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Abstract
We study the dynamics of a localized spin-1/2 driven by a time-periodicmagnetic field that undergoes
a topological transition. Despite the strongly non-adiabatic effects dominating the spin dynamics, we
find that thefield’s topology appears clearly imprinted in the Floquet spin states through an effective
Berry phase emerging in the quasienergy. This has remarkable consequences on the spin resonance
condition suggesting awhole new class of experiments to spot topological transitions in the dynamics
of spins and other two-level systems, fromnuclearmagnetic resonance to strongly-driven super-
conducting qubits.

1. Introduction

Themanipulation of spin states by guiding fields inmesoscopic circuits offers several possibilities, from electron
spin resonance [1] to electron spin interferometry [2], among others. This includes the prospects of spin control
by geometricmeans, i.e., bymaking use of geometric phases [3] that arise under the action ofmagnetic textures
with a suitable topology [4]. Recently, we have shown that guidingmagnetic textures undergoing a topological
transition can imprint this property in complex spin dynamics [5].More concretely, we reported electron
transport simulations in spin interferometers subject to hybrid spin–orbit/magnetic textures showing a phase
dislocation in the conductance as the distinct signature of a topological transition. This result is intriguing as the
complexity of the spin dynamics near the critical point does not smooth theway for an intuitive picture of the
transition in terms of geometric spin phases.

Here we address the problemof a localized spin subject to the action of time-periodic driving fields which are
the time-dependent equivalent of the topological field textures studied in [5] for spin carriers6. This leads us to
workwithin the Floquet framework, an area that has recently become very active due to the possibility of
generating novel (topological) phases ofmatter [8–11].We show that the topological characteristics of the
guiding field have striking consequences on the spin resonance condition, leading to a definite inflection of the
Bloch–Siegert shift [12] at the critical point where the field undergoes a topological transition.We therefore
propose corresponding resonance experiments as a proof of concept for topological transitions in the dynamics
of spins-1/2 or any other two-level system as, e.g., strongly-driven superconducting qubits (SCQs). This
approach has the advantage to overcome the difficulties present in spin-carrier implementations as those arising
fromdisorder,multichannel transport and dephasing in hybrid spin–orbit/magnetic textures. Additionally, we
develop a suitable theory that captures the topological signature left by the guiding field in terms of an emergent,
effective Berry phase in the quasienergy of Floquet spin states (FSSs).

In section 2we introduce the concept of topological driving fields in the Floquet theory. In section 3we
present ourmain results concerning the topological imprints on spin resonances. In section 4we present a
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theory revealing complementary topological features in the FSSs. Brief concluding remarks appear in section 5.
Technical details are discussed in appendices A–C.

2. Spin dynamics under topological drivingfields

Consider a localized spin-1/2 guided by a time-dependentmagnetic field consisting of two coplanar
components: a rotating driving w w= +( ) ( ˆ ˆ)t B t tB x ycos sin1 1 0 0 and a constant = ˆBB x2 2 (seefigure 1).
This is a Floquet problemdescribed by the time-dependent Schrödinger equation

 Y ñ =( )∣ ( ) ( )t t 0 1

with Floquet operator  º - ¶ ¶( ) ( )t H t ti andHamiltonian

 w
w s w s

w
s= + +( ) ( ) ( )H t t t

2
cos sin

2
, 2x y x

1
0 0

2

wherewe have introduced the Larmor frequencies w m= B1,2 1,2 , withμ the gyromagnetic ratio. The general
solution of equation (1) reads
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with quasienergy ε and periodic FSS y ñ∣ ( )t satisfying the eigenvalue equation
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with time-dependent q ( )t andj ( )t . The spin dynamics resulting from equation (4) can be rather complex
depending on the parameter setting in theHamiltonian (2). As a rule, the instantaneous quantization axis of the
FSSs (5) does not point along the direction defined by the instantaneous field = +( ) ( )t tB B B1 2. Instead, it
typically presents afinite projection out of thefield’s plane characterized by a q p¹( )t 2 for some t in (5). An
exception to this rule is found in the limit of adiabatic spin dynamics where the instantaneous Larmor frequency
of spin precession, w w w w w wº + +( ) ( ) ( )t t tcos sin2 1 0

2
1 0

2 , ismuch larger than the rotatingfield’s
frequency w0 [13, 14]. In this limit, the FSSs stay (anti)alignedwith the instantaneous guiding field for all t. These
adiabatic FSSs reduce to

y yñ = ñ = -h h -  -
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with h w w= + D( ) [ ( )]t t tarctan sin cos0 0 and w wD = 2 1.
The quasienergy of a FSS naturally splits into a dynamical and a geometrical contribution as


òe y y f= á ñ = -∣ ( )∣ ¯ ( )
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Figure 1.Guiding field texture (dashed arrows) undergoing a topological transition atD = 1, from a rotating field (D < 1) to an
oscillating one (D > 1). Thefield consist of a rotating driving ( )tB1 plus a constant B2 (solid arrow), withD º B B2 1.
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is themean energy and
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is the geometric phase of the FSSwith = s , with Ws the corresponding solid angle ( p[ ]mod 4 ) subtended over
the Bloch sphere during the spin evolution in one time period p w=T 2 0. For the adiabatic FSSs (6), this
geometric phase reduces to a Berry phase [13]. Otherwise, it adopts the name of (non-adiabatic)Aharonov–
Anandan (AA) phase [15].

We notice in (2) that themagnetic field undergoes a topological transition atD = 1: a rotatingfield for
D < 1 (dominated by ( )tB1 and enclosing the point of vanishing field in its round trip, figure 1(a)) turns into an
oscillatingfield forD > 1 (dominated by B2 and leaving the point of vanishing field out of the loop,figure 1(c)).
AtD = 1, the totalfield ( )tB vanishes whenever w = -tcos 10 , see figure 1(b). Such topological characteristics
leave an imprint in the adiabatic FSSs (6): in a time periodT they acquire a geometric (Berry) phase f p=B for
D < 1while f = 0B forD > 1 (obtained after setting q =cos 0 in equation (9)). Topological transitions of this
kind have been expected to showup in transport experiments with spin carriers relying onBerry-phase
interference effects [4]. However, this reasoning turns out to be oversimplified: in the vicinity of the transition
pointD = 1,figure 1(b), the adiabatic condition can not be satisfied since the guiding field vanishes to reverse
its direction and the spins are unable to follow it. Still, amore general approach has shown thatfield textures can
leave a topological signature in electron spin transport simulations even far from the adiabatic regime [5]. A
numerical exploration of the time-dependent systemmodeled by equation (1) reveals several topological
imprints left by the guiding fields away from the adiabatic regime, as we discuss in sections 3 and 4.

3. Topological imprints on spin resonance

A resonant transfer of energy between the drivingfield ( )tB1 and the spins occurswhenever their expectation
value along the uniform field B2 vanishes in a time-period average, i.e., whenever s =⟪ ⟫ 0x T .Within the
Floquet formalism, this resonant condition reads [16]

e
w
¶
¶

= ( )0, 10
2

which can be obtained by applying theHellmann–Feynman theorem [17] to equation (4) and gives the position
of single- andmultiple-photon processes. The solid lines infigure 2 show the position of the resonances
according to equation (10) (see appendix A for details on the numericalmethod). For a weak driving
w w  11 0 , resonances appear at integer values of w w2 0 due to the combined action of the oscillating
components parallel and normal to the uniform field B2 [16]. For larger driving amplitudes, the resonances shift
their position to smaller (non integer) values of w w2 0 due to the Bloch–Siegert effect [12]. Eventually, the
resonance curves develop inflection points organized along the critical lineD = 1. These inflections in the

Figure 2. Solid lines: position of the resonances as a function of the guidingfield’s setting developing a Bloch–Siegert shift as the
driving strength w w1 0 increases. The inflections along the diagonal w w=1 2 (critical line D = 1) indicates a change in the guiding
field’s topology.Dashed lines: points of vanishingmean energy. Dotted lines: position of the resonances for a standard linear driving
with trivial topology. The circles indicate the Stenholm’s points [18].
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resonance profile are an actual signature of the topological transition undergone by the guiding field’s texture at
D = 1, imprinted in the resonant FSSs. The identification of such topological features in the Bloch–Siegert shift
is themain result of this paper.

For a comparison, the dotted lines infigure 2 show the position of the resonances in the case of a standard
linear driving owning a trivial topology w w( ) ˆt y2 sin1 0 (to be comparedwith the topological driving of
equation (2)). These resonances present a usual Bloch–Siegert shiftmeeting the horizontal axis at the Stenholm’s
points (circles) [18].

Moreover, the dashed lines infigure 2 show the points where themean energy vanishes, running tight along
the resonances (solid lines). This suggests that the condition of vanishingmean energy is a good approximation
to the resonance condition (10) for our topological driving. Consequently, in section 4we focus on the related
topological features underlying at the level of the quasienergy, themean energy and the geometric phase
introduced in equations (9)–(7).We notice that this approximation is not valid in general cases: it applies to our
topological driving but not to linear drivings. In the latter case, the resonant condition (10) coincides with the
vanishing-mean-energy one only forweak drivings (w w  11 0 ).

4.Underlying topological features

Infigure 3(a)wedepict the quasienergy (7) as a function of the guiding field’s setting in equation (2) (see
appendix A for details on the numericalmethod).More specifically, andwithout loss of generality, we plot

e+( )Tcos as a function of7 w w1 0 and w w2 0. Therewe observe a phase dislocation along theD = 1diagonal
as a sign of the quasienergy’s response to the topology of the guiding field. This behavior resembles the
predictions for the conductance of semiconducting Rashba loops subject to similarfield configurations
(determined by the total phase acquired by spin carriers) [5]. It also recalls what expected for adiabatic spin
dynamics according to [4]. However, as we show in the following, the spin dynamics is actually dominated by
non-adiabatic effects.

Infigures 3(b) and (c)wedepict, respectively, themean energy (in terms of the dynamical phase +Ē T )
and theAA geometric phase by plotting +( ¯ )E Tcos and f+cos g as a function of the field’s parameters (see
equations (9)–(7), and further details on numerics in appendix A). Therewe notice the complex patterns
displayed near the critical lineD = 1, indicative of a strongly non-adiabatic spin dynamics. This is clearly
illustrated by the FSS spin textures, figure 4, adopting intricate shapes with rapidly changing solid angle in the
critical region. That demonstrates the unsuitability of an adiabatic treatment for understanding the phase
dislocation in the quasienergy (figure 3(a)) as a response to the change in the guiding field’s topology.

To gain insight into the topological characteristics stamped on the spin dynamics, we introduce amodified
version of a treatment first proposed in [19] for the study of (Berry) adiabatic phases in spin carriers, here
adapted to the case of non-adiabatic spin dynamics (see appendix B). As a starting point, let us rewrite the
Floquet operator as the sumof diagonal (d) and nondiagonal (nd) projections onto the non-adiabatic FSS

Figure 3. (a)Response of the quasienergy e+ to the guidingfield’s setting in terms of e+( )Tcos . The dislocation along the diagonal
w w=1 2 (critical line D = 1) indicates a change in the guiding field’s topology. (b)Mean energy +Ē in terms of +( ¯ )E Tcos . The
complex pattern displayed near the diagonal is indicative of a non-adiabatic spin dynamics. (c)Cosine of the AA geometric phase f+g
displaying a complex pattern complementary to that one shown by themean energy in panel (b). In all panels, the dashed lines indicate
the points of vanishingmean energy =+Ē 0. Spin textures of the Floquet state y ñ+∣ corresponding to field settings A, B andC are
shown infigure 4. A study of the Floquet state y ñ-∣ produces equivalent results.

7
We choose the Floquet solutionwith

e< < w+0
2

0 which is equivalent to the solutions with quasienergy e w++ n 0 .
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basis(5), i.e.  = +( ) ( ) ( )t t td nd . By the sole definition of Floquet state, itmust hold º( )t 0nd (and,
therefore, º( ) ( )t td ). As a consequence, the FSSs are constrained to satisfy

w q j h q
j

- +
¶
¶

=( ) ( ) ( )t
t

cos cos sin 0, 11

as shown in appendix B. From equations (8)–(11)we can rewrite the quasienergy (7) as (see appendix C)

 
òe
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j
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T t
t

T2

1

cos
d 12s

T

0

thanks to the cancelation of the termproportional to qcos in equation (9).We recognize two contributions to
the quasienergy in equation (12): a smooth dynamical termproportional to q1 cos (from equation (11)we see
that this termdoes not diverge for vanishing qcos ) plus a topological one determined by the integer number

òp
j

=
¶
¶

ℓ ( )
t

t
1

2
d , 13

T

0

accounting for thewindings gathered by the FSSs around the north pole of the Bloch sphere. This is illustrated by
the spin textures offigure 4(A)with =ℓ 1 (D < 1) andfigure 4(C)with =ℓ 0 (D > 1).We further notice
from equation (12) that

e f= -( ) ( ) ( ) ( )ℓTcos 1 cos , 14s
d
0

with òf =
q

j¶
¶

td
T

td
0

0

1

2 cos
the smooth contribution to the dynamical phase. Thus, a parity transition in the

winding numberℓatD = 1would explain the phase dislocation shown by the quasienergy infigure 3(a)
(together with the results reported in [5]) in terms of an effective Berry phase f pº ℓB

eff recalling the geometric
phase acquired by the adiabatic FSSs (6). Still, the actual existence of complex spin textures with singular
derivative j¶ ¶t (corresponding to a spin passing over the poles of the Bloch sphere as infigure 4(B))
complicates the analysis. Infigure 5we represent thewinding parity (i.e., the parity of thewinding numberℓ) as
a function of the guiding field’s configuration. As expected, wefind opposite dominating parities on different
sides of the critical line: even (dark) forD > 1 and odd (white) forD < 1. Interestingly, anomalous regions of
fluctuating parity appear along the lines corresponding to a vanishingmean energy (dashed lines infigure 5).
Similar winding-number characteristics have been identified recently in spin carriers subject tomagnetic
textures [5, 20]. The ultimate reason for that is the proximity of spin resonances (as shown infigure 2)developing
complex spin textures. Such anomalies should not be necessarily understood as noisy phases in the parameter
space since they actually show a definitemosaic structure in finer scales (inset infigure 5). The presence of
anomalies ultimately indicates that thewinding numberℓ, while otherwise useful, is not an optimal indicator of
the topological transition. The quest for an indicator that fully captures the topological origin of the phase
dislocation in the quasienergy atD = 1, figure 3(a), remains open.

5. Concluding remarks

Wehave studied the topological imprints left by an external driving in the dynamics of a localized spin-1/2.We
find that the topological transition undergone by a guidingmagnetic field emerges in the resonance spectrumof
the spin system as a distinct inflection in the Bloch–Siegert shift. This remarkable feature opens a door to a new
family of resonance experiments in two-level systems as an alternative to previous attempts to observe real-space
topological transitions based on spin-carrier interferometry inmesoscopic loops [5], the realization of which
presents technical difficulties up to date. The possibilities run fromnuclearmagnetic resonance (NMR) to
strongly-driven SCQs. InNMR, these effects can be demonstrated experimentally by shaping radio frequency
pulses for generating the suitable drivingHamiltonian in the rotating frame of the nuclear spins [21]. The
predicted effectsmight be significant for the design of shaped pulses for robust control of quantum systems [22].

Figure 4. Spin texture of the Floquet state y ñ+∣ represented as a path over the surface of the Bloch sphere for different guiding field’s
settings (see points A, B andC infigures 3 and 5).
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As for SCQs [23], we notice that high-ordermultiphoton interferometry has been demonstrated successfully
and the systems can readily be adapted to the topological driving fields proposed here [24]. All results extend to
any other two-level system liable to equivalent drivings (as, e.g. adapted versions of Landau–Zener–Stückelberg
interferometric setups [25]).

For the topological driving considered here, we found that the resonance condition can be approximated by
the condition of vanishingmean energy. This has permitted us to shift our analysis towards the dynamical and
geometrical contributions to the quasienergy. As a consequence, we ended upwith a description of the
topological transition imprinted in the spin dynamics in terms of an effective Berry phase. This description, even
when inexact, captures the essential features of the problem.
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AppendixA.Numericalmethod

We solve equation (4) by the customary procedure of expanding in Fourier series theHamiltonian (2),
= å w( ) ( )H t H en

n n ti 0 , and the FSS, y yñ = å ñ w∣ ( ) ∣ ( )t en
n n ti 0 . This leads to the infinite set of equations:

y e w yå ñ = - ñ- ∣ ( )∣( ) ( ) ( )H nm
n m m n

0 with n integer.We solve the eigenvalue problem for ε and y ñ{∣ }( )n by
restricting to afinite set of equationswith ∣ ∣n nmax .We chose =n 120max and checked that for the strongest
simulated driving amplitudes the results are unaffected by the truncation.

Themean energies are obtained from the Fourier decomposition of the Floquet states as
e w y y= - å á ñ¯ ∣ ∣ ∣( ) ( )E nn

n n
0

2, where f p y y= å á ñ∣ ∣ ∣( ) ( )n2 n
n n

g
2 are the corresponding AA geometric phases.

Appendix B.Non-adiabatic spin dynamics under periodic driving

We introduce amodified version of a treatment first proposed in [19] for the study of adiabatic (Berry) phases in
spin carriers, here adapted to the case of non-adiabatic spin dynamics in periodic, time-dependent fields8. Let us
rewrite the Floquet operator of equation (1) as the sumof diagonal (d) and nondiagonal (nd)projections onto
the non-adiabatic FSS basis (5), i.e.  = +( ) ( ) ( )t t td nd . To this aim, we define instantaneous projectors

Figure 5.Winding parity, showing a transition along the diagonal w w=1 2 (critical line D = 1). Anomalous regions offluctuating
parity (inset) appear along the curves of vanishingmean energy (dashed), closely related to resonances. Spin textures of the Floquet
states corresponding to points A, B andC are shown infigure 4.

8
For a recent study on non-adiabatic spin-carrier dynamics, see [26].
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on the corresponding subspaces given by


s
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with q j q j q= + +ˆ( ) ( ) ( ) ˆ ( ) ( ) ˆ ( ) ˆt t t t t tl x y zsin cos sin sin cos the unit vector defining the instantaneous
quantization axis of the FSSs at time t.We stress that ˆ( )tl generally differs from the guiding field’s axis

h h= +ˆ ( ) ( ) ˆ ( ) ˆt t tn x ycos sin in the non-adiabatic regime.We further notice that, by definition of Floquet
states, it holds
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      = - = + º+ - - +( ) ( )t 0. B.3nd d

The constraint imposed by equation (B.3) establishes a definite link between themagnetic texture and the non-
adiabatic FSS texture that eventually leads to the identification of an effective Berry phase imprinted by the
guiding field.We canmake themost of the formal identities (B.2) and (B.3) by noticing that the projectors  do
not commutewith  ¶ ¶ti (which thereforemixes the FSS subspaces). By following [19, 27], we introduce an
operator( )t responsible for the transitions between the subspaces associatedwith + and -while
 ¶ ¶ -ti acts only within each subspace. This is accomplishedwithout ambiguity by defining
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Wenow rewrited andnd in the FSS basis by introducing the instantaneous unitary operator
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is responsible for the emergence of non-adiabatic geometric phases (see appendix C). Back to the Floquet
operator, we find

  


=
+

-
⎜ ⎟⎛
⎝

⎞
⎠ ( )† 0

0
, B.13d

7

New J. Phys. 19 (2017) 063010 AAReynoso et al



with

 m= -
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Thefirst term in equation (B.14) is the effective Zeeman splitting resulting from the instantaneous projection of
the non-adiabatic FSSs along the guiding field, which can be also expanded as
w y y y yá ñ - á ñ ( )(∣ ∣ ∣ ∣ ∣ ∣ )t 2s s2 2 with = s . Similarly, wefind

  


=




⎛
⎝⎜

⎞
⎠⎟ ( )† 0

0
, B.15nd

with




w
y y y y y y y y= á ñá ñ - á ñá ñ - º   ( ) ( ∣ ∣ ∣ ∣ ) ( ) ( )¯ ¯ ¯ ¯t

a t
2

0. B.16ss s s s s ss
g

The evaluation of the real and the imaginary parts of equation (B.16) leads to the following identities,
respectively:

w q j h q
j

- +
¶
¶

=( ) ( ) ( )t
t

cos cos sin 0, B.17

w j h
q

- +
¶
¶

=( ) ( ) ( )t
t

sin 0. B.18

These equations reveal the geometric constraints satisfied by the FSSs under the action of a driving represented
by w ( )t and h ( )t .

AppendixC. Topological phases and quasienergy

From equation (B.14), we can now rewrite equations (9)–(7) as e f= á ñ = -( ) ¯t E Ts s s s
g with


ò òm

w
q j h= = -¯ ( ) · ˆ( ) ( ) ( ) ( )E

s

T
t t t

s

T

t
tB l d

2
sin cos d , C.1s

T T

0 0

 ò òf q
j

= = +
¶
¶

( ) ( ) ( )A t t s
t

t
1

d
1

2
1 cos d . C.2s

T
s

T

g
0

g
0

From equation (B.17), we notice that themean energy (C.1) takes the form


ò q

q
j

= -
¶
¶

⎜ ⎟⎛
⎝

⎞
⎠¯ ( )E

s

T t
t

2
cos

1

cos
d . C.3s

T

0

The quasienergy reduces then to

 
òe

q
j

p= -
¶
¶

- ℓ ( )s

T t
t

T2

1

cos
d , C.4s

T

0

thanks to the cancellation of the terms proportional to qcos in equations (C.2) and (C.3).We observe that the
quasienergy (C.4) consists of a dynamical contribution plus a topological one determined by the parity of the

integer number òp j= ¶ ¶ℓ ( ) t t1 2 d
T

0
, which accounts for thewindings gathered by the FSSs around the

north pole of the Bloch sphere. Thismotivates the introduction of an effective Berry phase f pº ℓB
eff capturing

the topological features of the FSSs.
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