
ar
X

iv
:p

hy
si

cs
/9

61
10

29
v1

  [
ph

ys
ic

s.
ch

em
-p

h]
  2

9 
N

ov
 1

99
6

A Symmetry-Adapted Algebraic Approach to Molecular

Spectroscopy

A. Frank1,2), R. Lemus1), R. Bijker1), F. Pérez-Bernal3) and J.M. Arias3)
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Facultad de F́ısica, Universidad de Sevilla,

Apdo. 1065, 41080 Sevilla, España

1 Introduction

The study of molecular vibrational spectra [1] requires theoretical models in order to analyze and interpret
the measurements. These models range from simple parametrizations of the energy levels, such as the
Dunham expansion [2], to ab initio calculations, where solutions of the Schrödinger equation in different
approximations are sought [3, 4, 5, 6]. In general, the latter involve the use of internal coordinates and the
evaluation of force field constants associated to derivatives at the potential minima. While this method
can be reliably applied to small molecules [7], it quickly becomes a formidable problem in the case of
larger molecules, due to the size of their configuration spaces. New calculational tools to describe complex
molecules are thus needed.

In 1981 an algebraic approach was proposed to describe the roto-vibrational structure of diatomic
molecules [8], subsequently extended to linear tri- and four- atomic molecules [9] and certain non-linear
triatomic molecules [10]. Although these were encouraging results, the model could not be extended
to polyatomic molecules, due to the impossibility of incorporating the underlying discrete symmetries.
This difficulty could be surmounted by treating the vibrational degrees of freedom separately from the
rotations. In 1984 Van Roosmalen et al. proposed a U(2) based model to describe the stretching
vibrational modes in ABA molecules [11] which was later extended to describe the stretching vibrations
of polyatomic molecules such as octahedral and benzene like molecules [12]. Recently the bending modes
have also been included in the framework, which was subsequently applied to describe C2v-triatomic
molecules [13] and the lower excitations of tetrahedral molecules [14], using a scheme which combines
Lie-algebraic and point group methods. In a different approach, it has also been suggested [15] to use a
U(k + 1) model for the k = 3n− 3 rotational and vibrational degrees of freedom of a n-atomic molecule.
This model has the advantage that it incorporates all rotations and vibrations and takes into account the
relevant point group symmetry, but for larger molecules the number of possible interactions and the size
of the Hamiltonian matrices increase very rapidly, making it impractical to apply.

Although the algebraic formulations have proved useful, several problems remained, most important
of which is the absence of a clear connection to traditional methods. On the other hand, a related
problem is the lack of a systematic procedure to construct all physically meaningful interactions in the
algebraic space. In this paper we show that both these issues can be resolved by considering a symmetry-
adapted version of the U(2) algebraic model for the analysis of molecular vibrational spectra. In this
approach it is possible to construct algebraic operators with well defined physical meaning, in particular
interactions fundamental for the description of the degenerate modes present in systems exhibiting high
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degree of symmetry. The procedure to construct them takes full advantage of the discrete symmetry of
the molecule and gives rise to all possible terms in a systematic fashion, providing a clear-cut connection
between the algebraic scheme and the traditional analyses based on internal coordinates, which correspond
to the harmonic limit of the model [16].

As a test of the symmetry-adapted approach we discuss an application to three D3h-triatomic molecu-
lar systems, namely H+

3 , Be3 and Na+
3 , and to two tetrahedral molecules, the Be4 cluster and the methane

molecule. Since small molecules can in general be well described by means of ab initio calculations [17, 18],
we emphasize the basic purpose of this work. We establish an exact correspondence between configura-
tion space and algebraic interactions by studying the harmonic limit of the U(2) algebra. This general
procedure not only allows to derive algebraic interactions from interactions in configuration space, but
can also be applied to cases for which no configuration space interactions are available. The D3h-triatomic
molecules constitute the simplest systems where degenerate modes appear and where the new interactions
in the model become significant. In the case of Be4 we present a comparison with ab initio calculations,
while for CH4 we present a detailed comparison with experiment. The application of these techniques to
other molecules, as well as a more complete presentation can be found in references [16, 19, 20, 21].

2 The U(2) vibron model

The model is based on the isomorphism of the U(2) Lie algebra and the one dimensional Morse oscillator

H = − h̄2

2µ

d2

dx2
+ D(e−2x/d − 2e−x/d) , (1)

whose eigenstates E can be associated with U(2) ⊃ SO(2) states [22]. In order to see how this isomorphism
comes about, consider the radial equation

1

2

(

−1

r

d

dr
r

d

dr
+

σ2

r2
+ r2

)

φ(r) = (N + 1)φ(r) , (2)

which corresponds to a two-dimensional harmonic oscillator (in units where h̄ = µ = e = 1) associated
to a U(2) symmetry algebra [23]. By carrying out a change of variable

r2 = (N + 1)e−ρ ,

Eq. (2) transforms into

[

− d2

dρ2
+

(

N + 1

2

)2

(e−2ρ − 2e−ρ)

]

φ(ρ) = −
(

σ

2

)2

φ(ρ) . (3)

This can be identified with Eq. (1) after defining x = ρd and multiplying by h̄2/2µd2, provided that

D =
h̄2

8µd2
(N + 1)2 , (4)

E = − h̄2

2µd2
m2 , (5)

where we have defined m = σ/2. In the framework of the U(2) algebra, the operator N̂ corresponds to the
total number of bosons and is fixed by the potential shape according to Eq. (4), while m, the eigenvalue of
the SO(2) generator Jz , takes the values m = ±N/2, ±(N−2)/2, . . . . The Morse spectrum is reproduced
twice and consequently for these applications the m-values must be restricted to be positive. In terms of
the U(2) algebra, it is clear from Eqs. (3-5) that the Morse Hamiltonian has the algebraic realization

Ĥ = − h̄2

2µd2
Ĵ2

z = −AĴ2
z . (6)
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In addition, the U(2) algebra includes the raising and lowering operators Ĵ+ and Ĵ−, which connect
different energy states, while the angular momentum operator is given by Ĵ2 = N̂(N̂ + 2)/4, as can be
readily shown.

The Morse Hamiltonian of Eq. (6) can be rewritten in the more convenient form

Ĥ ′ = Ĥ + A
N̂2

4
=

A

2
[(Ĵ+Ĵ− + Ĵ−Ĵ+) − N̂ ] , (7)

where we have used the relation Ĵ2
z = Ĵ2− (Ĵ+Ĵ− + Ĵ−Ĵ+)/2 and added a constant term AN̂2/4 in order

to place the ground state at zero energy. The parameters N and A are related to the usual harmonic
and anharmonic constants ωe and xeωe used in spectroscopy. To obtain this relation it is convenient to
introduce the quantum number

v =
N

2
− m , (8)

which corresponds to the number of quanta in the oscillator. In terms of v, the corresponding energy
expression takes the form

E′ = −A(m2 − N2

4
) = −A

2
(N + 1/2) + A(N + 1)(v + 1/2)− A(v + 1/2)2 , (9)

from which we immediately obtain

ωe = A(N + 1) ,

xeωe = A . (10)

Thus, in a diatomic molecule the parameters A and N can be determined by the spectroscopic constants
ωe and xeωe.

We now consider the Ui(2) ⊃ SUi(2) ⊃ SOi(2) algebra, which is generated by the set {Ĝi} ≡
{N̂i, Ĵ+,i, Ĵ−,i, Ĵ0,i}, satisfying the commutation relations

[Ĵ0,i, Ĵ±,i] = ±Ĵ±,i , [Ĵ+,i, Ĵ−,i] = 2Ĵ0,i , [N̂i, Ĵµ,i] = 0 , (11)

with µ = ±, 0. As mentioned before, for the symmetric irreducible representation [Ni, 0] of Ui(2) one can

show that the Casimir operator is given by ~J 2
i = N̂i(N̂i + 2)/4 [23], from which follows the identification

ji = Ni/2. The SOi(2) label is denoted by mi.

3 The Be4 cluster

As a specific example, we consider the Be4 cluster, which has a tetrahedral shape. D3h molecules can
be similarly treated. In the Be4 case there are six Ui(2) algebras involved (i = 1, . . . , 6). In the present
approach each relevant interatomic interaction is associated with a Ui(2) algebra. The operators in the
model are expressed in terms of the generators of these algebras, and the symmetry requirements of the
tetrahedral group Td can be readily imposed [14, 24]. The local operators {Ĝi} acting on bond i can be
projected to any of the fundamental irreps Γ = A1, E and F2. Using the Ĵµ,i generators we obtain the
Td tensors

T̂ Γ
µ,γ =

6
∑

i=1

αΓ
γ,i Ĵµ,i , (12)

where µ = ±, 0 and γ denotes the component of Γ. The explicit expressions are given by

T̂ A1

µ,1 =
1√
6

6
∑

i=1

Ĵµ,i ,
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T̂ E
µ,1 =

1

2
√

3

(

Ĵµ,1 + Ĵµ,2 − 2Ĵµ,3 + Ĵµ,4 − 2Ĵµ,5 + Ĵµ,6

)

,

T̂ E
µ,2 =

1

2

(

Ĵµ,1 − Ĵµ,2 − Ĵµ,4 + Ĵµ,6

)

,

T̂ F2

µ,1 =
1√
2

(

Ĵµ,1 − Ĵµ,6

)

,

T̂ F2

µ,2 =
1√
2

(

Ĵµ,2 − Ĵµ,4

)

,

T̂ F2

µ,3 =
1√
2

(

Ĵµ,3 − Ĵµ,5

)

. (13)

The Hamiltonian operator can be constructed by repeated couplings of these tensors to a total symmetry
A1, since it must commute with all operations in Td [14].

All calculations are carried out in a symmetry-adapted basis, which is projected from the local basis

U1(2) ⊗ · · · ⊗ U6(2) ⊃ SO1(2) ⊗ · · · ⊗ SO6(2) ⊃ SO(2)
↓ ↓ ↓ ↓ ↓

| [N1] , . . . , [N6] ; v1 , . . . , v6 ; V 〉
(14)

in which each anharmonic oscillator is well defined. By symmetry considerations, Ni = N for the six
oscillators, vi = Ni/2−mi denotes the number of quanta in bond i and V =

∑

i vi is the total number of
quanta. The local basis states for each oscillator are usually written as |Ni, vi〉, where vi = (Ni−2mi)/2 =
0, 1, . . . [Ni/2] denotes the number of oscillator quanta in the i-th oscillator. The states with one quantum
V = 1 are denoted by | i 〉 with vi = 1 and vj 6=i = 0. Using the same projection technique as for the
generators (13), we find the six fundamental modes

| 1φΓ
γ 〉 =

6
∑

i=1

αΓ
γ,i | i 〉 . (15)

The expansion coefficients are the same as in Eq. (13). The states with a higher number of quanta |V φΓ
γ 〉

can be constructed using the Clebsch-Gordan coefficients of Td [14, 24]. Since all operators are expressed
in terms of powers of the Ui(2) generators, their matrix elements can be easily evaluated in closed form.
The symmetry-adapted operators of Eq. (13) and symmetry-adapted basis states are the building blocks
of the model.

We now proceed to expicitly construct the Be4 Hamiltonian. For interactions that are at most
quadratic in the generators the procedure yields

Ĥ0 = ω1 ĤA1
+ ω2 ĤE + ω3 ĤF2

+ α2 V̂E + α3 V̂F2
, (16)

with

ĤΓ =
1

2N

∑

γ

(

T̂ Γ
−,γ T̂ Γ

+,γ + T̂ Γ
+,γ T̂ Γ

−,γ

)

,

V̂Γ =
1

N

∑

γ

T̂ Γ
0,γ T̂ Γ

0,γ . (17)

Note that we have not included V̂A1
in Ĥ0, since the combination

∑

Γ

(

ĤΓ + V̂Γ

)

=
1

4N

6
∑

i=1

N̂i(N̂i + 2) , (18)

is a constant 3(N + 2)/2 . The five interaction terms in Eq. (16) correspond to linear combinations of
the Casimir operators of [14]. However, for a good description of the vibrational energies of Be4 it is
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necessary to include interactions which are related to the vibrational angular momenta associated with
the degenerate modes E and F2. These kind of terms is absent in the former versions of the model
[12, 14]. We now proceed to show how they can be obtained in the present formalism. In configuration
space the vibrational angular momentum operator for the E mode is given by [25]

l̂A2 = −i

(

qE
1

∂

∂qE
2

− qE
2

∂

∂qE
1

)

, (19)

where qE
1 and qE

2 are the normal coordinates associated to the E mode. This relation can be transformed
to the algebraic space by means of the harmonic oscillator operators

bΓ †
γ =

1√
2

(

qΓ
γ − ∂

∂qΓ
γ

)

, bΓ
γ =

1√
2

(

qΓ
γ +

∂

∂qΓ
γ

)

, (20)

to obtain

l̂A2 = −i
(

bE †
1 bE

2 − bE †
2 bE

1

)

. (21)

Here bE
γ =

∑

i αE
γ,i bi, with a similar form for bΓ †

γ , while the αE
γ i can be read from Eqs. (12,13). In order

to find the algebraic expression for l̂A2 we first introduce a scale transformation

b̄†i ≡ Ĵ−,i/
√

Ni , b̄i ≡ Ĵ+,i/
√

Ni . (22)

The relevant commutator can then be expressed as

[b̄i, b̄
†
i ] =

1

Ni
[Ĵ+,i, Ĵ−,i] =

1

Ni
2Ĵ0,i = 1 − 2v̂i

Ni
, (23)

where

v̂i =
N̂i

2
− Ĵ0,i . (24)

The other two commutation relations of Eq. (11) are not modified by the scale transformation of Eq. (22).
In the harmonic limit, which is defined by Ni → ∞, Eq. (23) reduces to the standard boson commutator

[b̄i, b̄
†
i ] = 1. This limit corresponds to a contraction of SU(2) to the Weyl algebra and can be used to

obtain a geometric interpretation of algebraic operators in terms of those in configuration space. In the
opposite sense, Eq. (22) provides a procedure to construct the anharmonic representation of harmonic

operators through the correspondence b†i → b̄†i = Ĵ−,i/
√

Ni and bi → b̄i = Ĵ+,i/
√

Ni. Applying this
method to the vibrational angular momentum we find

l̂A2 = − i

N

(

T̂ E
−,1T̂

E
+,2 − T̂ E

−,2T̂
E
+,1

)

. (25)

For the vibrational angular momentum l̂F1

γ associated with the F2 mode we find a similar expression.
The corresponding interactions are

Ĥ1 = g22 l̂A2 l̂A2 + g33

∑

γ

l̂F1

γ l̂F1

γ . (26)

With this method we obtain an algebraic realization of arbitrary configuration space interactions. As a
simple example, a one-dimensional harmonic oscillator Hamiltonian Ĥi = (b†i bi + bib

†
i )/2, transforms into

1

2N
(Ĵ−,iĴ+,i + Ĵ+,iĴ−,i) =

1

N
(Ĵ2

i − Ĵ2
0,i) = v̂i + 1/2 − v̂2

i

N
, (27)
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where in the last step we used Eq. (24). The spectrum of Eq. (27) has an anharmonic correction, analogous
to the quadratic term in the Morse potential spectrum. We are thus substituting harmonic oscillators by
Morse oscillators.

A more interesting application is to use our model to fit the spectroscopic data of several polyatomic
molecules. In the case of Be4 the energy spectrum was analyzed by ab initio methods in [17], where
force-field constants corresponding to an expansion of the potential up to fourth order in the normal
coordinates and momenta were evaluated. We have generated the ab initio spectrum up to three quanta
using the analysis in [25]. For the algebraic Hamiltonian we take [16]

Ĥ = ω1 ĤA1
+ ω2 ĤE + ω3 ĤF2

+ X12

(

ĤA1
ĤE

)

+ X13

(

ĤA1
ĤF2

)

+ X33

(

ĤF2

)2

+g33

∑

γ

l̂F1

γ l̂F1

γ + t33 Ô33 + t23 Ô23 , (28)

The terms Ô33 and Ô23 represent the algebraic form of the corresponding interactions in [25] which are
responsible for the splitting of the vibrational levels in the (ν1, ν

m
2 , νl

3) = (0, 00, 22) and the (0, 11, 11)
overtones [16].

In Table I we show the the results of a least-square fit to the vibrational energies of Be4 with the
Hamiltonian of Eq. (28). The r.m.s. deviation obtained is 2.6 cm−1, which can be considered of spectro-
scopic quality. We point out that in [25, 26] several higher order interactions are present which we have
neglected. Since our model can be put into a one to one correspondence with the configuration space
calculations, it is in fact possible to improve the accuracy of the fit considerably, but we have used a
simpler Hamiltonian than the one of [25, 26]. When no ab initio calculations are available (or feasible)
the present approach can be used empirically, achieving increasingly good fits by the inclusion of higher
order interactions [16].

We note that the Be4 Hamiltonian of Eq. (28) preserves the total number of quanta V . This is a good
approximation for this case according to the analysis of [25, 26], but it is known that Fermi resonances
can occur for certain molecules when the fundamental mode frequencies are such that (V, V ′) states with
V 6= V ′ are close in energy. These interactions can be introduced in the Hamiltonian but the size of the
energy matrices grows very rapidly, so the best way to deal with this problem is through perturbation
theory.

4 D3h triatomic molecules

For D3h molecules we follow a similar procedure, namely, we construct the D3h symmetry-adapted op-
erators and states analogous to Eq. (13,15) and carry out the building up procedure to construct the
Hamiltonian and states with a higher number of quanta with the appropriate projection operators and
Clebsch-Gordan coefficients [19].

In Table II we present the fits to the spectra of Be3, Na+

3 and H+

3 up to three quanta. While remarkably
accurate descriptions of the first two molecules can be achieved using a four-parameter Hamiltonian, we
were forced to include four additional higher order terms in the H+

3 Hamiltonian in order to properly
describe this molecule. This is in accordance with the work of Carter and Meyer [18], who were forced
to include twice as many terms in the potential energy surface for H+

3 than for the Na+

3 molecule. The
H+

3 ion is a very “soft” molecule which, due to the light mass of its atomic constituents carries out large
amplitude oscillations from its equilibrium positions [18].

5 The methane molecule

We now turn our attention to the CH4 molecule, for which we shall make a detailed description. For
methane we have four U(2) algebras corresponding to the C-H interactions and six more representing the
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H-H couplings. The assignments and the choice of the Cartesian coordinate system are the same as in
[14]. The molecular dynamical group is then given by the product

G = U1(2) ⊗ U2(2) ⊗ . . . ⊗ U10(2) . (29)

The labeling is such that i = 1, . . . , 4 correspond to the C-H couplings while the other values of i
are associated with H-H interactions. Consequently there are two different boson numbers, Ns for the
C-H couplings and Nb for the H-H couplings, which correspond to the stretching and bending modes,
respectively. The tetrahedral symmetry of methane is taken into account by projecting the local operators
{Ĝi}, which act on bond i, on the irreducible representations Γ of the tetrahedral group Td. The explicit
expressions for the Td tensors for the stretching modes are

T̂
A1,s

µ,1 =
1

2

4
∑

i=1

Ĵµ,i ,

T̂
F2,s

µ,1 =
1

2

(

Ĵµ,1 − Ĵµ,2 + Ĵµ,3 − Ĵµ,4

)

,

T̂
F2,s

µ,2 =
1

2

(

Ĵµ,1 − Ĵµ,2 − Ĵµ,3 + Ĵµ,4

)

,

T̂
F2,s

µ,3 =
1

2

(

Ĵµ,1 + Ĵµ,2 − Ĵµ,3 − Ĵµ,4

)

, (30)

while for the bending modes we have

T̂
A1,b

µ,1 =
1√
6

10
∑

i=5

Ĵµ,i ,

T̂ Eb

µ,1 =
1

2
√

3

(

Ĵµ,5 + Ĵµ,6 − 2Ĵµ,7 + Ĵµ,8 − 2Ĵµ,9 + Ĵµ,10

)

,

T̂ Eb

µ,2 =
1

2

(

Ĵµ,5 − Ĵµ,6 − Ĵµ,8 + Ĵµ,10

)

,

T̂
F2,b

µ,1 =
1√
2

(

Ĵµ,5 − Ĵµ,10

)

,

T̂
F2,b

µ,2 =
1√
2

(

Ĵµ,6 − Ĵµ,8

)

,

T̂
F2,b

µ,3 =
1√
2

(

Ĵµ,7 − Ĵµ,9

)

. (31)

As before, the algebraic Hamiltonian can be constructed by repeated couplings of these tensors to a total
symmetry A1.

The methane molecule has nine vibrational degrees of freedom. Four of them correspond to the
fundamental stretching modes (A1 ⊕ F2) and the other five to the fundamental bending modes (E ⊕ F2)
[27]. The projected tensors of Eqs. (30) and (31) correspond to ten degrees of freedom, four of which
(A1 ⊕ F2) are related to stretching modes and six (A1 ⊕ E ⊕ F2) to the bendings. Consequently we

can identify the tensor T̂
A1,b

µ,1 as the operator associated to a spurious mode. This identification makes

it possible to eliminate the spurious states exactly. This is achieved by (i) ignoring the T̂
A1,b

µ,1 tensor
in the construction of the Hamiltonian, and (ii) diagonalizing this Hamiltonian in a symmetry-adapted
basis from which the spurious mode has been removed following the procedure of [14]. We note that
the condition on the Hamiltonian that was used in [14] to exclude the spurious contributions, does not
automatically hold for states with higher number of quanta.

According to the above procedure, we now construct the Td invariant interactions that are at most
quadratic in the generators and conserve the total number of quanta

ĤΓx
=

1

2Nx

∑

γ

(

T̂ Γx

−,γ T̂ Γx

+,γ + T̂ Γx

+,γ T̂ Γx

−,γ

)

,

7



V̂Γx
=

1

Nx

∑

γ

T̂ Γx

0,γ T̂ Γx

0,γ . (32)

Here Γ = A1, F2 for the stretching vibrations x = s and Γ = E, F2 for the bending vibrations x = b. In
addition there are two stretching-bending interactions

Ĥsb =
1

2
√

NsNb

∑

γ

(

T̂
F2,s

−,γ T̂
F2,b

+,γ + T̂
F2,s

+,γ T̂
F2,b

−,γ

)

,

V̂sb =
1√

NsNb

∑

γ

T̂
F2,s

0,γ T̂
F2,b

0,γ . (33)

The zeroth order vibrational Hamiltonian is now written as

Ĥ0 = ω1 ĤA1,s
+ ω2 ĤEb

+ ω3 ĤF2,s
+ ω4 ĤF2,b

+ ω34 Ĥsb

+α2 V̂Eb
+ α3 V̂F2,s

+ α4 V̂F2,b
+ α34 V̂sb . (34)

The interaction V̂A1,s
has not been included since, in analogy to Eq. (18), the combination

∑

Γ

(

ĤΓs
+ V̂Γs

)

=
1

4Ns

4
∑

i=1

N̂i(N̂i + 2) , (35)

corresponds to a constant Ns + 2. A similar relation holds for the bending interactions, but in this case
the interaction V̂A1,b

has already been excluded in order to remove the spurious A1 bending mode. The

subscripts of the parameters correspond to the (ν1, ν
l2
2 , νl3

3 , νl4
4 ) labeling of a set of basis states for the

vibrational levels of CH4. Here ν1, ν2, ν3 and ν4 denote the number of quanta in the A1,s, Eb, F2,s and
F2,b modes, respectively. The labels li are related to the vibrational angular momentum associated with
degenerate vibrations. The allowed values are li = νi, νi − 2, . . . , 1 or 0 for νi odd or even [27].

In the harmonic limit the interactions of Eqs. (32) and (33) again attain a particularly simple form,
which can be directly related to configuration space interactions. This limit is obtained, as before, by
rescaling Ĵ+,i and Ĵ−,i by

√
Ni and taking Ni → ∞, so that

lim
Ni→∞

Ĵ+,i√
Ni

= bi ,

lim
Ni→∞

Ĵ−,i√
Ni

= b†i ,

lim
Ni→∞

1

Ni
[Ĵ+,i, Ĵ−,i] = lim

Ni→∞

2Ĵ0,i

Ni
= 1 . (36)

where the operators bi and b†j satisfy the standard boson commutation relation [bi, b
†
j] = δij . Applying

the harmonic limit to the interactions of Eqs. (32) and (33) we obtain

lim
Nx→∞

ĤΓx
=

1

2

∑

γ

(

bΓx †
γ bΓx

γ + bΓx

γ bΓx †
γ

)

,

lim
Nx→∞

V̂Γx
= 0 ,

lim
Ns,Nb→∞

Ĥsb =
1

2

∑

γ

(

bF2,s †
γ b

F2,b
γ + bF2,s

γ b
F2,b †
γ

)

,

lim
Ns,Nb→∞

V̂sb = 0 . (37)

8



Here the operators bΓx †
γ are given in terms of the local boson operators b†i through the coefficients αΓx

γ,i

given in Eqs. (30,31)

bΓx †
γ =

10
∑

i=1

αΓx

γ,i b†i , (38)

with a similar relation for the annihilation operators. From Eq. (37) the physical interpretation of
the interactions is immediate. The ĤΓx

terms represent the anharmonic counterpart of the harmonic
interactions, while the V̂Γx

terms are purely anharmonic contributions which vanish in the harmonic
limit. In an application to the ozone molecule it was found that these terms can account for the strong
anharmonicities and incorporate the effect of Darling-Dennison type couplings [20].

The zeroth order Hamiltonian of Eq. (34) is not sufficient to obtain a high-quality fit of the vibrations
of methane. Several physically meaningful interaction terms that are essential for such a fit are not
present in Eq. (34). They arise in our model as higher order interactions. It is an advantage of the
symmetry-adapted model that the various interaction terms have a direct physical interpretation and a
specific action on the various modes [16]. Hence the addition of higher order terms and anharmonicities
can be done in a systematic way. For the study of the vibrational excitations of methane we use the Td

invariant Hamiltonian [21]

Ĥ = ω1 ĤA1,s
+ ω2 ĤEb

+ ω3 ĤF2,s
+ ω4 ĤF2,b

+ α3 V̂F2,s

+X11

(

ĤA1,s

)2

+ X22

(

ĤEb

)2

+ X33

(

ĤF2,s

)2

+ X44

(

ĤF2,b

)2

+X12

(

ĤA1,s
ĤEb

)

+ X14

(

ĤA1,s
ĤF2,b

)

+X23

(

ĤEb
ĤF2,s

)

+ X24

(

ĤEb
ĤF2,b

)

+ X34

(

ĤF2,s
ĤF2,b

)

+g22

(

l̂A2

)2

+ g33

∑

γ

l̂F1

s,γ l̂F1

s,γ + g44

∑

γ

l̂F1

b,γ l̂F1

b,γ + g34

∑

γ

l̂F1

s,γ l̂F1

b,γ

+t33 Ôss + t44 Ôbb + t34 Ôsb + t23 Ô2s + t24 Ô2b . (39)

The interpretation of the ωi and α3 terms follows from Eq. (37). The Xij terms are quadratic in the

operators ĤΓx
and hence represent anharmonic vibrational interactions. The gij terms are related to

the vibrational angular momenta associated with the degenerate vibrations. As mentioned before, these
interactions, which are fundamental to describe molecular systems with a high degree of symmetry, are
absent in previous versions of the vibron model in which the interaction terms are expressed in terms of
Casimir operators and products thereof [12, 14]. They give rise to a splitting of vibrational levels with
the same values of (ν1, ν2, ν3, ν4) but with different l2, l3 and/or l4. Their algebraic realization is given
by

l̂A2 = −i
√

2
1

Nb
[T̂ Eb

− × T̂ Eb

+ ]A2 ,

l̂F1

x,γ = +i
√

2
1

Nx
[T̂

F2,x

− × T̂
F2,x

+ ]F1

γ . (40)

The square brackets in Eq. (40) denote the tensor coupling under the point group Td

[T̂ Γ1 × T̂ Γ2]Γγ =
∑

γ1,γ2

C(Γ1, Γ2, Γ; γ1, γ2, γ) T̂ Γ1

γ1
T̂ Γ2

γ2
, (41)

where the expansion coefficients are the Clebsch-Gordan coefficients for Td [14, 24]. In the harmonic limit
the expectation value of the diagonal terms in Eq. (39) leads to the familiar Dunham expansion [27]

∑

i

ωi (vi +
di

2
) +

∑

j≥i

∑

i

Xij (vi +
di

2
)(vj +

dj

2
) +

∑

j≥i

∑

i

gij lilj . (42)
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Here di is the degeneracy of the vibration. The tij terms in Eq. (39) give rise to further splittings of the
vibrational levels (ν1, ν2, ν3, ν4) into its possible sublevels. They can be expressed in terms of the tensor
operators of Eqs. (30) and (31) as

Ôxy =
1

NxNy

(

6
∑

γ

[T̂
F2,x

− × T̂
F2,y

− ]Eγ [T̂
F2,y

+ × T̂
F2,x

+ ]Eγ − 4
∑

γ

[T̂
F2,x

− × T̂
F2,y

− ]F2

γ [T̂
F2,y

+ × T̂
F2,x

+ ]F2

γ

)

,

Ô2x =
1

NbNx

(

8
∑

γ

[T̂ Eb

− × T̂
F2,x

− ]F1

γ [T̂ Eb

+ × T̂
F2,x

+ ]F1

γ − 8
∑

γ

[T̂ Eb

− × T̂
F2,x

− ]F2

γ [T̂ Eb

+ × T̂
F2,x

+ ]F2

γ

)

. (43)

In the harmonic limit the tij terms have the same interpretation as in [25]. The Ôss, Ôbb and Ôsb terms

give rise to a splitting of the E and F2 vibrations belonging to the (ν1, ν
l2
2 , νl3

3 , νl4
4 ) = (0, 00, 22, 00),

(0, 00, 00, 22) and (0, 00, 11, 11) levels, respectively. Similarly, the Ô2s and Ô2b terms split the F1 and F2

vibrations belonging to the (0, 11, 11, 00) and (0, 11, 00, 11) overtones, respectively.
The Hamiltonian of Eq. (39) involves 23 interaction strengths and the two boson numbers, Ns and

Nb. The vibron number associated with the stretching vibrations is determined from the spectroscopic
constants ωe and xeωe for the CH molecule to be Ns = 43 [23]. The vibron number for the bending
vibrations, which are far more harmonic than the stretching vibrations, is taken to be Nb = 150. We
have carried out a least-square fit to the vibrational spectrum of methane including 44 experimental
energies from [28]. The values of the fitted parameters are presented in the second column of Table III
(Fit 1). In Table IV we compare the results of our calculation with the experimentally observed energies.
All predicted levels up to V = 3 quanta are included. We find an overall fit to the observed levels with
a r.m.s. deviation which is an order of magnitude better than in previous studies. Whereas the r.m.s.
deviations of standard vibron model studies in [14] and [29] are 12.16 and 11.61 cm−1 for 19 energies, we
find a value of 1.16 cm−1 for 44 energies.

In order to address the importance of the α3 term, which is completely anharmonic in origin and
vanishes in the harmonic limit (see Eq. (37)), we have carried out a calculation without this term (Fit 2
of Table III). With one less interaction term the r.m.s. deviation increases from 1.16 to 4.49 cm−1. This
shows the importance of the α3 term to obtain an accurate description of the anharmonicities that are
present in the data. Similarly, the third calculation (Fit 3) shows that, in a fit without the tij terms, the
r.m.s. deviation increases from 1.16 to 7.81 cm−1.

In addition, we have carried out a fit in the harmonic limit (Ns, Nb → ∞). In this limit the α3

term vanishes and the algebraic Hamiltonian of Eq. (39) reduces to the vibrational Hamiltonian of [25],
the harmonic frequencies ωi and anharmonic constants Xij , gij and tij having the same meaning. The
r.m.s. deviation increases to 20.42 cm−1 (Fit 4). When we use the vibrational Hamiltonian of [25], which
contains one additional interaction (called s34 in Table III) the quality of the fit does not improve. In
fact, the r.m.s. deviation increases to 20.90 cm−1 (Fit 5). The importance of the nondiagonal elements is
demonstrated in a calculation (Fit 6), in which the data are fitted by the (diagonal) Dunham expansion
of Eq. (42). For this case the r.m.s. deviation is 21.00 cm−1, almost the same value as for the other
two calculations in the harmonic limit. The small differences in the parameter values and the r.m.s.
deviation of Fits 4 and 6 show that, unlike for finite Ns and Nb (Fits 1 and 3), in the harmonic limit the
nondiagonal contributions from the tij terms are not very important.

A comparison between the parameter values and the r.m.s. deviations of Fits 1–6 in Table III shows
that the α3 term and the anharmonic effects in the interaction terms of Eq. (39) can only be compensated
for in part by the anharmonicity constants Xij . The r.m.s. deviation increases from 1.16 to 4.49 and
20.42 cm−1 for Fits 1, 2 and 4, respectively.

6 Summary and conclusions

In summary, in this paper we have studied the vibrational excitations of several molecules in a symmetry-
adapted algebraic model. In particular, for the methane molecule we find an overall fit to the 44 observed

10



levels with a r.m.s. deviation of 1.16 cm−1, which can be considered of spectroscopic quality. We pointed
out that for this calculation the α3 term in Eq. (39) in combination with the anharmonic effects in the
other interaction terms plays a crucial role in obtaining a fit of this quality. Purely anharmonic terms
of this sort arise naturally in the symmetry-adapted algebraic model, but vanish in the harmonic limit.
Physically, these contributions arise from the anharmonic character of the interatomic interactions, and
seem to play an important role when dealing with molecular anharmonicities, especially at higher number
of quanta. This conclusion is supported by our other applications of the symmetry-adapted model to
the Be4 cluster [16] and the H+

3 , Be3 and Na+

3 molecules [19], as well as our study of two isotopes of the
ozone molecule [20].

These studies suggest that the symmetry-adapted algebraic model provides a numerically efficient tool
to study molecular vibrations with high precision. The main difference with other methods is the use
of symmetry-adapted tensors in the construction of the Hamiltonian. In this approach, the interactions
can be constructed in a systematic way, each term has a direct physical interpretation, and spurious
modes can be eliminated exactly. It will be important to further explore the scope and applicability of
the present approach. A more extensive study of methane including rotation-vibration couplings, states
with a higher number of quanta and transition intensities is in progress.
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Table I: Fit to ab initio [26] calculations for Be4. The values of the parameters are ω1 = 636, ω2 = 453, ω3 = 532,

X33 = 44.276, X12 = 4.546, X13 = −2.539, g33 = −15.031, t33 = −1.679 and t23 = −1.175. The total number of

bosons is N = 44. The parameters and energies are given in cm−1.

V (ν1, ν
m
2 , νl

3) Γ Ab initio Fit V (ν1, ν
m
2 , νl

3) Γ Ab initio Fit
N → ∞ N = 44 N → ∞ N = 44

1 (1, 00, 00) A1 638.6 637.0 3 (1, 00, 20) A1 2106.8 2105.6
(0, 11, 00) E 453.6 455.0 (1, 00, 22) E 2000.1 1999.8
(0, 00, 11) F2 681.9 678.2 F2 2056.8 2052.8

2 (2, 00, 00) A1 1271.0 1269.2 (0, 31, 00) E 1341.3 1343.7
(1, 11, 00) E 1087.1 1087.0 (0, 33, 00) A1 1355.5 1352.5
(1, 00, 11) F2 1312.6 1308.3 A2 1355.5 1354.4
(0, 20, 00) A1 898.3 901.4 (0, 20,2, 11) F2 1565.5 1565.7
(0, 22, 00) E 905.4 906.1 F2 1584.4 1583.1
(0, 11, 11) F1 1126.7 1125.1 (0, 22, 11) F1 1578.5 1578.0

F2 1135.5 1134.1 (0, 11, 20,2) E 1821.4 1821.6
(0, 00, 20) A1 1484.0 1483.0 E 1929.5 1929.0
(0, 00, 22) E 1377.3 1373.9 (0, 11, 22) A2 1813.3 1813.1

F2 1434.1 1429.6 A1 1830.8 1831.7
3 (3, 00, 00) A1 1897.0 1896.7 F2 1874.4 1873.2

(2, 11, 00) E 1714.3 1714.3 F1 1883.2 1883.0
(2, 00, 11) F2 1937.0 1933.7 (0, 00, 31,3) F2 2136.5 2134.2
(1, 20, 00) A1 1526.6 1529.2 F2 2327.3 2326.9
(1, 22, 00) E 1533.7 1532.8 (0, 00, 33) F1 2199.8 2197.1
(1, 11, 11) F1 1752.2 1749.7 A1 2256.5 2254.4

F2 1761.0 1759.8
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Table II: Least-square energy fit for the vibrational excitations of H+

3 , Be3 and Na+

3 . The energy differences

∆E = Eth − Eexp are given in cm−1.

H+
3 Be3 Na+

3

V (ν1, ν
l
2) Γ ∆E ∆E ∆E

1 (0, 11) E -1.55 0.51 0.93
(1, 00) A1 0.42 0.02 1.95

2 (0, 20) A1 7.48 -0.74 0.37
(0, 22) E -5.69 0.17 0.84
(1, 11) E -0.61 0.82 1.68
(2, 00) A1 -0.11 -0.04 1.26

3 (0, 31) E -4.46 -2.05 -1.19
(0, 33) A1 3.18 -1.23 -0.34
(0, 33) A2 2.44 0.61 -0.33
(1, 20) A1 0.66 1.90 -0.01
(1, 22) E -5.00 -1.36 0.34
(2, 11) E 4.07 0.79 -0.19
(3, 00) A1 -1.23 -1.66 -2.06

r.m.s. 5.84 1.35 1.33

Parameters 8 4 4
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Table III: Parameters in cm−1 obtained in the fits to the vibrational energies of CH4.

Parameter Fit 1 Fit 2 Fit 3 Fit 4 Fit 5 Fit 6

Ns 43 43 43 ∞ ∞ ∞
Nb 150 150 150 ∞ ∞ ∞
ω1 2977.60 2966.17 2970.03 2967.40 2966.81 2969.75
ω2 1554.83 1549.96 1550.88 1558.38 1558.51 1548.30
ω3 3076.45 3076.41 3079.33 3081.34 3082.00 3060.48
ω4 1332.22 1329.52 1337.69 1337.51 1337.54 1338.64
α3 582.87 – 480.33 – – –
X11 3.69 10.23 6.06 –21.30 –21.19 –21.59
X22 1.30 1.32 1.37 –1.17 –1.17 –0.28
X33 5.43 6.97 5.34 –10.79 –11.12 –7.89
X44 –3.47 –3.64 –4.41 –6.26 –6.27 –7.26
X12 –3.60 –0.94 –1.47 –3.39 –3.28 –2.80
X13 – – – – – –
X14 –2.86 –0.49 –2.30 –3.10 –3.00 –4.48
X23 –11.14 –8.75 –10.68 –7.97 –8.10 –3.80
X24 1.00 0.91 2.03 –5.37 –5.37 –4.74
X34 –5.60 –3.97 –6.50 –3.46 –3.50 –1.21
g22 –0.46 –0.46 –0.41 0.37 0.37 –0.62
g33 0.19 –1.23 0.25 –4.35 –4.22 –5.49
g44 4.07 4.11 3.79 4.98 4.98 5.30
g34 –0.65 –0.72 –0.56 –0.74 –0.87 –0.67
t33 0.40 0.16 – –1.25 –1.27 –
t44 1.00 1.00 – 0.56 0.56 –
t34 0.21 0.24 – 0.24 0.25 –
t23 –0.39 –0.39 – –0.39 –0.39 –
t24 0.13 0.13 – 0.91 0.91 –
s34 – – – – –0.11 –

r.m.s. 1.16 4.49 7.81 20.42 20.90 21.00
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Table IV: Fit to vibrational excitations of CH4. The values of the parameters are given in the second column of

TableIII. Here ∆E = Ecal − Eexp. The experimental energies are taken from [28]. The wave numbers are given

in cm−1.

Γ (ν1, ν2, ν3, ν4) Ecal Eexp ∆E Γ (ν1, ν2, ν3, ν4) Ecal Eexp ∆E

A1 (1000) 2916.32 2916.48 –0.16 (0111) 5844.98
E (0100) 1533.46 1533.33 0.13 (1200) 5974.81
F2 (0001) 1309.86 1310.76 –0.90 (1011) 7147.49

(0010) 3018.09 3019.49 –1.40 (0021) 7303.38
(2100) 7315.60

A1 (0002) 2587.77 2587.04 0.73 (0120) 7479.48
(0200) 3063.66 3063.65 0.01 (0120) 7557.17
(0011) 4323.81 4322.72 1.09 (1020) 8833.05
(2000) 5790.13 5790 0.13 F1 (0003) 3920.46 3920.50 –0.04
(0020) 5966.57 5968.1 –1.53 (0102) 4128.38 4128.57 –0.19

E (0002) 2624.14 2624.62 –0.48 (0201) 4364.39 4363.31 1.08
(0200) 3065.22 3065.14 0.08 (0012) 5620.08
(0011) 4323.09 4322.15 0.94 (0012) 5630.76
(1100) 4446.41 4446.41 0.00 (1101) 5755.58
(0020) 6045.03 6043.8 1.23 (0111) 5829.79

F1 (0101) 2845.35 2846.08 –0.73 (0111) 5848.94
(0011) 4323.15 4322.58 0.57 (0210) 6061.57
(0110) 4537.57 4537.57 0.00 (1011) 7147.53

F2 (0002) 2612.93 2614.26 –1.33 (0021) 7303.29
(0101) 2830.61 2830.32 0.29 (0021) 7343.21
(1001) 4223.46 4223.46 0.00 (1110) 7361.79
(0011) 4321.02 4319.21 1.81 (0120) 7518.70
(0110) 4543.76 4543.76 0.00 (0030) 8947.65 8947.95 –0.30
(1010) 5845.53 F2 (0003) 3871.29 3870.49 0.80
(0020) 6003.65 6004.65 –1.00 (0003) 3931.36 3930.92 0.44

(0102) 4143.09 4142.86 0.23
A1 (0003) 3909.20 3909.18 0.02 (0201) 4349.01 4348.77 0.24

(0102) 4131.92 4132.99 –1.07 (0201) 4378.38 4379.10 –0.72
(0300) 4595.26 4595.55 –0.29 (1002) 5523.80
(1002) 5498.66 (0012) 5594.92 5597.14 –2.22
(0012) 5617.16 (0012) 5620.68
(0111) 5836.11 (0012) 5632.36
(1200) 5973.26 (1101) 5740.86
(1011) 7147.56 (0111) 5830.28
(0021) 7300.85 (0111) 5848.46
(0120) 7562.91 (0210) 6054.58
(3000) 8583.81 (0210) 6067.03
(1020) 8727.97 (2001) 7094.16
(0030) 8975.64 8975.34 0.30 (1011) 7145.84

A2 (0102) 4161.52 4161.87 –0.35 (0021) 7266.11
(0300) 4595.28 4595.32 –0.04 (0021) 7303.38
(0111) 5844.61 (0021) 7344.87
(0120) 7550.53 (1110) 7365.83

E (0102) 4105.22 4105.15 0.07 (0120) 7514.67
(0102) 4152.15 4151.22 0.93 (2010) 8594.90
(0300) 4592.13 4592.03 0.10 (1020) 8786.05
(1002) 5535.04 (0030) 8907.91 8906.78 1.13
(0012) 5620.36 (0030) 9045.36 9045.92 –0.56
(0111) 5836.45
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