
Supporting Requirements Verification Using XSLT�

Amador Durán Antonio Ruiz–Cortés Rafael Corchuelo Miguel Toro
Dpto. de Lenguajes y Sistemas Informáticos

Universidad de Sevilla
{amador,aruiz,corchu,mtoro}@lsi.us.es

Abstract

In this paper we present a light-weight approach for
the automatic verification of requirements. This approach
is not based on natural language parsing techniques but
on the representation of requirements in XML. In our ap-
proach, XSLT stylesheets are used not only to automati-
cally generate requirements documents, but also to provide
verification–oriented heuristics as well as to measure the
quality of requirements using some verification–oriented
metrics. These ideas have been implemented in REM, an ex-
perimental XML–based requirements management tool also
described in this paper.

1. Introduction

It is widely acknowledged within the software commu-
nity that requirements quality is one of the most impor-
tant factors in the quality and overall success of software
projects. That is the reason why some requirements engi-
neering (RE) activities have as their main goal increasing
the quality of requirements, namely requirements analysis,
requirements verification and requirements validation (see
the UML activity diagram in figure 1).

Requirements Quality Assurance
<<subprocess>>

Requirements Engineering
<<process>>

Requirements Negotiation
<<subprocess>>

Requirements Management
<<subprocess>>

Requirements Validation

Requirements Verification

Requirements Analysis

Requirements Elicitation
<<subprocess>>

Figure 1. RE process model

�This work is partially supported by the CICYT project TIC 2000–
1106–C02–01 (GEOZOCO) and by the CYTED project VII.18 (WEST)

These quality–oriented activities act as a requirements
quality filter in a similar way the quality gateway does in
the Volere method [16]. The main goals for these activities
are summarized in table 1.

Table 1. Quality–oriented RE activities
Activity Main goal
Analysis Identify conflicts in requirements
Verification Detect defects in requirements
Validation Certify requirements are consistent with the in-

tentions of customers and users

In this paper we focus on automatic verification of so–
called specification errors [8] and in assisting the require-
ments verifier in detecting knowledge errors [8] by means
of some verification–oriented heuristics and requirements
metrics that can be easily computed. Our approach is based
on the emergent technology built around XML [22] and its
companion language XSLT [21], as initially described in
[7].

The rest of the paper is organized as follows. First, we
describe REM, our RE tool [5, 6]. Then, we present a brief
overview of the XML model of requirements used by REM
and how XSLT can be used to support the verification of
some quality properties of requirements expressed in XML.
Finally, we discuss some related work and point out conclu-
sions and future work.

2. REM: an XML–based requirements tool

REM (REquirements Manager) is an experimental RE
tool developed by one of the authors as part of his PhD. The-
sis [5]. A REM project is considered to be composed of the
four documents corresponding to the four tabbed tree views
in figure 2. In REM, requirements, conflicts and defects are
expressed in natural language using predefined templates
and some linguistic patterns (see [6] for details). For ex-
pressing conceptual models, we have chosen a subset of the
UML [3].

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02) 
1090-705X/02 $17.00 © 2002 IEEE 



Creation toolbar

HTML view
Tabbed tree views

Context menu

Requirements

Conceptual
Models

Defects and
Conflicts

Change
Requests

Figure 2. REM user interface (default XSLT stylesheet)

2.1. REM architecture

REM projects are stored in relational, light–weight data-
bases. When the user creates a new REM project, the basic
structure is taken from a base project, that can be empty
or can contain the mandatory sections of requirements stan-
dards like [9]. Any ordinary REM project can be selected
as a base project, so REM users can reuse whole REM
projects or only individual requirements by means of the
copy&paste and drag&drop features of the REM user inter-
face.

In order to provide immediate feedback on user actions,
REM generates XML data corresponding to the project be-
ing edited, applies an external XSLT stylesheet that trans-
forms XML data into HTML and shows the result to the
user. The user can change document appearance or content
by selecting or creating different XSTL stylesheets. The de-
fault XSLT stylesheet generates a highly hyperlinked docu-
ment, easing navigation of requirements documents.

2.2. REM user interface

The user interface of REM presents two different views
to the user (see figure 2). On the left, the user can see four
tabbed tree views, one for each document in the project. On
the right, the result of the XSLT transformation of the XML
data corresponding to the selected document is presented to
the user in a embedded web browser.

In any of the four tree views, the user can directly ma-
nipulate REM objects by drag&drop or by context menus.
Only actions that make sense can be performed, following a
correct–by–construction approach, thus increasing internal
consistency [8] and saving verification effort. For example,
actions of use case steps can be of three different classes
(see figure 3): actor action, if the action is performed by an
actor; system action if the action is performed by the sys-
tem, or use case action, if the action consists of performing
another use case, i.e. a inclusion or extension [3]. Steps with
actor actions or use case actions can be created only if some
actor or another use case have been previously created. On
the other hand, only actors or use cases not referenced by
any step can be deleted.

3. XML model of requirements in REM

REM is based on a UML model of requirements de-
scribed in [5] which has been translated into a Document
Type Definition (DTD) [22]. As an example, the UseCase
class in figure 3 has been translated into the following DTD
element definition:

<!ELEMENT rem:useCase (
rem:name, rem:version,
rem:authors?, rem:sources?, rem:comments?,
rem:importance, rem:urgency, rem:status, rem:stability,
rem:isAbstract?, rem:triggeringEvent,
rem:precondition, rem:postcondition,

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02) 
1090-705X/02 $17.00 © 2002 IEEE 



rem:frequency, rem:step*
)>
<!ATTLIST rem:useCase oid ID #REQUIRED>

where the rem:useCase element, as any other REMObject,
must have a required identification attribute called oid. Chil-
dren elements of rem:useCase like rem:triggeringEevent or
rem:precondition contain only text, i.e. natural language. In
REM, text can be composed of any combination of free text,
references to other objects and TBD (To Be Determined)
marks, defined as follows:

<!ELEMENT rem:text (#PCDATA|rem:ref|rem:tbd)*>
<!ELEMENT rem:ref (#PCDATA)>

<!ATTLIST rem:ref oid IDREF #REQUIRED>
<!ELEMENT rem:tbd EMPTY>

where the rem:ref element must have a required attribute
called oid that it is declared as an IDREF, i.e. a reference
to another element with a matching identification attribute
value. The rem:tbd element is declared as an EMPTY ele-
ment, i.e. it is simply a mark.

4. Using XSLT for requirements verification

Simply by the fact of using REM, some quality proper-
ties described in [8] like modifiability, electronically stor-
age, version annotation or being traceable are automatically

name
version
comments

REMObject

importance
urgency
status
stability

C-Requirement

isAbstract
triggeringEvent
precondition
postcondition
frequency

UseCase Step*
{ordered}

0..1

description

Condition

*
description
termination

Exception

Action

1..1
1..1

description

ActorAction

description
performance

SystemAction

{disjoint}

Actor

UseCaseAction
*

*

1..1

1..1

...

...

{complete,disjoint}

{complete,disjoint}

Stakeholder

Trace

*
sources

*
authors

source

1..1

1..1 target

Figure 3. UML model of use cases in REM

fulfilled. In the following sections we describe how oth-
ers quality properties described in [8] can be automatically
verified, or some heuristics provided, using XSLT when re-
quirements are electronically stored in XML format accord-
ing to the REM DTD.

Although it is also possible to apply this approach to the
verification of conceptual models created with REM, in this
paper we focus only on requirements. For XML–based con-
ceptual model verification see [13], where the xlinkit lan-
guage and how it is used for the verification of UML models
in XMI format [14] are described.

For the sake of readability, all examples in the follow-
ing subsections use the rem:useCase element previously
described, although they can also be applied to other REM
objects.

4.1. Unambiguity

A requirement is unambiguous if and only if has only
one possible interpretation [9]. Obviously, this is a knowl-
edge property and cannot be automatically verified, but we
can provide some heuristics about potential ambiguities in
requirements in order to focus verification effort on poten-
tially ambiguous requirements.

A simple yet powerful heuristic for detecting ambiguity
(also design dependence, for example) is looking for weak
phrases indicators (WPI) in requirements descriptions, i.e.
"clauses that are apt to cause uncertainty and leave room for
multiple interpretations", as described in [18]. This can be
achieved by defining WPI in a external XML file like this
(wpi.xml):

<?xml version="1.0"?>
<wpis>

<wpi>easy</wpi> <!-- potential ambiguity -->
<wpi>etc</wpi> <!-- potential ambiguity -->
<wpi>normal</wpi> <!-- potential ambiguity -->
. . .
<wpi>click</wpi> <!-- potential design dependence -->
<wpi>button</wpi> <!-- potential design dependence -->
. . .

</wpis>

and using the following XSLT code:

<xsl:for-each select="//rem:useCase">
<xsl:variable name="uc" select="current()"/>
<xsl:for-each select="document(’wpi.xml’)//wpi">

<xsl:if test="contains($uc,.)">
Use case <xsl:value-of select="$uc/rem:name"/>
contains WPI <xsl:value-of select="."/>.
Please, check it.

</xsl:if>
</xsl:for-each>

</xsl:for-each>

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02) 
1090-705X/02 $17.00 © 2002 IEEE 



in which every use case is checked against every WPI in
wpi.xml. Notice that the uc variable is needed since XSLT
does not provide any way of accessing more than one cur-
rent node at different levels in nested xsl:for-each structures.

Another complementary approach for ambiguity heuris-
tics is measuring how much the customer’s vocabulary is
used in requirements descriptions. We agree with Leite
[12] in the importance of understanding the language of
the problem and in the importance of building a glossary
at the beginning of the elicitation process. Following Leite,
two principles should be followed: the principle of circu-
larity, (the glossary must be as self–contained as possible)
and the principle of minimal vocabulary (requirements de-
scriptions must use as many glossary items as possible).
Leite’s principles cannot guarantee unambiguity, but they
help to build more unambiguous, understandable, consis-
tent, concise, and cross–referenced requirements [8], and
can be used to measure the quality of the glossary and to
detect potentially ambiguous requirements.

In the REM XML model, glossary items elements are
mainly composed of rem:text elements, so they can contain
references to other REM objects. In this context, XSLT can
be used to measure glossary circularity (GLC) and minimal-
ity of vocabulary (MOV). GLC can be measured as the ratio
between the number of references to glossary items from
other glossary items and the number of glossary items, as
shown in the following XSLT code:

<xsl:variable name = "GLC"
select = "count(//rem:glossaryItem//rem:ref

[@oid = //rem:glossaryItem/@oid]) div
count(//rem:glossaryItem)"

/>

GLC can be used as an indicator of the glossary qual-
ity. GLC values under 1 indicate a low quality glossary,
since that implies that there are glossary items not referenc-
ing other glossary items. GLC can also be computed for
single glossary items. It seems clear that glossary items not
referencing other glossary items, or referencing just a few
ones (less than 2, for example), should be verified for po-
tential problems. The following XSLT code can be used for
that purpose:

<xsl:for-each select="//rem:glossaryItem
[count(.//rem:ref[@oid=//rem:glossaryItem/@oid]) < 2]"

>
Please, check definition of glossary item
<xsl:value-of select="rem:name"/>

</xsl:for-each>

MOV can be computed, in a similar way to GLC, as the
ratio between the number of references to glossary items in
requirements and the number of requirements. MOV can
be used to pinpoint those requirements that do not have any

reference, or just a few (less than 4, for example), to any
glossary item in their text. Since those requirements are
not using the vocabulary of the customer, they should be
checked for potential problems of ambiguity or understand-
ability [8]. The same schema used for detecting suspicious
glossary items can also be used for detecting potentially am-
biguous requirements.

4.2. Completeness

A requirements document is complete if it includes [8]:

1. Everything that the software is supposed to do, i.e. all
the requirements.

2. Responses of the software to all classes of input data
in all realizable situations.

3. Page numbers, figure and table names and references,
a glossary, units of measure and referenced material.

4. No sections marked as TBD.

The first completeness condition must be checked during
requirements validation activity (see figure 1) and is there-
fore out of the scope of our approach.

The second condition is a knowledge property very dif-
ficult to verify automatically, but some heuristics can be
applied when use cases are used for expressing functional
requirements (see section 4.4).

The third completeness condition is partially satisfied by
means of the correct–by–construction paradigm of REM:
figure and table names are automatically generated, refer-
ences are automatically inserted and updated, and the user
can easily create a glossary.

Organization, as described in [8], can also be considered
as part of the third completeness condition, so XSLT can
be used to verify if requirements documents are organized,
i.e. if they have mandatory sections in the mandatory order
with mandatory content. For example, if we want to be sure
about the existence of a section named A with a child section
named B, we can apply the following XSLT code:

<xsl:if test="not(//rem:section[rem:name=’A’]/
rem:section[rem:name=’B’])">

There is no A/B section organization
</xsl:if>

The fourth condition of completeness can be also verified
using XSLT. If we want to know how many TBD marks are
in a requirements document we can simply use the XPath
[20] expression count(//rem:tbd). If we want to be more pre-
cise and we want to know, for example, what use cases have
TBD marks inside their text and how many TBD marks they
have, we can use the following XSLT code:

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02) 
1090-705X/02 $17.00 © 2002 IEEE 



<xsl:for-each select="//rem:useCase[.//rem:tbd]">
Use case <xsl:value-of select="rem:name"/>
has <xsl:value-of select="count(.//rem:tbd)"/>
TBD marks

</xsl:for-each>

REM automatically inserts TBD marks in those require-
ments not annotated with relative importance or stability
[8], so any of these properties can be checked using a XSLT
code like this:

<xsl:for-each select="//rem:useCase[./rem:importance/rem:tbd]">
Use case <xsl:value-of select="rem:name"/>
is not annotated with relative importance

</xsl:for-each>

4.3. Traceability

In [8], a requirements document is said to be traceable if
and only if it is written in a manner that facilitates the ref-
erencing of each individual requirement. Since REM auto-
matically assigns an unique identifier to every requirement,
this quality property does not have to be verified explicitly.

What it must be checked is whether the origin of every
requirement is clear or not, i.e. if requirements are traced
in the sense described in [8]. In the REM model of require-
ments, any REM object can be traced to and from other REM
objects and to their human sources and authors (see figure
3). In the REM DTD, traces are defined as elements with
two required attributes of type IDREF, namely source and
target:

<!ELEMENT rem:trace EMPTY>
<!ATTLIST rem:trace source IDREF #REQUIRED

target IDREF #REQUIRED
>

Having said that, we can use the following XSLT code
to list all use cases with no human sources:

<xsl:for-each select="//rem:useCase[not(rem:sources)]">
Use case <xsl:value-of select="rem:name"/>
has not defined sources

</xsl:for-each>

and the following one to detect all use cases not traced to
other REM objects:

<xsl:for-each
select="//rem:useCase[not(//rem:trace/@source = @oid)]"

>
Use case <xsl:value-of select="rem:name"/>
is not traced to any object

</xsl:for-each>

REM users can also use traceability matrices for visual
verification of traceability (see figure 4). REM users can
create as many TraceabilityMatrix objects as they wish, se-
lecting the classes of REM objects they want to be shown in
rows in columns.

Figure 4. REM Traceability matrix example

4.4. Verification of use cases

Use cases [15] are a popular form of expressing func-
tional requirements. REM supports both classic functional
requirements (i.e. plain text) and use cases.

For the verification of use cases, we have adopted a
metrics–based approach taking the verification heuristics
used in the scenario construction process described in [11]
as a reference. Some metrics based on the REM model of
use cases are defined in table 2.

Table 2. REM use case metrics
Metric Description
NOS Number of steps of the use case
NOAS Number of actor action steps of the use case
NOSS Number of system action steps of the use case
NOUS Number of use case action steps of the use case
NOCS Number of conditional steps
NOE Number of exceptions of the use case
NIE Number of times a use case is included or extends

other use cases

So, considering the following DTD fragment in which
the REM XML model of use case steps is described:

<!ELEMENT rem:step (
rem:number, rem:condition?,
( rem:systemAction | rem:actorAction | rem:useCaseAction ),
rem:stepException*,
rem:comments )>

<!ATTLIST rem:step oid ID #REQUIRED>

heuristics based on metrics defined in table 2 can be applied
using the following XLST code as a pattern, where metrics
values are stored in auxiliary variables:

<xsl:for-each select="//rem:useCase">
<xsl:variable name="NOS"

select="count(rem:step)"/>

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02) 
1090-705X/02 $17.00 © 2002 IEEE 



<xsl:variable name="NOAS"
select="count(rem:step[rem:actorAction])"/>

<xsl:variable name="NOSS"
select="count(rem:step[rem:systemAction])"/>

<xsl:variable name="NOUS"
select="count(rem:step[rem:useCaseAction])"/>

<xsl:variable name="NOCS"
select="count(rem:step[rem:condition])"/>

<xsl:variable name="NOE"
select="count(rem:step/rem:stepException)"/>

<xsl:variable name="NIE" select=
"count(//rem:useCaseAction[@useCase=current()/@oid])"/>

<!-- apply verification heuristics here -->
</xsl:for-each>

The set of verification–oriented, metrics–based heuris-
tics for use cases we have developed is described below,
including their corresponding XLST code (that must be in-
serted into the XSLT pattern). The intervals for usual values
of metrics have been taken after analyzing 414 use cases de-
veloped by our students using REM.

4.4.1. Checking the number of steps

Since use cases describe interactions between actors and the
system, a use case should have at least 2 steps for a minimal
interaction actor request – system response (other authors
like [4] recommend a value of NOS in the interval [3; 9]).

Use cases with NOS < 2 should be checked for potential
incompleteness. On the other hand, a high value of NOS is
an indicator of too much complexity or of the lack of struc-
ture (i.e. includes or extends relationships) in use cases. The
XSLT code corresponding to this heuristic is the following:

<xsl:if test="($NOS &lt; 2) or ($NOS &gt; 9)">
Use case <xsl:value-of select="rem:name"/>,
has an unusual number of steps. Please, check it.

</xsl:if>

4.4.2. Checking the rate of different types of steps

The three types of use case steps in REM, actor action, sys-
tem action and use case action steps, should not appear with
the same frequency. Using the same reasoning that in the
previous heuristic, since use cases describe interactions be-
tween actors and the system, approximately half the steps
of a use case should be actor action steps and the other half
system action steps. On the other hand, a use case should
not have most of its steps being inclusions or extensions, i.e.
a high value of NOUS is a clear indicator of an abusive use
of use cases relationships.

Data from our students’ use cases point to the following
usual values: NOAS/NOS in [30%; 70%], NOSS/NOS in
[40%; 80%] and NOUS/NOS in [0%; 25%].

As an example, the following XSLT code lists all use
cases with a NOAS/NOS value out of usual interval:

<xsl:if test="(($NOAS div $NOS) &lt; 0.3) or
(($NOAS div $NOS) &gt; 0.7)">

Use case <xsl:value-of select="rem:name"/> has
an unusual ratio of actor steps. Please check it.

</xsl:if>

4.4.3. Checking the number of exceptions

One of the completeness conditions enumerated in section
4.2 is that a requirements document must include responses
of the software to all classes of input data in all realizable
situations. In the REM model of use cases, system behavior
in abnormal situations is described as exceptions associated
to use case steps. So, if a use case has no exceptions or just
a few when compared to the number of steps, it is proba-
bly because only the ordinary sequence of steps has been
defined. Thus, this use case should be checked for com-
pleteness. On the contrary, a use case with most of its steps
having associated exceptions is probably too complex to be
understood.

Data from our students’ point to usual values of
NOE/NOS in the interval [5%; 45%], so the XSLT code cor-
responding to this heuristic is the following:

<xsl:if test="(($NOE div $NOS) &lt; 0.05) or
(($NOE div $NOS) &gt; 0.45)">

Use case <xsl:value-of select="rem:name"/> has
an unusual ratio of exceptions. Please check it.

</xsl:if>

4.4.4. Checking cyclomatic complexity

In the same way a use case with a high NOE/NOS rate is
probably too complex to be understood, a use case with
many conditional steps is also difficult to understand. De-
spite of the fact that use cases are very different from source
code, the heuristic of keeping cyclomatic complexity (CC)
low can also be applied to use cases. Cyclomatic complex-
ity for use cases in REM can be computed as the number of
decision points + 1, i.e. the number of conditional steps +
the number of exceptions + 1.

The following XSLT checks cyclomatic complexity val-
ues of use cases, in which we have taken [1; 4] as the usual
interval for CC as suggested by our students’ use cases:

<xsl:variable name="CC" select="$NOCS+$NOE+1"/>
<xsl:if test="$CC &gt; 4">

Use case <xsl:value-of select="rem:name"/>
has a unusual value of cyclomatic complexity.
Please, check it.

</xsl:if>

4.4.5. Checking abstract use cases

Abstract use cases are those use cases that can only be per-
formed from other use cases and therefore cannot be trig-

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02) 
1090-705X/02 $17.00 © 2002 IEEE 



gered by any event. The usual motivation for the creation
of abstract use cases is avoiding the repetition of common
sequences of steps in other use cases. If an abstract use case
is neither included from other use cases nor it extends other
use cases is clearly useless and should be deleted from the
specification. If it is used for only one use case, it should
be merged into the calling use case. The XSLT code corre-
sponding to this heuristic is the following:

<xsl:if test="rem:isAbstract and $NIE &lt; 2">
Abstract use case <xsl:value-of select="rem:name"/>
is hardly used. Please, check it.

</xsl:if>

4.4.6. Checking actor participation

Another verification heuristic included in [11] is checking
if every actor participate in at least one use case. All step
action elements in the REM DTD have an actor attribute of
type IDREF, so the following XSLT code can be used for
checking if an actor participates at least in one use case:

<xsl:for-each select="//rem:actor
[not(//rem:actorAction/@actor = @oid)]">
Actor <xsl:value-of select="rem:name"/>
does not participate in any use case.
Please, check it.

</xsl:for-each>

5. Related work

Some of the results of the ESPRIT project CREWS, es-
pecially style and content guidelines for textual specifica-
tion of use cases [17] have influenced our work. Their ap-
proach, implemented in the CREWS-SAVRE and L’Ecritoire
tools, combines natural language processing (NLP) tech-
niques and linguistic patterns, guiding the construction of
use cases and providing ambiguity detection mechanisms
which are much more powerful than ours.

We use linguistic patterns extensively [6] and our UML
model of requirements is partially based on CREWS results,
but we have not adopted an NLP–based approach for verifi-
cation because one of our goals was to let REM users write
their own verification programs (i.e. XSLT stylesheets). Us-
ing an NLP–based verification approach would have made
this goal very difficult to satisfy because of their complexity.
We are currently conducting experiments with our students
in order to know if our simpler approach yields comparable
results to the ones described in [2].

The Automated Requirement Measurement (ARM) tool
[18], is a simple yet powerful, not NLP–based requirements
verification tool that scans requirements documents for spe-
cific words and phrases that are considered indicators of the
quality of requirements. As shown in section 4.1, REM can

perform the same type of analysis using XSLT and apply a
wider set of verification–oriented heuristics.

Schematron [10] is an XML–based language for speci-
fying assertions on XPath expressions in XML documents.
A Schematron document must be transformed into a XSLT
stylesheet using the Schematron XSLT stylesheet and then
applying the resulting stylesheet to the XML document
being analyzed. Our approach and Schematron relies on
XPath expressions, but ours needs only one XSLT transfor-
mation and provides greater flexibility for presenting results
to users and for computing requirements–oriented metrics.

The xlinkit language [13] is an XML–based language for
specifying consistency rules between XML documents us-
ing a restricted set of first order logic and XPath expres-
sions. Most XSLT verification code presented in this paper
can be expressed in xlinkit. For example the XSLT code in
section 4.3 for detecting use cases not traced to other REM
objects can be translated into the following xlinkit code,
which identifies all use cases no traced to any object as in-
consistent links:

<globalset id="$useCases" xpath="//rem:useCase"/>
<globalset id="$traces" xpath="//rem:trace"/>
<consistencyrule id="beTraced">

<description>
Every use case must be traced to some object,
i.e. must be the source of some trace

</description>
<forall var="uc" in="$useCases">

<exists var="t" in="$traces">
<equal op1="$uc/@oid" op2="$t/@source"/>

</exists>
</forall>

</consistencyrule>

Translating other XSLT fragments into xlinkit requires
the use of the XPath function true (xlinkit only allows
equality and inequality expressions on XPath expressions
as predicates), and the expansion of variable expressions
(xlinkit does not allow the declaration of local variables in-
side forall or exists elements). For example, the xlinkit code
corresponding to the Checking the number of steps heuristic
is the following:

<globalset id="$useCases" xpath="//rem:useCase"/>
<consistencyrule id="checkingNOS">

<description>
Every use case should have 2<=NOS<=9

</description>
<forall var="uc" in="$useCases">

<equal op1="(count($uc/rem:step) &gt;= 2) and
(count($uc/rem:step) &lt;= 9)"

op2="true()"
/>

</forall>
</consistencyrule>

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02) 
1090-705X/02 $17.00 © 2002 IEEE 



REM verification stylesheets must be XSLT in order to
be processed by the REM user interface and they must be
as efficient as possible for fast visual feedback to the user.
xlinkit rules must be processed by a Java program so that
makes it incompatible with REM. On the other hand, xlinkit
presents results as xlinks, something that is not currently
supported by most web browsers.

DOORS, a commercial RE tool with much more features
than REM, includes a C++–like scripting language called
DXL [1]. Using DXL, it is possible to implement some of
the heuristics described in this paper, but the DOORS user
must define all necessary attributes and types of objects to
have a requirements model similar to ours in DOORS. Apart
from the fact that our approach is based on standard lan-
guages and not in a proprietary one like DXL, the versatil-
ity offered by XML and XSLT (for report generation, for
example) is far from the offered by DXL (unless XML is
generated from DXL).

6. Conclusions and future work

In this paper we have presented an automated, light–
weight, XSLT–based approach for the verification of re-
quirements which is integrated in the REM RE tool. Our ap-
proach is based on a open technology like XML and offers
all the flexibility of XSLT. In fact, if requirements are repre-
sented in XML not using the REM DTD, many of the XSLT–
based verification–oriented heuristics presented in this pa-
per should be easily adaptable.

Our future work is focused on identifying accurate in-
terval values for those metrics–based verification heuristics
(glossary–based and use case heuristics mainly). We are
currently conducting an experiment with our students at the
University of Seville with two main goals in mind. The
first goal is determining interval values by applying data
mining techniques to our students’ RE projects, thus iden-
tifying correlations between defects and metric values. The
second goal is to know whether our approach improves re-
quirements verification or not, i.e. if more defects in re-
quirements are detected when requirements verification is
supported by our XSLT–based heuristics.

Other lines for future work are the developing of XSLT
stylesheets for computing use case points [19] and for
graphical visualization of verification–oriented metrics in
web browsers.

Acknowledgments

We wish to thank Julio Leite for his comments and sug-
gestions on an early version of this paper.

References

[1] I. Alexander. Getting Started with DXL, the DOORS eXten-
sion Language. Technical report, Telelogic Innovate, 2001.

[2] C. Ben Achour, C. Rolland, N. A. M. Maiden, and C. Sou-
veyet. Guiding Use Case Authoring: Results of an Empirical
Study. In ISRE’99 Proceedings, 1999.

[3] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Mod-
eling Language User Guide. Addison–Wesley, 1999.

[4] A. Cockburn. Writing Effective Use Cases. Addison–
Wesley, 2001.

[5] A. Durán. A Methodological Framework for Requirements
Engineering of Information Systems (in Spanish). PhD the-
sis, University of Seville, 2000.

[6] A. Durán, B. Bernárdez, A. Ruiz, and M. Toro. A Require-
ments Elicitation Approach Based in Templates and Pat-
terns. In WER’99 Proceedings, Buenos Aires, 1999.

[7] A. Durán, A. Ruiz, B. Bernárdez, and M. Toro. Verifying
Software Requirements with XSLT. ACM Software Engi-
neering Notes, 27(1), 2002.

[8] A. Davis et al. Identifying and Measuring Quality in a Soft-
ware Requirements Specification. In Proceedings of the 1st
International Software Metrics Symposium, pages 141–152,
1993.

[9] IEEE. Recommended Practice for Software Requirements
Specifications. IEEE/ANSI Standard 830–1998.

[10] R. Jelliffe. The Schematron Assertion Language 1.5. Tech-
nical report, Academia Sinica Computing Centre, 2001.

[11] J. C. S. P. Leite, H. Hadad, J. Doorn, and G. Kaplan. A
Scenario Construction Process. Requirements Engineering
Journal, 5(1), 2000.

[12] J. C. S. P. Leite, G. Rossi, F. Balaguer, V. Maiorana, G. Ka-
plan, G. Hadad, and A. Oliveros. Enhancing a Require-
ments Baseline with Scenarios. In Proceedings of the 3rd
IEEE International Symposium on Requirements Engineer-
ing (RE’97), 1997.

[13] C. Nentwich, W. Emmerich, and A. Finkesltein. Static con-
sistency checking for distributed specifications. In Proceed-
ings of Automated Software Engineering, 2001.

[14] OMG. XML Metadata Interchange (XMI) Specification 1.1.
Technical report, November 2000.

[15] OMG. Unified Modeling Language, v1.4. Technical report,
September 2001.

[16] S. Robertson and J. Robertson. Mastering the Requirement
Process. Addison–Wesley, 1999.

[17] C. Rolland and C. B. Achour. Guiding the Construction of
Textual Use Case Specifications. Data & Knowledge Engi-
neering Journal, 25(1–2), 1998.

[18] L. Rosenberg, T. F. Hammer, and L. L. Huffman. Require-
ments, Testing and Metrics. In 15th Annual Pacific North-
west Software Quality Conference, Utah, 1998.

[19] G. Schneider and J. P. Winters. Applying Use Cases: a Prac-
tical Guide. Addison–Wesley, 1998.

[20] W3C. XML Path Language (XPath) 1.0. W3C Recommen-
dation, November 1999.

[21] W3C. XSL Transformations (XSLT) 1.0. W3C Recommen-
dation, November 1999.

[22] W3C. Extensible Markup Language (XML) 1.0 (Second
Edition). W3C Recommendation, October 2000.

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02) 
1090-705X/02 $17.00 © 2002 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


