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Abstract

The increasing complexity and cost of software-intensive
systems has led developers to seek ways of increasing soft-
ware reusability. One software reuse approach is to develop
a Software Product-line (SPL), which is a reconfigurable
software architecture that can be reused across projects.
Creating configurations of the SPL that meets arbitrary re-
quirements is hard.

Existing research has focused on techniques that pro-
duce a configuration of the SPL in a single step. This paper
provides three contributions to the study of multi-step con-
figuration for SPLs. First, we present a formal model of
multi-step SPL configuration and map this model to con-
straint satisfaction problems (CSPs). Second, we show how
solutions to these CSP configuration problem CSPs can be
derived automatically with a constraint solver. Third, we
present empirical results demonstrating that our CSP-based
technique can solve multi-step configuration problems in-
volving hundreds of features in seconds.

1 Introduction

The high-cost of developing distributed real-time and
embedded (DRE) systems has pushed developers to find
novel solutions to increase the reusability of software.
One promising reuse approach is Software Product-lines
(SPLs) [7], which are software architectures that are de-
signed with built-in points of variability that can be al-
tered so that the software can be more readily reused across
projects. For example, an SPL for a car can be built with the
ability to use multiple engine control software components
so it can be adapted to cars with different engine types.

Ensuring that a correct software product is produced
from an SPL involves building models of the rules for con-
figuring the points of variabilty. For example, an SPL con-
figuration for a car cannot simultaneously employ two dif-
ferent engine control software components or the wrong
component for the given engine type. A common tech-
nique for specifying SPL configuration rules is afeature

model[12], which abstracts the components and points of
variaiblity in a software product asfeatures.

Feature models are typically implemented as tree-like
structures that specify how the components and points
of variability affect one another. For example, the fea-
ture model of a car in Figure 1 can optionally include
anAutomated Driving Controller. If the car includes
this feature it must also include theCollision Avoidance
Breaking feature. Any arbitrary configuration can be
checked against the feature model to determine if it is a
complete and correct configuration of a software product.

When an SPL is configured for a new set of require-
ments, developers must find a selection of the features from
the feature model that (1) satisfy the requirements and (2)
adhere to the rules in the feature model. This configuration
process involves reasoning over a complex set of constraints
to meet an end goal. Various tools [2, 13, 1, 4, 5, 15] have
been developed to help reduce the complexity of this pro-
cess by automating parts of the feature selection process.

Open problems. Some configuration problems require
starting at an arbitrary state and deriving a new configura-
tion that meets the target requirements. For instance, an
automotive software designer using an SPL may start with
no features selected and derive a selection of features for
the automobile software to meet the needs of a new model
year car. Often, however, constraints limit developers from
directly transitioning from the starting state to the desired
end configuration.

For example, assume that a group of automotive SPL
developers want to modify the configuration of an existing
SPL car model to include automated driving capabilities, as
shown in Figure 1. The developers have determined that the
cost of adding all the new features will be 88 million dollars.
The developers only have a annual development budget of
35 million dollars to reconfigure the SPL variant, however,
which means that the developers cannot simply add all fea-
tures in a single year. Management has also asked the de-
velopers to make continual progress on developing the car
by adding new features to it every year.

To manage these constraints, the developers must incre-
mentally add the desired features over a series of steps,i.e.,
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Figure 1: A Configuration Problem Requiring Multiple Steps

over several years the developers will produce a series of in-
termediate configurations that leverage each other to reach
the desired configuration. For example, they can develop
a subset of the new features in the first year’s car config-
uration, add more of the remaining desired features in the
second year, and add the rest of the desired features and
reach the new configuration in the third year. This process
of producing a series of intermediate configurations—i.e.,
a configuration path—is shown in Figure 2. We call this
sequence of activities amulti-step configuration problem.

A key challenge is that the developers cannot arbitrar-
ily pick and choose features to add in a given year to meet
the budget constraint. For example, developers will vio-
late the feature model rules if they choose to addParallel
Parking in year 3 withoutLateral Range Finder, which
is required via a cross-tree constraint, as shown in Figure 2.
Developers must therefore not only adhere to their con-
straints on the changes that can be produced in a given year
(such as the maximum allowed annual development bud-
get) but also ensure that the changes they choose create a
valid configuration at the end of each year. The developers
also cannot choose an intermediate configuration to transi-
tion through that will not function and hence cannot be sold.

Further complicating the multi-step configuration prob-
lem is that developers may need to foresee tradeoffs that
must be made along the way. For example, it is not possible
to simultaneously addCollision Avoidance Braking
and Enhanced Avoidance in the same year since their
total development cost is 36 million dollars, as shown
in Figure 2. Developers must therefore addCollision
Avoidance Braking andStandard Avoidance one year
(to simultaneously meet the budget constraint and the fea-
ture model constraints) and then remove theStandard
Avoidance feature at a later step to add the desired
Enhanced Avoidance feature.

Prior work on configuration analysis and automation [13,
1, 4, 5] focused on creating one configuration that meets a
specific set of requirements,i.e., they find a configuration in
one step and assume that it is possible to directly transition

to it. These techniques do not, however, support the need
to split the configuration over multiple steps to adhere to a
change constraint, such as the maximum development bud-
get per year. A gap therefore exists in current techniques
when developers need to reason about and automate config-
uration over multiple steps.

Solution overview and contributions.To fill the gap in
existing research, we have developed an automated method
for deriving a set of configurations that meet a series of
requirements over a span of configuration steps. We call
our technique theMUlti-step Software Configuration prob-
LEm solver(MUSCLE). MUSCLE transforms multi-step
feature configuration problems into constraint satisfaction
problems (CSPs) [10]. Once a CSP has been produced for
the problem, MUSCLE uses a constraint solver (which is an
automated tool for finding solutions to CSPs) to generate a
series of configurations that meet the multi-step constraints.

This paper provides the following contributions to the
study of feature model configuration over a span of multiple
steps:

1. We provide a formal model of multi-step configura-
tion,

2. We show how the formal model of multi-step configu-
ration can be mapped to a CSP,

3. We show how multi-step requirements, such as limits
on the cost of feature changes between two successive
configurations, can be specified using our CSP formu-
lation of multi-step configuration,

4. We describe mechanisms for optimally deriving a set
of configurations that meet the requirements and min-
imize or maximize a property of the configurations or
configuration process, such as total configuration cost,

5. We show how multi-step optimizations can be per-
formed, such as deriving the series of configurations
that meet a set of end-goals in the fewest time steps,
and

Paper organization. The remainder of the paper is orga-
nized as follows: Section 2 summarizes the challenges of
performing automated configuration reasoning over a se-
quence of steps; Section 3 describes a formal model of
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Figure 2: Potential Configuration Paths

multi-step configuration; Section 4 explains MUSCLE’s
CSP-based automated multi-step configuration reasoning
approach; Section 5 analyzes empirical results from ex-
periments demonstrating the scalability of MUSCLE; Sec-
tion 6 compares MUSCLE with related work; and Section 7
presents concluding remarks.

2 Challenges

A multi-step configuration problem for an SPL involves
transitioning from a starting configuration through a series
of intermediate configurations to a configuration that meets
a desired set of end state requirements. The solution space
for producing a series of successive intermediate configura-
tions to reach the desired end state can be represented as a
directed graph, as shown in Figure 3(a).

(a) A Graph of a Multi-step Configuration Problem

(b) Optimization of Total Steps

Figure 3: Multi-step Configuration Graphs

Each successive series of points represents potential con-
figurations of the feature model at a given step. For ex-
ample, the configurationsB0 . . .Bi represent the intermedi-
ate configurations that can be reached in one step from the
starting configuration. In this section we use this graph for-
mulation of the problem’s solution space to showcase the
challenges of finding valid solutions.

2.1 Challenge 1: Graph Complexity
A critical challenge to developers attempting to derive

solutions to multi-step configuration problems manually or
to use a graph algorithm is that there are an exponential
number of potential intermediate configurations and paths
that could be used to reach the desired end state. In the
worst case, at any given intermediate step, there can be
O(2n) points (wheren is the number of features in the fea-
ture model). In the worst case, therefore, there are 2n poten-
tial subsets of the features in the feature model that could
form a configuration. Moreover, for a multi-step configura-
tion problem overK time steps, there areO(K2n) possible
intermediate points.

Further compounding this problem is that for any inter-
mediate configuration at stepT, there are in the worst case
2n−1 points at stepT +1 that could be reached from it by
adding or removing features to its feature selection. The in-
termediate configurations that do not precede the end point
will therefore have 2n − 1 outgoing edges. Section 4 dis-
cusses how MUSCLE uses CSP-based automation to elim-
inate the need for developers to manually find solutions
to these multi-step configuration problems, which reduces
configuration time and cost.

2.2 Challenge 2: Point Configuration Constraints
Although there are a substantial number of potential

intermediate configurations, many of these configurations
will not meet developer requirements. For example, many
of theK2n arbitrary subsets of feature selections will repre-
sent configurations that do not adhere to the feature model
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constraints. Moreover, other external constraints, such as
safety constraints requiring a specific feature to be selected
at all times, may not be met. We term these constraints on
the allowed configurations at a given steppoint configura-
tion constraints.

Point configuration constraints eliminate many potential
configuration paths. These constraints may create small ad-
ditional restrictions, such as that a particular feature must
always be selected. Complex step-based constraints may
also be present, such as a particular automotive feature be-
comes unavailable after a specific time step (year) because
the supplier discontinues it. Finally, a multi-step configu-
ration problem may not dictate an exact starting and end-
ing configuration, but merely a series of point configuration
constraints that must hold for the start and end points of
the configuration path. The myriad of possible point con-
figuration constraints significantly increases the challenge
of finding a valid configuration path for a multi-step con-
figuration problem. Section 4.3 describes how MUSCLE
models these constraints using a CSP, which enables a CSP
solver to automatically derive solutions that adhere to these
constraints and thus reduce tedious and error-prone manual
configuration.

2.3 Challenge 3: Configuration Change/Edge
Constraints

The automotive example in Figure 1 requires that devel-
opers adding new features spend no more than 35 million
dollars in one year. The cost of adding/removing features
can be captured as the length or weight of the edges con-
necting two transitions. For example, to transition directly
from the starting configuration to the desired end configu-
ration requires 88 million dollars and has an edge weight of
88.

Developers must not only find a path that reaches the
desired end state without violating the point configuration
constraints in Section 2.2, but also ensure that any con-
straints on the edges connecting successive configurations
are met. Transitioning directly from the start configuration
to end configuration would violate the edge constraint of
the 35 million dollar yearly development budget. Edge con-
straints further reduce the number of valid paths and add
complexity to the problem. Section 4.4 shows how these
edge restrictions can be encoded as constraints on MUS-
CLE’s CSP variables to plan configuration paths that adhere
to development budgets, which is hard to determine manu-
ally.

2.4 Challenge 4: Configuration Path Optimiza-
tion

There may often be multiple correct configuration paths
that reach the desired end point. In these cases, develop-
ers would like to optimize the path chosen, for example to

minimize total cost (the sum of the edge weights). In other
cases, it may be more imperative to meet the desired end
point constraints in as few time steps as possible.

For example, in Figure 3(b), developers have an initial
development budget of 35 million dollars and then a subse-
quent yearly budget of 50 million dollars.

Although the cost of the path through intermediate con-
figurationsBi andCi is cheaper (70 million), developers
may prefer to pass throughB0 andC0 since they will al-
ready have a configuration that meets the end goals atC0.
Developers must therefore not only contend with numer-
ous multi-step constraints, but must also perform complex
optimizations on the properties of the configuration path.
Section 4.5 shows how optimization can be performed on
MUSCLE’s CSP formulation of multi-step configuration to
allow developers to find the fastest and most cost-effective
means of achieving a configuration goal.

3 A Formal Definition of Multi-step Configu-
ration

This section presents a formal model of multi-step con-
figuration. In its most general form, multi-step configura-
tion involves finding a sequence of at mostK configura-
tions that satisfy a series of point configuration constraints
and edge constraints. This definition requires the start and
end configurations meet a set of point constraints, but does
not dictate that there be asinglevalid starting and ending
configuration.

General formal model. We define a multi-
step configuration problem using the 6-tupleMsc =<

E,PC,∆(FT ,FU),K,FStart,Fend >, where:
• E is the set of edge constraints, such as the maximum

development cost per year for features,
• PC is the set of point configuration constraints that

must be met at each step, such as the feature model
rules that developers may require to be adhered to
across all steps (feature model rules do not have to be
enforced at each time step),

• ∆(FT ,FU) is a function that calculates the change cost
or edge weight of moving from a configurationFT at
stepT to a configurationFU at stepU ,

• K is the maximum number of steps in the configuration
problem,

• FStart is a set of configuration constraints on the start-
ing configuration, such as a list of features that must
initially be selected,

• Fend is a set of configuration constraints on the final
configuration, such as a list of features that must be
selected or maximum cost of the final configuration.

We define a configuration path from stepT overK steps
as a K-tuple

P =< FT ,FT+1, . . .FT+K−1 >
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, where the configuration at stepT is denoted byFT . Each
configuration,FT , denotes the set of selected features at step
T.

Section 4 shows how this formal model can be specified
as a CSP. Although we use CSPs for reasoning on the for-
mal model, we could also use SAT solvers, propositional
logic, or other techniques to reason about this model. The
formal model is thus applicable to a wide range of reasoning
approaches.

3.1 Constraint and Function Examples
We now describe how the formal model presented above

can be used to model typical SPL configuration constraints.
We show how common configuration needs, such as the se-
lection of specific features or budgetary constraints, can be
mapped to portions of our multi-step configuration problem
tuple.

Edge constraint examples.The set of edge constraints
E can include numerous types of constraints on the tran-
sition from one configuration to another. For example, a
constrainte1 ∈ E may dictate that the maximum weight of
any edge between successive configurations inFT ,FT+1 ∈P
have at most weight 35 (for the automotive problem from
Figure 1):

∀T ∈ (0..K−1), ∆(FT ,FT+1) ≤ 35

Edge constraints may also vary depending on the step, for
example a development budget may start at $35 million and
may expand as a function of the step:

∀T ∈ (0..K−1), ∆(FT ,FT+1) ≤
35

1− (.01∗T)

Edge constraints may also be attached to specific time steps:

∀T ∈ (0..4,6..K−1), ∆(FT ,FT+1) ≤ 35
1−(.01∗T)

∆(F5,F6) ≤ 40

Point configuration constraint examples.The point con-
figuration constraints specify properties that must hold for
the feature selection at a given step. Both the starting and
ending points for the multi-step configuration problem are
defined as point configuration constraints on the first and
last steps. For example, we want to start at a specific con-
figurationFstart and reach another configurationFend:

(F0 = Fstart)∧ (FK = Fend)

Another general constraintpc1 ∈ PC could require that for
any stepT, the feature selectionFT satisfies the feature
model constraintsFc:

∀T ∈ (0..K−1), FT ⇒ Fc

Developers could also require that a specific set of features
Fstart, such as safety critical braking features, be selected at
all times:

∀T ∈ (0..K−1), Fstart ⊂ FT

Change calculation function examples.The function
∆(FT ,FU) calculates the cost of changing from one config-
uration to another configuration at a different step. For ex-
ample, the following change calculation function computes
the cost of changing from one configuration to another:

Fadded = FU −FT

∆(FT ,FU) = ∑ fi ∗ ci, fi ∈ Fadded

wherefi is theith added feature andci is the price of adding
that feature.

4 A CSP Model of Multi-step Configuration
This section describes how MUSCLE uses CSPs to auto-

matically derive solutions to multi-step configuration prob-
lems. To address the challenges outlined in Section 2 we
show that deriving a configuration path for a multi-step con-
figuration problem can be modeled as a CSP [10] using the
formal framework from Section 3. After a CSP formulation
of a multi-step configuration problem is built, MUSCLE can
use a CSP solver to automatically derive a valid configura-
tion path on behalf of the developer. Automating the con-
figuration path derivation helps reduce the complexity from
Challenge 1 in Section 2.1. Moreover, the CSP solver can
be used to perform optimizations that would be extremely
hard to achieve manually.

Prior work on automated feature model configuration [3,
15, 16] has yielded a framework for representing feature
models and configuration problems as CSPs. This section
shows how a new formulation of feature models and con-
figuration problems can be developed that (1) incorporates
multiple steps, (2) allows a constraint solver to derive a con-
figuration path for evolving a feature selection over mul-
tiple intermediate steps to meet an end goal, (3) permits
the specification of intermediate configuration constraints,
(4) allows for change/edge constraints on the transition be-
tween feature selections, and (5) can be leveraged to opti-
mize configuration path properties, such as path length or
cost.

4.1 CSP Automated Configuration Background
A CSP is a set of variables and a set of constraints over

the variables. For example,(X −Y > 0)∧ (X < 10) is a
simple CSP involving the integer variablesX andY. A
constraint solver is an automated tool that takes a CSP as
input and produces alabelingor set of values for the vari-
ables that simultaneously satisfies all of the constraints. The
solver can also be used to find a labeling of the variables
that maximizes or minimizes a function of the variablese.g.
maximizeX +Y yieldsX = 9,Y = 8.

A feature model can be modeled as a CSP through a se-
ries of integer variablesF, where the variablefi ∈ F cor-
responds to theith feature in the feature model. A config-
uration is defined as a series of values for these variables
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Figure 4: Mapping Feature Model Rules to a CSP

such that fi = 1 implies that theith feature is selected in the
configuration. If theith feature is not selected,fi = 0. Con-
figuration rules from the feature model are represented as
constraints over the variables inF , as shown in Figure 4.

More details on building a CSP from a feature model are
described in [15, 3].

4.2 Introducing Multiple Steps into the CSP
The goal of automated configuration over multiple-steps

is to find a configuration path that permutes a given starting
configuration through a sequence of intermediate configura-
tions to reach a desired end state. For example, the configu-
ration paths in Figure 2 capture sequential modifications to
the car configuration, shown in Figure 1, that will incorpo-
rate high-end features into the base automobile model. To
reason about a configuration path over a span of steps, we
first introduce a notion of a configuration step into MUS-
CLE’s CSP model of configuration.

CSP model of configuration steps.To introduce con-
figuration steps into MUSCLE’s configuration CSP, we
modify the configuration CSP formulation outlined in Sec-
tion 4.1. We no longer use a variablefi to refer to whether
or not theith feature is selected or deselected. Instead,we
refer to the selection state of each feature at a specific
step T with the variablefiT , i.e., if the ith feature is se-
lected at stepT, fiT = 1. We refer to an entire configura-
tion at a specific step as a set of values for these variables,
fiT ∈ FT . A solution to the CSP is configuration path de-
fined by a labeling of all of the variables in the K-tuple:
< FT ,FT+1 . . .FT+K−1 >.

For example, if theABS feature (denotedfa) is not se-
lected at stepT and is selected at stepT +1, then:

faT = 0
faT+1 = 1

Figure 5 shows a visualization of how thefiT ∈ FT vari-
ables map to feature selections.
4.3 CSP Point Configuration Constraints

To address Challenge 2 from Section 2.2, the point con-
figuration constraints (which are the constraints that define

Figure 5: An Example of Variables Representing Feature
Selection State at Specific Steps

what constitutes a valid intermediate configuration) can be
modeled as constraints on the variablesfiT ∈FT . Each point
configuration constraint has a specific set of steps,Tpc, dur-
ing which it must be met,i.e., the constraint must only eval-
uate to true on the precise steps for which it is in effect.
For example, a simple constraint would be that the 2nd and
3rd configurations must have the featuref1 selected. The
set of steps for which this constraint must hold would be
Tpc = {2,3}.

CSP model of point configuration constraints.A CSP
point configuration constraint,pci ∈ PC, requires that:

∀T ∈ Tpc, FT ⇒ pci

Arbitrary point configuration constraints can be built using
this model to restrict the valid configurations that are passed
through by the configuration path. This flexible point con-
figuration constraint mechanism allows developers to spec-
ify and automatically find solutions to problems involving
the constraints from Challenge 2 in Section 2.2.

CSP point configuration constraint example.Assume
that we want to find values forFT . . .FT+K such that we
never violate any of the feature model constraints at any
step. Further assume that the constraints in the feature
model remain static over theK steps (feature model changes
over multiple steps can also be modeled). If thejth feature
is a mandatory child of theith feature, we add the constraint:

∀T ∈ (0. . .K), ( fiT = 1) ⇔ (FjT = 1)

That is, we require that at any stepT, if the ith feature (FiT )
is selected, thejth feature (f jT ) is also selected. Further-
more, at any stepT, if the jth feature (FjT ) is selected, the
ith feature (fiT ) is also selected. Other example point con-
figuration constraints can be mapped to the CSP as shown
in Figure 6(a) and Figure 6(b).
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(a) Point Configuration Constraints for Feature Model Structure

(b) Point Configuration Constraint for Feature Selection

Figure 6: Point Configuration Constraint Examples

4.4 CSP Edge/Change Constraints
Challenge 3 from Section 2.3 described how developers

must be able to specify and adhere to constraints on the dif-
ference between two configurations at different steps. These
edge/change constraints can be modeled in the CSP as con-
straints over the variables in two configurationsFT andFU .
By extending the CSP techniques we have developed in past
work [16], we can specifically capture which features are
selected or deselected between any two steps and constrain
these changes via budget or other restrictions.

CSP model of edge/change constraints.To capture dif-
ferences between feature selections between stepsT andU ,
we create two new sets of variablesSTU andDTU. These
variables have the following constraints applied to them:

∀siTU ∈ STU, (siTU = 1) ⇔ ( fiT = 0)∧ ( fiU = 1)
∀diTU ∈ DTU, (diTU = 1) ⇔ ( fiT = 1)∧ ( fiU = 0)

If a feature is selected at time stepT and not at time stepU ,
thendiTU is equal to 1. Similarly, if a feature is not selected
at stepT and selected at stepU , siTU is equal to 1.

An edgeedge(T,U) between the configurations at steps
T andU is defined as a 2-tuple:

edge(T,U) =< DTU,STU >

An edge is thus defined by the features deselected and se-
lected to reach configurationFU from configurationFT . The

weight of the edgeweight(edge(T,U)) can then be calcu-
lated as a function of the edge tuple. For example, if theith
feature costsci to add or remove then

weight(edge(T,U)) =
n

∑
i=0

siTU ∗ ci +
n

∑
i=0

diTU ∗ ci

CSP edge/change constraint example.The cost of in-
cluding a particular feature may change over time. For
example, the cost of adding a GPS guidance system to a
car does not remain fixed, but instead typically decreases
from one year to the next as GPS technology is commodi-
tized. We can model and account for these changes in
MUSCLE’s CSP formulation and constrain the configura-
tion path so that it adds features at times when they are suf-
ficiently cheap. We will define an edge constraint that takes
into account changing feature modification costs and limits
the change in cost between two successive configurations to
$35 million dollars.

We assume we can calculate that the price of including
the ith feature so that it is included in the feature selection
at stepT by the function:

Cost(i,T) =
ci

T +1

We can then define the cost of adding features to a configu-
ration as:

weight(edge(T,T +1)) =
n

∑
i=1

(siT T+1∗Cost(i,T +1))

We can now limit the cost of any two successive configura-
tions via the edge constraint:

∀T ∈ (0..K−1), weight(edge(T,T +1))≤ 35

4.5 Multi-step Configuration Optimization
Challenge 4 from Section 2.4 showed that optimizing the

configuration path is an important issue. CSP solvers can
automatically perform optimization while finding values for
the variables in a CSP (though it may be impractical time-
wise for some problems). We can define goal functions over
the CSP variables to leverage these optimization capabilities
and address Challenge 4.

In some cases, developers may not want to just find any
configuration path that ends in the desired state. Instead,
they may want a path that produces a configuration that
meets the end goals as early as possible. For example, in the
automotive problem from Section 1 developers may want to
find a configuration path that meets their constraints and in-
cludes the high-end features in the base model in fewer than
five years.

CSP model of path length. To support path length
optimization, we define a measure of the number of steps
needed to reach a valid end state. We must therefore deter-
mine if the constraints on the final configurationFend (which
is the goal state) are met by some configuration prior to the
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last configuration (FT whereT < K −1). If we meet the fi-
nal state constraints sooner than the final configuration, then
we have found a configuration process that requires fewer
configuration steps.

To track whether or not a configuration has met the con-
straints on the ending configurationFend, we create a series
of variableswT ∈W to represent whether or not the configu-
rationFT ∈ P satisfiesFend. For each configuration,FT ∈ P,
if Fend is satisifed:

(FT ⇒ Fend) ⇒ (wT = 1)

i.e., if at any step (up to and including the last step) we
satisfy the end state requirements, setwT equal to 1. We
also require that after one step has reached a correct end-
ing configuration, the remaining steps also keep the correct
configuration and do not alter it:

(wT = 1) ⇒ (wT+1 = 1)
(wT = 1) ⇒ (∑n

i=0siT T+1 + ∑n
i=0diTT+1 = 0)

Optimization examples.We can optimize to find the short-
est configuration path to reach the goals over K steps by
asking the solver to maximize:

K−1

∑
T=0

wT

The reason that maximizing this sum will minimize the
number of steps taken to reach the desired end state is that
the sooner the state is reached, the more stepswT will equal
1.

The most straightforward optimization functions are de-
fined as functions of the variables in the configuration path
P. For example, we can instruct the solver to minimize the
cost of the ending configuration. Assume that the cost ofith
feature at stepK is denoted by the variableci ∈ CK , mini-
mizeCK , where:

CK =
n

∑
i=0

fi ∗ ci

Other optimizations can be performed on the weights of
the edges. For example, to find the configuration path with
the lowest development cost, where the development cost is
the edge weight the goal is to minimize:

K−1

∑
T=0

weight(edge(T,T +1))

4.6 A Complete Multi-step CSP Example

We now provide a complete mapping of the automotive
configuration problem in Section 1 to MUSCLE’s multi-
step CSP. For this problem, the automotive developers want
to include the high-end features into the base model over
the course of five years (K = 5). We first create a series of
configuration variables to represent the feature selection at
the end of each of the five years:

Figure 7: Point Configuration Constraints for the Automo-
bile Example

F0 = ( f00, f10, . . . f80)
F1 = ( f00, f11, . . . f81)

. . .

F4 = ( f00, f14, . . . f84)

The mappings of the automobile features from Figure 1 to
CSP variables can be seen in Figure 7. A configuration path
is defined by a set of feature selections for each of the five
years:

P =< F0,F1, . . .F4 >

The point constraint,pc0 ∈ PC, ensures that the feature
model constraints are met by each year’s configuration, as
shown in Figure 7. We must also specify the point configu-
ration constraint for the starting configuration:

Fstart = ( f00 = 1)∧ ( f10 = 1)∧ ( f20 = 0)∧ ( f30 = 0)
∧( f40 = 0)∧ ( f50 = 0)∧ ( f60 = 0)∧ f70 = 0)
∧( f80 = 0)

Moreover, we must ensure that the high-end features are
included in the last configuration:

Fend = ( f74 = 0)∧ ( f04 = 1)∧ ( f14 = 1)∧ ( f24 = 1)∧
( f34 = 1)∧ ( f44 = 1)∧ ( f54 = 1)∧ ( f64 = 1)
∧( f84 = 1)

Our complete set of point configuration constraints isPC=
(pc0).

Finally, we must specify how the change cost between
two configurations is calculated and enforce the edge con-
straint that at most $35 million dollars is spent per year.

∆(FT ,FT+1) = 20s2TT+1 +14s3TT+1 +19s4TT+1 +8s5TT+1

+11s6TT+1 +1s7TT+1 +16s8TT+1

E = (∀T ∈ (0..3), ∆(FT ,FT+1) ≤ 35)

Given this CSP formulation, we can use a constraint solver
to automatically derive a solution to the multi-step automo-
tive configuration problem described in Section 1.
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5 Results

As described in Section 2.1, configuring an SPL over
multiple steps is a highly combinatorial problem. An au-
tomated multi-step SPL configuration technique should be
able to scale to hundreds of features and multiple steps. This
section presents empirical results from experiments we per-
formed to determine the scalability of MUSCLE.

Our experiments were performed with an implemen-
tation of the MUSCLE provided by the open-source As-
cent Design Studio (available fromcode.google.com/
p/ascent-design-studio). The Ascent Design Stu-
dio’s implementation of MUSCLE is built using the Java
Choco open-source CSP solver (available fromchoco.
sourceforge.net). The experiments were performed on
a computer with an Intel Core DUO 2.4GHZ CPU, 2 gi-
gabytes of memory, Windows XP, and a version 1.6 Java
Virtual Machine (JVM). The JVM was run in server mode
using a heap size of 40 megabytes (-Xms40m) and a maxi-
mum memory size of 256 megabytes (-Xmx256m).

To test the scalability of MUSCLE we needed 1,000s of
feature models to test with, which posed a problem since
there are not many large-scale feature models available to
researchers. To solve this problem, we used a random fea-
ture model generator developed in prior work [16]. The
feature model generator and code for these experiments is
available in open-source form along with the Ascent Design
Studio. We used a maximum branching factor of 5 children
per feature and a maximum of 1/3 of the features were in an
XOR group.1

We measured the solving time of MUSCLE by gener-
ating random multi-step configuration problems and solv-
ing for configuration paths that involved larger and larger
numbers of steps. The problems were created by generating
a semi-random feature model with 500 features as well as
starting and ending configurations. MUSCLE was used to
derive a configuration path between the two configurations.

Our experiments were performed withlarge-scale con-
figuration paths, which were produced by forcing the solver
to find a configuration path that involved switching between
two children of the root feature that were involved in an
XOR group. For a feature model with 500 features config-
ured over 3 steps, the worst case solving time we observed
was roughly 3 seconds. The worst case solving time for fea-
ture models configured over 10 steps was 16s. These initial
results indicate that the technique should be sufficiently fast
for feature models with hundreds of features.

6 Related Work

This section compares MUSCLE with related work.

1XOR feature groups are features that require the set of their selected
children to satisfy a cardinality constraint (the constraint is 1..1 for XOR).

Automated Single-step Configuration:Several single-
step feature model configuration and validation techniques
have been proposed [2, 13, 1, 4, 5, 15]. These techniques
use CSPs and propositional logic to derive feature model
configurations in a single stage as well as assure their va-
lidity. These techniques help address the high complexity
of finding a valid feature selection for a feature model that
meets a set of intricate constraints.

While these techniques are useful for the derivation and
validation of configurations in a single step, they do not
consider feature configuration over the course of multiple
steps. In scenarios, such as the automotive example from
Section 1, the ability to reason about configuration over
multiple steps is critical. MUSCLE provides this automated
reasoning across multiple steps. Moreover, MUSCLE can
also be used for single-step configurations since it is a spe-
cial case of multi-step configuration where there is only one
stepK = 1.

Staged Configuration: Czarnecki et al. [8] describe a
method for using staged feature selection to achieve a fi-
nal target configuration. This multi-stage selection con-
siders cases in which the selection of features in a previ-
ous stage impacts the validitiy of later stage feature selec-
tions. Our technique also examines the production of a fea-
ture model configuration over multiple configuration steps.
MUSCLE is complementary to Czarnecki et al.’s work and
provides a general formal framework that can be used to
perform automated reasoning on staged configuration pro-
cesses. Moreover, MUSCLE can also be used to reason
about other multi-step configuration processes that do not
fit into the staged configuration model, such as the the ex-
ample from Section 1 where each step must reach a valid
configuration.

Staged configuration can be modeled as a special in-
stance of multi-step configuration. Specifically, staged con-
figuration is an instance of a multi-step configuration prob-
lem where:E = /0, Fstart = /0, Fend = (FK−1 ⇒ Fc), K is
set to the number of stages,∆(FT ,FU) is not defined, and
Fc is the set of feature model constraints. That is, there
are no limitations on the changes that can be made between
successive configurations, the starting configuration has no
features selected, and the ending configuration yields a valid
feature model configuration. The staged configuration def-
inition can be refined to guarantee that successive stages
only add features:∀T ∈ (0..K −1),FT ⊂ FT+1.

Classen et al. [6] have investigated creating a formal se-
mantics for staged configuration. Furthermore, they have
provided a definition of a configuration path through a se-
ries of stages for a feature model. Whereas Classen et al.
have focused on configuration paths that continually reduce
variability, MUSCLE is a formal model that allows for both
the reduction and introduction of variability in the config-
uration process. Moreover, MUSCLE allows for complete
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configurations to be met at multiple points in the configura-
tion process.

Quality Attribute Evaluation: Several techniques have
been proposed for using quality attribute evaluation [9, 11,
14] to guide a configuration process. These techniques pro-
vide a framework for assessing the impact of each feature
selection on the overall capabilities of the configured sys-
tem. As a result, quality characteristics, such as reliability,
can be taken into account when selecting features. These
techniques are also designed for single step configuration
processes. These techniques could be used in a complemen-
tary fashion to MUSCLE to produce the point configuration,
edge, and other constraints in the multi-step configuration
model.

7 Concluding Remarks
Many production SPL configuration problems require

developers to evolve a configuration over multiple steps,
rather than in a single iteration. Multi-step configuration,
however, must take into account constraints on the change
between successive configurations, such as the increase in
cost of an automobile’s configuration from one year to the
next. Moreover, even though configuration is performed
over multiple steps, a valid configuration must still be pro-
duced at the end of each year, further adding complexity
while maintaining a functional system configuration.

It is hard to determine a sequence of feature model con-
figurations and feature selections such that an initial config-
uration can be transformed into a desired target configura-
tion. This paper introduces a technique, called theMUlti-
step Software Configuration probLEm solver(MUSCLE),
for modeling and solving multi-step configuration prob-
lems. MUSCLE represents the problem as a CSP, which
enables CSP solvers to determine a path from a starting con-
figuration to a target configuration. The output from MUS-
CLE is a valid sequence of feature selections that will lead
from a starting configuration to the desired target configu-
ration while also taking into account resource constraints.

Open-source implementations of MUSCLE are available
in the Ascent Design Studio (ascent-design-studio.
googlecode.com) and FAMA (www.isa.us.es/fama)2.
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