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Complete wetting transitions of nematic liquid crystals on a structured substrate

Chi-Tuong Pham,1, ∗ Pedro Patŕıcio,2,1 and Jose Manuel Romero-Enrique3
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Area de F́ısica Teórica Universidad de Sevilla, Apartado de Correos 1065, 41080 Sevilla, Spain

(Dated: April 26, 2017)

In this article, we generalize Wenzel law, which assigns an effective contact angle for a droplet
on a rough substrate, when the wetting layer has an ordered phase, like a nematic. We estimate
the conditions for which the wetting behavior of an ordered fluid can be qualitatively different from
the one usually found in a simple fluid. To particularize our general considerations, we will use the
Landau-de Gennes mean field approach to investigate theoretically and numerically the complete
wetting transition between a nematic liquid crystal and a saw-shaped structured substrate.

PACS numbers: 61.30.Hn, 61.30.Dk

It is known that the wetting behavior of a fluid is
deeply altered in the presence of rough or structured sub-
strates. Leaves for instance have often developed a pat-
terned texture, with micro reliefs, in order to adapt them-
selves to a particular humid environment [1]. Recently,
technological advances allowed the controlled manufac-
turing of artificial micro structured substrates, which
were used to show spectacular results concerning water-
repellency, switchable wettability, and other practical ap-
plications [2].

In this article, we will investigate the wetting behavior
of an ordered fluid (a nematic liquid crystal), on a rough
substrate. We will first review some simple considera-
tions about isotropic fluids and rough substrates, and
then we will generalize these ideas for the case of ordered
fluids. We will particularize our study by considering
the complete wetting of a nematic on a saw-shaped sub-
strate. Quantitative results will be obtained by solving
analytically and numerically the Landau-de Gennes free
energy.

Consider two isotropic phases at coexistence (let us call
them A and B phases), their bulk free energy densities
being the same fA = fB = 0. Suppose now the B-phase
is the one preferred in the far field, and our system is in
the presence of a flat substrate or wall. The substrate in-
teracts with the fluid through a local surface energy with
strength w, which favors the A-phase. In this situation,
an A-phase layer may appear close to the wall, because
the decrease we have in the surface energy is already suffi-
cient to compensate the creation of an interface between
the two phases. Let us define the wettability function
g(w) as g(w) = σBW − σAW where σαβ is the surface
tension associated to a flat α-β interface. For fixed bulk
coexistence conditions, the wettability coefficient will de-
pend on the strength of the surface energy, and usually is
an increasing function of w. The Young equation yields
g(w) = σAB cos θπ where θπ is the contact angle of the
sessile drop. Thus, as w increases, the contact angle θπ

decreases. Eventually, θπ = 0 at the wetting transition,
when the A-B interface unbinds from the substrate. In
this case g(w = wt

π) = σAB , where wt
π is the transi-

tion value. For larger values of w, the interface remains
unbounded as a thick A-phase layer is formed between
the substrate and the bulk B-phase (complete wetting).
The specific effective interactions between the wall and
the substrate determine the order of the wetting tran-
sition as well as the role played by interfacial capillary
wave fluctuations [3, 4, 5]. Wetting on rough substrates
presents a richer phenomenology than for flat substrates.
Interfacial unbinding may occur via a sequence of dif-
ferent phase transitions like unbending (or filling) and
unbinding [6, 7]. However, a simpler picture arises if
we assume wetting as a one-step transition. Then one
can easily predict the wetting behavior of this fluid on
a mesoscopically rough substrate by thermodynamic ar-
guments. The partially filled phase has an excess free
energy which can be related to the surface tension σBW

as ∆F1 = SσBW , where S is the substrate surface area.
At the complete filled situation, the excess free energy
is given by ∆F2 = SσAW + AσAB , where A is the A-B
interface area, which coincides with the surface area of
projection of the substrate onto the tangent plane (see
Fig. 1). Wetting transition occurs for ∆F1 = ∆F2, or
equivalently for g(w = wt

r) = σAB/r, where wt
r is the

surface coupling at the wetting transition for the rough
substrate and r ≡ S/A > 1 is the substrate roughness.
This result is consistent with Wenzel law [8], which as-
signs an effective contact angle for the sessile droplet on
the rough substrate θr as: cos θr = r cos θπ. So, the wet-
ting transition occurs for θr → 0, in agreement with our
previous result. Since g(w) is an increasing function of
w, we find generally that wt

r < wt
π .

This picture can be changed dramatically when the
wetting layer has an ordered phase, as in the case of a
nematic liquid crystal. For this case, the rough or struc-
tured substrate may impose a deformation on the ordered
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FIG. 1: Geometry of the system. A is the projected surface
of the wedged (rough) surface S

fluid, which must be accompanied by a positive elastic
free energy ∆F e

AW > 0. Note that the elastic deforma-
tion creates an effective long-range repulsion between the
substrate and the wall: the closer to the substrate the in-
terface is, the more constrained the order will be, leading
to higher energies. Consequently, first-order wetting will
be more likely to occur in this case. Again the wetting
transition may be obtained by the free energy balance
AσAB + SσAW + ∆F e

AW = SσBW . Note that σAW is
the equilibrium surface tension associated to the ordered
fluid-flat substrate in absence of any order parameter de-
formation. The critical surface field for a rough substrate,
wt

r, has to verify the relation g(wt
r) = σAB/r+∆F e

AW /S.
For the wetting of ordered fluids, wt

r < wt
π if distortions

are not very important; wt
r > wt

π if the energy of the
distortions is sufficiently large. If the effects of the elas-
tic deformations are too strong, the energy balance may
never be favored, for all values of the surface field w. In
this last case, there will be no wetting transition.

We will particularize these considerations by choosing
a periodic saw-shaped substrate characterized by an an-
gle α (see Fig. 1). The plane of the paper is defined by
the axes x and y. Out of the plane, the wedge is parallel
to the z-axis. In our geometry, we defined two lengths,
the length of the wedge side, L, and the height between
the substrate and the isotropic (B ≡ I) phase at the far-
field, H . Close to the substrate, a new nematic (A ≡ N)
phase may or not appear. In fact, for the complete wet-
ting transition we are discussing, the length H will be
unimportant, because the wetting layer, if it exists, has
an infinite thickness.

Both isotropic and nematic phases can be represented
by the Landau-de Gennes tensor order-parameter Qi,j .
Owing to the traceless and symmetric character of the
tensor order-parameter, it can be very generally repre-
sented by Qi,j = 3

2
S[ninj− 1

3
δi,j ]+

1
2
B[lilj−mimj ] where

S is the scalar order parameter (S = 0 in the isotropic
phase and S 6= 0 when some order is present), and B is
the biaxiality [9]. The direction of maximal orientational
order is given by the director n, and the unit vectors
n, l,m form a local orthonormal triad.

In our problem, we will only consider in-plane de-
formations, although out-of-plane or twist deformations
may also be important (a twist instability may occur

for particular choices of parameters [10]). In this case,
n = (cos θ, sin θ, 0), and the tensor order parameter has
three independent components only, Q11, Q22, and Q12.

The system is described by the Landau-de Gennes free
energy FLdG =

∫

V
(fbulk+fel) dV +

∫

S
fsurf ds where fbulk

is the bulk free energy density, fel is the elastic free energy
density [11], and fsurf is the surface free energy. Here, we
will take the commonly used rescaled expressions [9]:

fbulk =
2

3
τ TrQ2 − 8

3
TrQ3 +

4

9
[TrQ2]2 (1)

fel =
ξ2

3 + 2κ
[∂kQi,j∂kQi,j + κ∂jQi,j∂kQi,k] (2)

fsurf = −2

3
w Tr[Q ·Qsurf ] (3)

where τ is a dimensionless temperature, κ is an elas-
tic dimensionless parameter, w is a dimensionless surface
field or anchoring strength, and ξ is the so-called cor-
relation length that will be set to 1 in the rest of the
article. For τ = 1, the two phases are at coexistence,
fbulk has two minima, which correspond to the scalar
order parameters SI = 0 (isotropic phase) and SN = 1
(nematic phase). The elastic parameter is restricted to
the values, κ > −3/2. If κ is positive (negative), the
nematic prefers to align parallel (perpendicular) to the
nematic-isotropic interface. Also, Qsurf defines the fa-
vored tensor at the substrate. In our problem, we will
favor a homeotropic (or perpendicular) alignment of the
nematic at the substrate, and a bulk nematic scalar order
parameter (Ssurf = SN = 1). This particular choice for
the surface free energy was made in order to establish a
direct connection to previous related papers [12, 13].

Consider first the flat substrate (α = 0), already nu-
merically studied in the literature [12, 13]. At coexis-
tence, τ = 1, it is straightforward to estimate each term
of the balance equation. The non-wet isotropic config-
uration can be simply represented by the scalar order
parameter profile S(y) = ae−y/y0, and θ = π/2. Intro-
ducing this function in the total free energy FLdG, we
obtain FLdG/A =

∫ ∞

0
(S2 − 2S3 + S4 + 1

2
S′2)dy −wS(0)

where A is the area of the substrate, and S′ = dS/dy.
The free energy is minimized when y0 = 1/

√
2 + O(w),

and a = w/
√

2+O(w2). If we use this solution, we obtain
a very accurate value for the surface tension between the
substrate and the isotropic phase in the non-wet config-
uration σIW = −w2/(2

√
2) + O(w3). In order to calcu-

late the surface tension between the substrate and the
nematic phase, we may assume that the nematic direc-
tor is everywhere oriented perpendicular to the substrate
(θ = π/2), and that the scalar order parameter profile is
described by S(y) = ae−y/y0 + SN. Following the same
steps as before, we find σNW = −w−w2/(2

√
2)+O(w3).

Finally, the nematic-isotropic surface tension can be es-
timated through the ansatz S(y) = 1

2
[1 − tanh(y/2y0)]

and assuming either the director is everywhere oriented
either perpendicular (θ = 0) or parallel (θ = π/2) to the



3

interface, which are the relevant situations for κ < 0 and
κ > 0, respectively. If we introduce this function in the
total free energy, and perform the integration over the
whole real y-axis, we obtain the energy of the interface,
depending on one free parameter y0. Minimization will
give y0 = 1/

√
2, and the surface tension between the

isotropic and the nematic phase is σ⊥
IN =

√
2/6 ≈ 0.236

(θ = 0) and σ
‖
IN = σ⊥

IN

√

3+κ/2

3+2κ (θ = π/2). In the lat-

ter calculation, we neglected the existing biaxiality. The
balance equation may in this case be written as

g(w) = σIW − σNW = w + O(w3) = σIN (4)

where σIN = σ⊥
IN for κ < 0 and σIN = σ

‖
IN for κ > 0.

In the latter, the elastic contribution due to the director
distortions in the nematic film due to the mismatch of the
anchoring conditions at the substrate and the nematic-
isotropic interface should be included in the balance Eq.
(4). However, this contribution vanishes with the ne-
matic film thickness H as ∆F e/A ∼ 1/H , so it can be
safely ignored at the wetting transition, where H → ∞.
If for example κ = 2, the surface field for the complete
wetting transition is wB = 0.18 ± 0.01 (see Eq. (4)),
which is in excellent agreement with the numerical value
obtained by Braun et al. [13]. Note that if we take
σIN = σ⊥

IN, the transition surface field is wS = 0.24±0.01,
which is the numerical value obtained by Sheng [12].

We now turn to the rough substrate. Using Landau-
de Gennes free energy, it is easy to see that the elastic
contribution scales as ∆F e = Kℓ∆F̃ e, where K is the
Frank elastic energy and ℓ is the typical length of the
rough substrate. If the nematic-isotropic interface goes
to infinity, ∆F̃ e is a number only dependent on the sub-
strate geometry, but not on its scale ℓ. To calculate the
critical surface field for the wetting transition, we have
the generalization of Wenzel law:

g(wt
r) =

1

r
(σIN +

K

ℓ
∆F̃ e) (5)

This equation is the main result of this work. For
large enough substrate lengths ℓ, the effects of the elas-
tic terms are not important, and Wenzel law is recov-
ered. However, this law is significantly changed when
ℓ ∼ K∆F̃ e/σIN. In the Landau-de Gennes model, K
and σIN are not independent. For τ = 1 (phase co-
existence), K/(ξσIN) ≈ 2.6/0.2. The elastic numerical
factor was calculated for a sinusoidal grating [10, 14],
∆F̃ e = (2π)3/4a2, where a is the ratio between the am-
plitude and the wavelength, l of the sinusoid. For our
wedge geometry, we may use tan α = 4a, and α = π/4,
to estimate L ∼ 35ξ (see Fig. 2 for definition of L), for
which the elastic effects still play an important role.

To calculate the critical surface field, wt, for ev-
ery angle α of our geometry, we numerically minimized
the Landau-de Gennes free energy, using a conjugate-
gradient method. The numerical discretization of the

continuum problem was performed with a finite element
method combined with adaptive meshing in order to re-
solve the different length scales [15]. As before, we re-
stricted ourselves to the case of coexistence (τ = 1) and
set κ = 2. We have imposed periodic boundary condi-
tions (b.c.) on x in every calculation and assumed trans-
lational invariance along the z direction, so the problem
reduces to an effective two-dimensional case.

To obtain the surface energy σ
⊥/‖
IN , isotropic (S = 0)

fixed b.c. were imposed at the top of the domain and
homeotropic (⊥) or parallel (‖) nematic (S = 1) fixed b.c.
at the bottom. The energy FIW of the non-wet isotropic
configuration was calculated by imposing isotropic fixed
b.c. only at the top of the domain. At the bottom, there
were no imposed b.c., and the surface free energy was
taken into account. Finally, for the calculation of the en-
ergy FNW of a bulk nematic phase in contact with the
substrate, fixed nematic b.c. were imposed at the top,
with the director angle either set to θ = π/2 (perpendic-
ular case) or to θ = 0 (parallel case), and different cell
heights H were considered.

As an important check for our procedure, we recovered
Braun’s and Sheng’s values of the transition surface field

for α = 0: w
t,‖
π ≃ 0.1796 and wt,⊥

π ≃ 0.2417, by solving

numerically the equation σ
⊥/‖
IN = σIW − σIN. The agree-

ment with our theoretical results is excellent as the w3

corrections in g(w) can be neglected (see Fig. 2).

We now turn to the case where α is non zero. As ex-
pected for the non-wet isotropic configuration, we obtain
that FIW(α, L, w) ∼ σIW(w) × 2L, where σIW(w) is the
substrate-isotropic surface tension in the flat case. This
result is essentially independent of the cell height H . On
the other hand, FNW depends crucially on the geomet-
rical parameters of the substrate, α and L. Numerical
minimization shows that the global minimum configura-
tion corresponds to the solution for θ = 0 at the top cell
boundary for α ≤ π/4 and the minimum energy solution
for θ = π/2 at the top cell boundary for α ≥ π/4. In both
branches the energy FNW decreases with the cell height
H , and converge to the relevant free energy to the com-
plete wetting transition. These solutions mean that for
α < π/4 the nematic wetting film configuration is an hy-
brid aligned nematic (HAN), where the nematic director
is oriented along the y direction above the rough sub-
strate, and changes smoothly to the planar anchoring at
the NI interface. For α > π/4, the nematic film is essen-
tially parallel (P) to the NI interface above the substrate.
As the HAN and the P configurations are metastable for
α > π/4 and α < π/4, respectively, a first-order HAN-P
transition occur at α = π/4, analogous to that observed
for sinusoidal substrates [16].

In order to compute the transition surface field at
which complete wetting occurs, we solve the equation

(FIW − FNW)/(2L cosα) = σ
‖
IN (equivalent to Eq. (5))

for different values of α and L. The left-hand side func-
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FIG. 2: Plot of (FIW(α, L, w) − FNW(α, L, w))/(2L cos α) vs.
w at angle α = 35◦ together with the flat case α = 0 and an-
alytical results (Eq. (4)). The slope increases with increasing
L so that the transition surface field diminishes.

tion does not differ qualitatively from those found in the
flat case except that the dependence on L at a given an-
gle α is such that the slope increases with increasing L
(see Fig. 2). Note that the smaller the slope, the higher
the transition surface field. The transition surface fields
are displayed in Fig. 3. The kink observed at α = π/4
is a consequence of the HAN-P transition at the nematic
wetting film. For moderate values of L (L < 48), we
can see that the transition surface field for a given L in-
creases with α up to α = π/4, where the transition value
wt

r is larger than the corresponding one for the flat case,
and decreases for larger α. For L & 48, a change in the
convexity of the curve at the origin occurs (see inset of
Fig. 3): a new regime is reached where roughness favors
complete wetting. For larger values of L (e. g. L = 96)
the critical anchoring always decreases with α, and one
should expect the elastic energy contributions to vanish

for L → ∞ and Wenzel law wt
r(α) = w

t,‖
π cosα to be

recovered. Our numerical results confirm that predic-
tion. They also show that for arbitrary L the deviation
of the transition surface field with respect to that pre-
dicted by Wenzel law is larger around α = π/4, implying
that the nematic director field is always more deformed
for α = π/4 than for any other angle.

In this article, we generalized Wenzel law for nemat-
ics. We used the Landau-de Gennes model to investigate
theoretically and numerically the complete wetting tran-
sition between a nematic liquid crystal and a saw-shaped
structured substrate. One should keep in mind that the
typical length of the structured surface should be only of
order 30 ξ in order to observe large deviations from the
Wenzel law. At these scales, it is not clear whether the
mean field approach we are assuming still holds. Other
physical phenomena may be present in real situations.
Confirming these results experimentally may be a chal-
lenge.
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[15] P. Patŕıcio, M. Tasinkevych, and M. M. Telo da Gama,

Eur. Phys. J. E 7, 117 (2002).
[16] L. Harnau and S. Dietrich, Europhys. Lett. 73, 28 (2006).

mailto:pham@cii.fc.ul.pt

