to characterize the extracted data. It learns the parameters
of normal distributions describing the feature distributions
of the extracted data. This information helps to decide if the
wrapper is valid by means of analysing the statistical values
of the information extracted.

The syntactic wrapper specification can be extended to
deal with changes in web. The idea is to use a syntactic
verifier predicate on the information extracted, that assure
that syntactic wrapper works correctly. This objective is
achieved by the wrapper maintenance task, that consist on
reconstructing the wrapper if the syntactic verifier predicate
does not satisfy.

Wrapper : WebPage
→ Information
λ : Λ

dom Wrapper �= ∅

∀w : WebPage | w ∈ dom Wrapper •
SyntacticVerification(λ, Wrapper(w))

The Λ type references to some parameters and if we give a
concrete definition for Λ, we would have a syntactic checker
of wrappers. In our experiments we use the Rapture syn-
tactic verifier, and Λ is defined as a set of real number that
stores normal distributions of some measurements (html tag
density, that is number of 〈 and 〉 symbols; also the length
and number of words are measured) of the data extracted.
If the wrapper does not extract the information correctly we
need to train the wrapper again with new sample data.

3We call them syntactic verifiers because the decision about the wrap-
per validity is only based on syntactic properties of the extracted informa-
tion.

A semantic wrapper is a function that takes a web page
as input, and returns a set of instances of concepts defined
in an ontology that represents the information of interest. It
is composed of a syntactic wrapper and a semantic transla-
tor. In order to extract knowledge from the web, it is nec-
essary to feed the semantic wrapper with the web page that
contains the information. The syntactic wrapper extracts
the structured information from that web page, and the se-
mantic translator assigns then meaning to it by means of an
ontology.

SemanticWrapper : WebPage
→ P Wff

∀ p : WebPage | p ∈ dom Wrapper •
SemanticWrapper(p) = SemanticTranslator(Wrapper(p))

The semantic translator needs the user to specify a semantic
description that relates the information to be extracted with
the predicates defined in the ontology to perform this task.

A semantic description (SD) is a representation of the
relationships amongst the symbols of predicates from an on-
tology and the positions that their arguments occupy in the
Information structure. Thus, each predicate P is associated
with n natural numbers, where n is the arity of P.

An SD is modelled using the following schema, which is
composed of three elements: an ontology (O), a set of predi-
cate symbols (Sp

4) and a function (Pos) that maps predicate
symbols onto the location of Datum in Data belonging to
the Information structure. This scheme also asserts that Sp
is a subset of the set of predicates symbols in O, and the
domain of Pos is a subset of the symbols in Sp.

SemanticDescription
O : Ontology
Sp : P Identp

Pos : Identp
→ seq1 N

Sp ⊆ O.P
dom Pos = Sp

In our study case, we can define the following semantic
description:

〈| O � o0, Sp � {Golfer, Score, Position},
Pos � {Golfer
→ 〈1〉, Score
→ 〈1, 2〉, Position
→ 〈1, 3〉} |〉

In this SD, predicate Golfer takes constant values from loca-
tion Pos(Golfer) of each Data (sequence) in an Information
structure, In this case, the first position of the sequence.
Predicate Score takes its values from Pos(Score) = 〈1, 2〉5,

4We might not need to use all the predicate defined in the ontology to
give meaning to the extracted information.

5The arguments in a predicate follows a strictly order. Using a sequence
allows us to get arguments orderly. For instance, If Pos(Score) were 〈2, 1〉,
the result would be erroneous: Score(278, Tiger Woods) states that the
score of 278 is Tiger Woods.

and so on. Thus, it is posible to generate automatically well-
formed formula that express the meaning of the information
for all the Data elements in an Information structure ex-
tracted.

A semantic translator is a function that receives the
Information structure obtained using a syntactic wrapper as
input and uses a semantic description specified by the user,
and outputs a set of instances.

sd : SemanticDescription
SemanticTranslator : Information
→ P Wff

∀ i : Information | i ∈ ran Wrapper •
SemanticTranslator(i) =

∪{d : Data | d ∈ i • buildWffs(d)}

Function buildWffs returns the set of well formed for-
mula for each data in an Information structure. It is defined
as follows6:

buildWffs : Data
→ P Wff

∀ e : Data; t : P (Identp × Data) | e ∈∪ ranWrapper ∧
t = {x : sd.Sp • (x, e � {n : ran Pos(x) • e(n)})} •

buildWffs(e) =∪{k : t • BuildPredicates(k)}

The function BuildPredicates is specified as follows:

BuildPredicates : Identp × seq P Identc → P Wff

∀ ip : Identp; ssc : seq P Identc •
BuildPredicates(ip, ssc) = {si : seq Identc; n : N |
n ∈ 1..#ssc ∧ si(n) ∈ ssc(n) • atom(pred(ip, si))}

It takes a pair composed of an identifier of predicate and a
sequence of strings sets from Information structure, and re-
turns a set of predicates. The predicates are composed using
the identifier of predicate and each element of the sequence.

The following instances represent the knowledge ex-
tracted by a semantic wrapper from the web page in Figure
1:

{atom(pred(Golfer, 〈const(Rich Beem)〉)),
atom(pred(Score, 〈const(Rich Beem), const(278)〉)),
atom(pred(Position, 〈const(Rich Beem), const(1)〉)),
atom(pred(Golfer, 〈const(Tiger Woods)〉)),
atom(pred(Score, 〈const(Tiger Woods), const(279)〉)),
atom(pred(Position, 〈const(Tiger Woods), const(2)〉)),
...}

6The filtering operator (�) takes from a sequence the elements in a
set. For instance: winter = {sep, oct, nov, dec, jan, feb, mar, apr}, then
〈jun, nov, feb, jul〉 � winter = 〈nov, feb〉

4.2. Semantic Verification

The semantic verification allows us to check the existing
relations amongst the different concepts that endow the in-
formation extracted with semantics. Thus, we can be aware
of non-syntactic errors of the information provided by a web
site. Semantic verification detects inconsistences in the in-
formation source used to feed a web site, whereas syntactic
verification detects changes in the layout of a web site that
invalidates the extraction process. Then, the solution to se-
mantic errors is not to rebuild the syntactic wrapper since it
works well, but to wait for the information to be corrected
or to look for another site that offers the same information.

The semantic verification function is specified as fol-
lows:

∀ k : KB • SemanticVerification(k) ⇔
(¬∃ f : Wff | f ∈ k.K • {k.O.A, k.K} � f∧
{k.O.A, k.K} � ¬ f)

Semantic verification is defined as a predicate. It is sat-
isfied if the knowledge extracted is consistent with the ax-
ioms in the ontology under consideration. That is, it does
not exist a formula f in the extracted knowledge, such that
f and ¬ f belong to the theory obtained from the axioms in
ontology and the formula that represent the instances.

4.3. A model for KCs

The schema bellow formalises an KC. It has a declara-
tive part containing two variables; the former (SW) refer-
ences the semantic wrapper to be used and the latter (SV)
the semantic verifier.

KnowledgeChannel
SW : SemanticWrapper
SV : SemanticVerificator

Next schema defines the overall state of our system. It
is composed of a knowledge channel, a local KB and its
environment. The environment (the perceivable features of
the KC agent) is specified as set of web pages, and we con-
straint that the semantic wrapper must be defined for these
web pages.

KnowledgeChannelState
KC : KnowledgeChannel
KB : KnowledgeBase
Environment : P WebPage

Environment ⊆ dom KC.SW

The motivation of the knowledge channel is to synchro-
nize the knowledge that resides in web documents with the
one in the knowledge base (KB). This motivation allows
us define a KC as an autonomous piece of software. Next
schema specifies the agent motivation. ∆ means that the
system’s state can change and the imposed constrains indi-
cates that all knowledge on environment must be on local
KB, and vice versa.

KnowledgeChannelMotivation
∆KnowledgeChannelState

∀ p : Environment • KB.K ⊆ KC.SW(p)

∀ f : Wff | f ∈ KB.K • ∃ p : Environment • f ∈ SW(p)

The KC server requests from agents, thus they show so-
cial ability. Delegating the task of knowledge extraction to
KCs allows agent developers to achieve a complete sepa-
ration between the knowledge extraction procedure and the
logic or base functionality an agent encapsulates. Any agent
can send messages to a KC in order to extract knowledge.
Knowledge requests are expressed as predicate symbols.
The reply from the KC are ground predicate atoms that sat-
isfies the predicates in query or an empty set of formula if
the KB is erroneous.

KnowledgeChannelQuery
ΞKnowledgeChannelState
Q? : P Identp

R! : P Wff

Q �= ∅

SemanticVerification(KB)∧ R = {f : KB.K; ip : Identp;

sc : seq1 Term; | f = atom(pred(ip, sc) • f}
¬ SemanticVerification(KB)∧ R = ∅

If we launch the query Q = {Golfer} the KC would
reply with R = {Golfer(Rich Beem) , Golfer(Tiger Woods),
Golfer(Chris Riley), . . .}. This knowledge can be used can
be used to infer new knowledge. It also makes it pos-
sible to reuse knowledge. For instance, an agent using
the golfer ontology can infer that the golfers Rich Beem
and Tiger Woods are people, according to the axiom ∀ x •
Golfer(x) ⇒ Person(x), these knowledge can be shared by
applications in order to collaborate to accomplish a task.

5. Conclusions

The current web is mostly user–oriented. The seman-
tic web shall help extract information with well–defined se-
mantics, regardless of the way it is rendered, but it does

not seem it is going to be adopted in the immediate fu-
ture, which argues for another solution to the problem in
the meanwhile.

In this article, we have presented a new approach to
knowledge extraction from web sites based on specialised
knowledge channels agents. It improves on other proposals
in that it associates semantics with the extracted informa-
tion, and can also deal with changes because the informa-
tion is extracted by means of current wrappers. Further-
more, our proposal achieves a separation of the knowledge
extraction procedure from the base logic that web agents
encapsulate, thus easing the design and implementation of
clean, reusable, understandable agents.

References

[1] J. L. Arjona, R. Corchuelo, A. Ruiz, and M. Toro. A prac-
tical agent-based method to extract semantic information
from the web. In Advanced Information Systems Engineer-
ing, 14th International Conference, CAiSE 2002, volume
2348 of Lecture Notes in Computer Science, pages 697–700.
Springer, 2002.

[2] T. Berners-Lee, R. Cailliau, and J.-F. Groff. The World-
Wide Web. Computer Networks and ISDN Systems, 25(4–
5):454–459, Nov. 1992.

[3] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic
Web. Scientific American, 284(5):34–43, May 2001.

[4] B. Brewington and G. Cybenko. Keeping up with the chang-
ing web. Computer, 33(5):52–58, May 2000.

[5] D. Brickley and R. Guha. Resource description frame-
work schema specification 1.0. Technical Report
http://www.w3.org/TR/2000/CR-rdf-schema-20000327,
W3C Consortium, Mar. 2000.

[6] W. Cohen and L. Jensen. A structured wrapper induction
system for extracting information from semi-structured doc-
uments. In Proceedings of the Workshop on Adaptive Text
Extraction and Mining (IJCAI-2001), 2001.

[7] O. Corcho and A. Gómez-Pérez. A road map on ontology
specification languages. In Workshop on Applications of On-
tologies and Problem solving methods. 14th European Con-
ference on Artificial Intelligence (ECAI’00), 2000.

[8] D. Fensel, editor. Spinning the Semantic Web: Bringing the
World Wide Web to Its Full Potential. The MIT Press, 2002.

[9] J. Heflin. Towards the Semantic Web: Knowledge Represen-
tation in a Dynamic, Distributed Environment. PhD thesis,
University of Maryland, College Park, 2001.

[10] I. Horrocks, P. Patel-Schneider, and F. Harmelen. Review-
ing the design of DAML+OIL: An ontology language for
the semantic web. Technical Report http://www.daml.org,
Defense Advanced Research Projects Agency, 2002.

[11] C. Knoblock, K. Lerman, S. Minton, and I. Muslea. Ac-
curately and reliably extracting data from the web: A ma-
chine learning approach. IEEE Data Engineering Bulletin,
23(4):33–41, 2000.

[12] N. Kushmerick. Regression testing for wrapper mainte-
nance. In Proceedings of the 6th National Conference on
Artificial Intelligence (AAAI-99); Proceedings of the 11th

Conference on Innovative Applications of Artificial Intelli-
gence, pages 74–79, Menlo Park, Cal., July 18–22 1999.
AAAI/MIT Press.

[13] N. Kushmerick. Wrapper verification. World Wide Web
Journal, 3(2):79–94, 2000.

[14] N. Kushmerick, D. S. Weld, and R. B. Doorenbos. Wrap-
per induction for information extraction. In Intl. Joint Con-
ference on Artificial Intelligence (IJCAI), pages 729–737,
1997.

[15] L. Lim, M. Wang, S. Padmanabhan, J. Vitter, and R. Agar-
wal. Characterizing web document change. Lecture Notes
in Computer Science, 2118:133–144, 2001.

[16] S. Luke, L. Spector, D. Rager, and J. Hendler. Ontology-
based web agents. In W. Johnson and B. Hayes-Roth, ed-
itors, Proceedings of the First International Conference on
Autonomous Agents (Agents’97), pages 59–68, Marina del
Rey, CA, USA, 1997. ACM Press.

[17] M. Minsky. A framework for representing knowledge.
McGraw-Hill, New York, 1975.

[18] I. Muslea, S. Minton, and C. Knoblock. STALKER: Learn-
ing extraction rules for semistructured, web–based informa-
tion sources. In Proceedings of the AAAI-98 Workshop on
AI and Information Integration, 1998.

[19] M. R. Quillian. Word concepts: A theory and simulation
of some basic semantic capabilities. Behavioral Science,
12:410–430, 1967.

[20] M. Wooldridge and M. Jennings. Intelligent agents: The-
ory and practice. The Knowledge Engineering Review,
10(2):115–152, 1995.

A. Well–formed formula

Let Identc, Identv, Identf , Identp be the sets of identi-
fiers of constants, variables, functions and predicates, re-
spectively, in a first–order logical language. Then the com-
plete language can be specified as the Z free type Formula
in the following way:

[Identc, Identv, Identf , Identp]
Term ::= const〈〈Identc〉〉

| var〈〈Identv〉〉
| func〈〈Identf × seq1 Term〉〉

Atom ::= pred〈〈Identp × seq1 Term〉〉
| not〈〈Atom〉〉
| and〈〈Atom × Atom〉〉
| or〈〈Atom × Atom〉〉
| implies〈〈Atom × Atom〉〉
| iff 〈〈Atom × Atom〉〉

Formula ::= atom〈〈Atom〉〉
| forall〈〈Identv × Formula〉〉
| exists〈〈Identv × Formula〉〉

This states that a Formula is either an atom or an universal
quantifier over a formula or an existencial quantifier over a
formula. An atom is either an n-ary predicate or the nega-
tion of an atom or the conjunction of two atoms or the dis-
junction of two atoms or the implication formed from two

atoms or the bi–implication formed from two atoms. A term
is an identifier of constant or an identifier of variable or a
n-ary function. To illustrate the use of this free type, for-
mula ∀P(x) ⇒ Q(x) is represented by the following term:
forall(x, atom(implies(pred(P, 〈var(x)〉), pred(Q, 〈var(x)〉))))

A well–formed formula (Wff) is a formula that does not
contain any free variables, that is, its variables are bounded
by universal or existencial quantifiers. In order to define
the set of the well–formed formula in a logical language,
we need to specify axiomatically a recursive function called
FreeVars. It obtains the free variables in a formula or atom
or term.

FormulaAtomTerm ::= Formula | Atom | Term

FreeVars : FormulaAtomTerm → P Identv

∀ f : Formula; a, b, c : Atom; iv : Identv; ip : Identp;
if : Identf •

FreeVars(atom(a)) = FreeVars(a)∧
FreeVars(forall(iv, f)) = FreeVars(f) \ {iv}∧
FreeVars(exists(iv, f)) = FreeVars(f) \ {iv}∧
FreeVars(not(a)) = FreeVars(a)∧
FreeVars(and(b, c)) = FreeVars(b) ∪ FreeVars(c)∧
FreeVars(or(b, c)) = FreeVars(b) ∪ FreeVars(c)∧
FreeVars(implies(b, c)) = FreeVars(b) ∪ FreeVars(c)∧
FreeVars(iff (b, c)) = FreeVars(b) ∪ FreeVars(c)∧
FreeVars(pred(ip, st)) =∪{t : Term | t ∈ st •

FreeVars(t)}∧
FreeVars(var(iv)) = {iv}∧
FreeVars(const(c)) = ∅ ∧
FreeVars(func(if , st)) =∪{t : Term | t ∈ st • FreeVars(t)}

Set Wff is specified as the set of logical formula that does
not have any free variables.

Wff : P Formula

∀ f : Formula • f ∈ Wff ⇔ Freevar(f) = ∅

We can also obtain the set of predicate symbols in a for-
mula:

FormulaAtom ::= Formula | Atom

PredSyms : FormulaAtom → P Identp

∀ f : Formula; a, b, c : Atom; iv : Identv; ip : Identp •
PredSyms(formula(a)) = PredSyms(a)∧
PredSyms(forall(iv, f)) = PredSyms(f)∧
PredSyms(exists(iv, f)) = PredSyms(f)∧
PredSyms(not(a)) = PredSyms(a) ∧
PredSyms(and(b, c)) = PredSyms(b) ∪ PredSyms(c)∧
PredSyms(or(b, c)) = PredSyms(a1) ∪ PredSyms(c)∧
PredSyms(implies(b, c)) = PredSyms(b) ∪ PredSyms(c)∧
PredSyms(iff (b, c)) = PredSyms(b) ∪ PredSyms(c)∧
PredSyms(pred(ip, st)) = {ip}

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

