Two STOCHASTIC MODELS RELATED WITH AN EXAMPLE COMING FROM GROUP REPRESENTATION THEORY ${ }^{1}$

Manuel Domínguez de la Iglesia

Instituto de Matemáticas C.U., UNAM
XII International Conference in Approximation and
Optimization in the Caribbean Universidad de La Habana, June 5-10, 2016

[^0]
Outline

(1) Markov processes and OP

- Markov processes
- Bivariate Markov processes
(2) The example
- The first stochastic model
- The second stochastic model

Outline

(1) Markov processes and OP

- Markov processes
- Bivariate Markov processes
(2) ThE EXAMPLE
- The first stochastic model
- The second stochastic model

One dimensional Markov processes

Let $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space, a (1-D) Markov process with state space $\mathcal{S} \subset \mathbb{R}$ is a collection of \mathcal{S}-valued random variables $\left\{X_{t}: t \in \mathcal{T}\right\}$ indexed by a parameter set \mathcal{T} (time) such that

$$
\mathbb{P}\left(X_{t+s} \leq y \mid X_{s}=x, X_{\tau}, 0 \leq \tau<s\right)=\mathbb{P}\left(X_{t+s} \leq y \mid X_{s}=x\right)
$$

for all $s, t>0$. This is what is called the Markov property.
The main goal is to find a description of the transition probabilities (discrete case) or the transition density (continuous case)

Define the transition operator

The family $\left\{T_{t}, t>0\right\}$ has the semigroup property $T_{s+t}=T_{s} T_{t}$ and it is completely determined by its infinitesimal operator \mathcal{A} given by

One dimensional Markov processes

Let $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space, a (1-D) Markov process with state space $\mathcal{S} \subset \mathbb{R}$ is a collection of \mathcal{S}-valued random variables $\left\{X_{t}: t \in \mathcal{T}\right\}$ indexed by a parameter set \mathcal{T} (time) such that

$$
\mathbb{P}\left(X_{t+s} \leq y \mid X_{s}=x, X_{\tau}, 0 \leq \tau<s\right)=\mathbb{P}\left(X_{t+s} \leq y \mid X_{s}=x\right)
$$

for all $s, t>0$. This is what is called the Markov property.
The main goal is to find a description of the transition probabilities (discrete case) or the transition density (continuous case)

$$
\begin{aligned}
P_{x, y}(t) & \equiv \mathbb{P}\left(X_{t}=y \mid X_{0}=x\right), \quad x, y \in \mathcal{S} \subset \mathbb{Z} \\
p(t ; x, y) & \equiv \frac{\partial}{\partial y} \mathbb{P}\left(X_{t} \leq y \mid X_{0}=x\right), \quad x, y \in \mathcal{S} \subset \mathbb{R}
\end{aligned}
$$

Define the transition operator

The family $\left\{T_{t}, t>0\right\}$ has the semigroup property $T_{s+t}=T_{s} T_{t}$ and it is completely determined by its infinitesimal operator \mathcal{A} given by

One dimensional Markov processes

Let $(\Omega, \mathcal{F}, \mathbb{P})$ a probability space, a (1-D) Markov process with state space $\mathcal{S} \subset \mathbb{R}$ is a collection of \mathcal{S}-valued random variables $\left\{X_{t}: t \in \mathcal{T}\right\}$ indexed by a parameter set \mathcal{T} (time) such that

$$
\mathbb{P}\left(X_{t+s} \leq y \mid X_{s}=x, X_{\tau}, 0 \leq \tau<s\right)=\mathbb{P}\left(X_{t+s} \leq y \mid X_{s}=x\right)
$$

for all $s, t>0$. This is what is called the Markov property.
The main goal is to find a description of the transition probabilities (discrete case) or the transition density (continuous case)

$$
\begin{aligned}
P_{x, y}(t) & \equiv \mathbb{P}\left(X_{t}=y \mid X_{0}=x\right), \quad x, y \in \mathcal{S} \subset \mathbb{Z} \\
p(t ; x, y) & \equiv \frac{\partial}{\partial y} \mathbb{P}\left(X_{t} \leq y \mid X_{0}=x\right), \quad x, y \in \mathcal{S} \subset \mathbb{R}
\end{aligned}
$$

Define the transition operator

$$
\left(T_{t} f\right)(x)=\mathbb{E}\left[f\left(X_{t}\right) \mid X_{0}=x\right], \quad t \geq 0, \quad f \in \mathfrak{B}(\mathcal{S})
$$

The family $\left\{T_{t}, t>0\right\}$ has the semigroup property $T_{s+t}=T_{s} T_{t}$ and it is completely determined by its infinitesimal operator \mathcal{A} given by

$$
(\mathcal{A} f)(x)=\lim _{s \downarrow 0} \frac{\left(T_{s} f\right)(x)-f(x)}{s}
$$

Examples related to OP

There are 3 important cases related to OP:

1. Random walks: $\mathcal{S}=\{0,1,2, \ldots\}, \mathcal{T}=\{0,1,2, \ldots\}$

Transitions are only allowed between adjacent states. Therefore the infinitesimal operator can be written as a semi-infinite tridiagonal matrix
P which coincides with the one-step transition probabilities

$$
\mathcal{A} f(i)=P f(i)=a_{i} f(i+1)+b_{i} f(i)+c_{i} f(i-1), \quad f \in \mathfrak{B}(\mathcal{S})
$$

The n-step transition probability matrix is then given by $P^{(n)}=P^{n}$. Some examples related to OP are the gambler's ruin, urn models, the Ehrenfest model or the Laplace-Bernoulli model.
2. Birth and death processes: $\mathcal{S}=\{0,1,2, \ldots\}, \mathcal{T}=[0, \infty)$.

Again, the transitions are only allowed between adjacent states, but now time is continuous. The transition times are exponentially distributed The infinitesimal operator is now a semi-infinite tridiagonal matrix \mathcal{A}

$$
\mathcal{A} f(i)=\lambda_{i} f(i+1)-\left(\lambda_{i}+\mu_{i}\right) f(i)+\mu_{i} f(i-1), \quad f \in \mathfrak{B}(\mathcal{S})
$$

The transition probability matrix $P(t)$ satisfies the Kolmogorov equations (backward and forward)

Examples related to OP

There are 3 important cases related to OP:

1. Random walks: $\mathcal{S}=\{0,1,2, \ldots\}, \mathcal{T}=\{0,1,2, \ldots\}$.

Transitions are only allowed between adjacent states. Therefore the infinitesimal operator can be written as a semi-infinite tridiagonal matrix P which coincides with the one-step transition probabilities

$$
\mathcal{A} f(i)=P f(i)=a_{i} f(i+1)+b_{i} f(i)+c_{i} f(i-1), \quad f \in \mathfrak{B}(\mathcal{S})
$$

The n-step transition probability matrix is then given by $P^{(n)}=P^{n}$. Some examples related to OP are the gambler's ruin, urn models, the Ehrenfest model or the Laplace-Bernoulli model.

Again, the transitions are only allowed between adjacent states, but now time is continuous. The transition times are exponentially distributed The infinitesimal operator is now a semi-infinite tridiagonal matrix \mathcal{A}

Examples related to OP

There are 3 important cases related to OP:

1. Random walks: $\mathcal{S}=\{0,1,2, \ldots\}, \mathcal{T}=\{0,1,2, \ldots\}$.

Transitions are only allowed between adjacent states. Therefore the infinitesimal operator can be written as a semi-infinite tridiagonal matrix P which coincides with the one-step transition probabilities

$$
\mathcal{A} f(i)=P f(i)=a_{i} f(i+1)+b_{i} f(i)+c_{i} f(i-1), \quad f \in \mathfrak{B}(\mathcal{S})
$$

The n-step transition probability matrix is then given by $P^{(n)}=P^{n}$. Some examples related to OP are the gambler's ruin, urn models, the Ehrenfest model or the Laplace-Bernoulli model.
2. Birth and death processes: $\mathcal{S}=\{0,1,2, \ldots\}, \mathcal{T}=[0, \infty)$.

Again, the transitions are only allowed between adjacent states, but now time is continuous. The transition times are exponentially distributed. The infinitesimal operator is now a semi-infinite tridiagonal matrix \mathcal{A}

$$
\mathcal{A} f(i)=\lambda_{i} f(i+1)-\left(\lambda_{i}+\mu_{i}\right) f(i)+\mu_{i} f(i-1), \quad f \in \mathfrak{B}(\mathcal{S})
$$

The transition probability matrix $P(t)$ satisfies the Kolmogorov equations (backward and forward)

Examples Related to OP

$$
P^{\prime}(t)=\mathcal{A} P(t), \quad P^{\prime}(t)=P(t) \mathcal{A}, \quad P(0)=I
$$

Some examples of birth-and-death processes related to OP are the $M / M / k$ queue ($k \geq 1$) or linear birth-and-death processes.

Starting at $X_{0}=x$, the expected value of a small displacement $X_{t}-X_{0}$ is
approximately $t \mu(x)$ (drift coefficient) while the second moment or
variance is approximately $\operatorname{to}^{2}(x)$ (diffusion coefficient). The infinitesimal
operator is now a second-order differential operator

The transition density $p(t ; x, y)$ satisfies the Kolmogorov equations (backward and forward) with initial conditions

Important examples related to OP are the Orstein-Uhlenbeck process, the
Bessel process, W/right-Fisher models, etc

Examples Related to OP

$$
P^{\prime}(t)=\mathcal{A} P(t), \quad P^{\prime}(t)=P(t) \mathcal{A}, \quad P(0)=1
$$

Some examples of birth-and-death processes related to OP are the $M / M / k$ queue ($k \geq 1$) or linear birth-and-death processes.
3. Diffusion processes: $\mathcal{S}=(a, b),-\infty \leq a<b \leq \infty, \mathcal{T}=[0, \infty)$.

Starting at $X_{0}=x$, the expected value of a small displacement $X_{t}-X_{0}$ is approximately $t \mu(x)$ (drift coefficient) while the second moment or variance is approximately $t \sigma^{2}(x)$ (diffusion coefficient). The infinitesimal operator is now a second-order differential operator

$$
\mathcal{A}_{x} f=\frac{1}{2} \sigma^{2}(x) f^{\prime \prime}(x)+\tau(x) f^{\prime}(x), \quad f \in \mathfrak{B}(\mathcal{S}) \cap C^{2}(\mathcal{S})
$$

The transition density $p(t ; x, y)$ satisfies the Kolmogorov equations (backward and forward) with initial conditions

$$
\frac{\partial}{\partial t} p(t ; x, y)=\mathcal{A}_{x} p(t ; x, y), \quad \frac{\partial}{\partial t} p(t ; x, y)=\mathcal{A}_{y}^{*} p(t ; x, y)
$$

Important examples related to OP are the Orstein-Uhlenbeck process, the Bessel process, Wright-Fisher models, etc.

Spectral methods

Given a infinitesimal operator \mathcal{A}, if we can find a spectral measure $\omega(x)$ associated with \mathcal{A}, and a set of orthogonal eigenfunctions $f(i, x)$ such that

$$
\mathcal{A} f(i, x)=\lambda(i, x) f(i, x)
$$

then it is possible to find spectral representations of the transition probabilities:

Spectral methods

Given a infinitesimal operator \mathcal{A}, if we can find a spectral measure $\omega(x)$ associated with \mathcal{A}, and a set of orthogonal eigenfunctions $f(i, x)$ such that

$$
\mathcal{A} f(i, x)=\lambda(i, x) f(i, x)
$$

then it is possible to find spectral representations of the transition probabilities:

1. Random walks: $f(i, x)=q_{i}(x), \lambda(i, x)=x, i \in \mathcal{S}, x \in[-1,1]$.

$$
\mathbb{P}\left(X_{n}=j \mid X_{0}=i\right)=P_{i j}^{n}=\frac{1}{\left\|q_{i}\right\|^{2}} \int_{-1}^{1} x^{n} q_{i}(x) q_{j}(x) \mathrm{d} \omega(x)
$$

2. Birth-and-death processes:
3. Diffusion processes: $f(i, x)=\phi_{i}(x), \lambda(i, x)=\alpha_{i}, i \in\{0,1,2$,

Spectral methods

Given a infinitesimal operator \mathcal{A}, if we can find a spectral measure $\omega(x)$ associated with \mathcal{A}, and a set of orthogonal eigenfunctions $f(i, x)$ such that

$$
\mathcal{A} f(i, x)=\lambda(i, x) f(i, x)
$$

then it is possible to find spectral representations of the transition probabilities:

1. Random walks: $f(i, x)=q_{i}(x), \lambda(i, x)=x, i \in \mathcal{S}, x \in[-1,1]$.

$$
\mathbb{P}\left(X_{n}=j \mid X_{0}=i\right)=P_{i j}^{n}=\frac{1}{\left\|q_{i}\right\|^{2}} \int_{-1}^{1} x^{n} q_{i}(x) q_{j}(x) \mathrm{d} \omega(x)
$$

2. Birth-and-death processes: $f(i, x)=q_{i}(x), \lambda(i, x)=-x, i \in \mathcal{S}, x \in[0, \infty]$.

$$
\mathbb{P}\left(X_{t}=j \mid X_{0}=i\right)=P_{i j}(t)=\frac{1}{\left\|q_{i}\right\|^{2}} \int_{0}^{\infty} e^{-x t} q_{i}(x) q_{j}(x) \mathrm{d} \omega(x)
$$

[^1]
Spectral methods

Given a infinitesimal operator \mathcal{A}, if we can find a spectral measure $\omega(x)$ associated with \mathcal{A}, and a set of orthogonal eigenfunctions $f(i, x)$ such that

$$
\mathcal{A} f(i, x)=\lambda(i, x) f(i, x)
$$

then it is possible to find spectral representations of the transition probabilities:

1. Random walks: $f(i, x)=q_{i}(x), \lambda(i, x)=x, i \in \mathcal{S}, x \in[-1,1]$.

$$
\mathbb{P}\left(X_{n}=j \mid X_{0}=i\right)=P_{i j}^{n}=\frac{1}{\left\|q_{i}\right\|^{2}} \int_{-1}^{1} x^{n} q_{i}(x) q_{j}(x) \mathrm{d} \omega(x)
$$

2. Birth-and-death processes: $f(i, x)=q_{i}(x), \lambda(i, x)=-x, i \in \mathcal{S}, x \in[0, \infty]$.

$$
\mathbb{P}\left(X_{t}=j \mid X_{0}=i\right)=P_{i j}(t)=\frac{1}{\left\|q_{i}\right\|^{2}} \int_{0}^{\infty} e^{-x t} q_{i}(x) q_{j}(x) \mathrm{d} \omega(x)
$$

3. Diffusion processes: $f(i, x)=\phi_{i}(x), \lambda(i, x)=\alpha_{i}, i \in\{0,1,2, \ldots\}, x \in(a, b)$.

$$
p(t ; x, y)=\sum_{n=0}^{\infty} e^{\alpha_{n} t} \phi_{n}(x) \phi_{n}(y) \omega(y)
$$

**The spectral measure can either be discrete (finite or infinite) or continuousi

Bivariate Markov processes

Now consider a bivariate or 2-component Markov process of the form

$$
\left\{\left(X_{t}, Y_{t}\right): t \in \mathcal{T}\right\}, \quad X_{t} \in \mathcal{S} \subset \mathbb{R}, \quad Y_{t} \in\{1,2, \ldots, N\}
$$

The first component is the level and the second component is the phase.
matrix-valued function $P(t ; x, A)$ whose entry (i, j) gives

$$
P_{i j}(t ; x, A)=\mathbb{P}\left(X_{t} \in A, Y_{t}=j \| X_{0}=x, Y_{0}=i\right)
$$

The transition operator is now matrix-valued and acts on all column vector-valued functions

The infinitesimal operator \mathcal{A} is also matrix-valued

Ideas behind: random evolutions
(Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60's and 70's)

Bivariate Markov processes

Now consider a bivariate or 2-component Markov process of the form

$$
\left\{\left(X_{t}, Y_{t}\right): t \in \mathcal{T}\right\}, \quad X_{t} \in \mathcal{S} \subset \mathbb{R}, \quad Y_{t} \in\{1,2, \ldots, N\}
$$

The first component is the level and the second component is the phase. Now the transition probabilities can be written in terms of an $N \times N$ matrix-valued function $\boldsymbol{P}(t ; x, A)$ whose entry (i, j) gives

$$
\boldsymbol{P}_{i j}(t ; x, A)=\mathbb{P}\left(X_{t} \in A, Y_{t}=j \mid X_{0}=x, Y_{0}=i\right)
$$

The transition operator is now matrix-valued and acts on all column vector-valued functions

The infinitesimal operator \mathcal{A} is also matrix-valued

Bivariate Markov processes

Now consider a bivariate or 2-component Markov process of the form

$$
\left\{\left(X_{t}, Y_{t}\right): t \in \mathcal{T}\right\}, \quad X_{t} \in \mathcal{S} \subset \mathbb{R}, \quad Y_{t} \in\{1,2, \ldots, N\}
$$

The first component is the level and the second component is the phase. Now the transition probabilities can be written in terms of an $N \times N$ matrix-valued function $\boldsymbol{P}(t ; x, A)$ whose entry (i, j) gives

$$
\boldsymbol{P}_{i j}(t ; x, A)=\mathbb{P}\left(X_{t} \in A, Y_{t}=j \mid X_{0}=x, Y_{0}=i\right)
$$

The transition operator is now matrix-valued and acts on all column vector-valued functions

$$
\left(\boldsymbol{T}_{t} \boldsymbol{f}\right)(x)=\mathbb{E}\left[\boldsymbol{f}\left(X_{t}\right) \mid X_{0}=x\right], \quad t \geq 0, \quad \boldsymbol{f} \in \mathfrak{B}\left(\mathcal{S}^{N}\right)
$$

The infinitesimal operator \mathcal{A} is also matrix-valued

$$
(\mathcal{A} \boldsymbol{f})(x)=\lim _{s \downarrow 0} \frac{\left(\boldsymbol{T}_{s} \boldsymbol{f}\right)(x)-\boldsymbol{f}(x)}{s}
$$

Ideas behind: random evolutions
(Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60's and 70's)

Bivariate Markov processes

Now consider a bivariate or 2-component Markov process of the form

$$
\left\{\left(X_{t}, Y_{t}\right): t \in \mathcal{T}\right\}, \quad X_{t} \in \mathcal{S} \subset \mathbb{R}, \quad Y_{t} \in\{1,2, \ldots, N\}
$$

The first component is the level and the second component is the phase. Now the transition probabilities can be written in terms of an $N \times N$ matrix-valued function $\boldsymbol{P}(t ; x, A)$ whose entry (i, j) gives

$$
\boldsymbol{P}_{i j}(t ; x, A)=\mathbb{P}\left(X_{t} \in A, Y_{t}=j \mid X_{0}=x, Y_{0}=i\right)
$$

The transition operator is now matrix-valued and acts on all column vector-valued functions

$$
\left(\boldsymbol{T}_{t} \boldsymbol{f}\right)(x)=\mathbb{E}\left[\boldsymbol{f}\left(X_{t}\right) \mid X_{0}=x\right], \quad t \geq 0, \quad \boldsymbol{f} \in \mathfrak{B}\left(\mathcal{S}^{N}\right)
$$

The infinitesimal operator \mathcal{A} is also matrix-valued

$$
(\mathcal{A} \boldsymbol{f})(x)=\lim _{s \downarrow 0} \frac{\left(\boldsymbol{T}_{s} \boldsymbol{f}\right)(x)-\boldsymbol{f}(x)}{s}
$$

Ideas behind: random evolutions
(Griego-Hersh-Papanicolaou-Pinsky-Kurtz...60's and 70's).

Processes Related to MVOP

As in the scalar case, there are two situations where matrix-valued orthogonal polynomials (MVOP) can play an important role:

1. Quasi-birth-and-death processes: \mathcal{S} discrete. The infinitesimal operator is now a block-tridiagonal matrix \mathcal{A}
where each block A_{n}, B_{n}, C_{n} is a $N \times N$ matrix with the probabilistic properties depending on the case (discrete or continuous time). The transition probabilities and the Kolmogorov equations can be derived from \mathcal{A}.
2. Switching diffusion processes: \mathcal{S} continuous. The infinitesimal operator \mathcal{A} is now a second-order matrix-valued differential operator (Berman, 1994)

where $\boldsymbol{A}(x)$ and $\boldsymbol{B}(x)$ are diagonal matrices and $\boldsymbol{Q}(x)$ is the infinitesimal operator of a finite continuous-time Markov chain. Again, the transition density and the Kolmogorov equations can be derived from \mathcal{A}.
\square

Processes Related to MVOP

As in the scalar case, there are two situations where matrix-valued orthogonal polynomials (MVOP) can play an important role:

1. Quasi-birth-and-death processes: \mathcal{S} discrete. The infinitesimal operator is now a block-tridiagonal matrix \mathcal{A}

$$
\mathcal{A} \boldsymbol{f}(i)=\boldsymbol{A}_{n} \boldsymbol{f}(i+1)+\boldsymbol{B}_{n} \boldsymbol{f}(i)+\boldsymbol{C}_{n} \boldsymbol{f}(i-1), \quad \boldsymbol{f} \in \mathfrak{B}\left(\mathcal{S}^{N}\right)
$$

where each block $\boldsymbol{A}_{n}, \boldsymbol{B}_{n}, \boldsymbol{C}_{n}$ is a $N \times N$ matrix with the probabilistic properties depending on the case (discrete or continuous time). The transition probabilities and the Kolmogorov equations can be derived from \mathcal{A}.
> 2. Switching diffusion processes: \mathcal{S} continuous. The infinitesimal operator \mathcal{A} is now a second-order matrix-valued differential operator (Berman, 1994)

\square
where $A(x)$ and $B(x)$ are diagonal matrices and $Q(x)$ is the infinitesimal operator of a finite continuous-time Markov chain. Again, the transition density and the Kolmogorov equations can be derived from \mathcal{A}.

Processes Related to MVOP

As in the scalar case, there are two situations where matrix-valued orthogonal polynomials (MVOP) can play an important role:

1. Quasi-birth-and-death processes: \mathcal{S} discrete. The infinitesimal operator is now a block-tridiagonal matrix \mathcal{A}

$$
\mathcal{A} \boldsymbol{f}(i)=\boldsymbol{A}_{n} \boldsymbol{f}(i+1)+\boldsymbol{B}_{n} \boldsymbol{f}(i)+\boldsymbol{C}_{n} \boldsymbol{f}(i-1), \quad \boldsymbol{f} \in \mathfrak{B}\left(\mathcal{S}^{N}\right)
$$

where each block $\boldsymbol{A}_{n}, \boldsymbol{B}_{n}, \boldsymbol{C}_{n}$ is a $N \times N$ matrix with the probabilistic properties depending on the case (discrete or continuous time). The transition probabilities and the Kolmogorov equations can be derived from \mathcal{A}.
2. Switching diffusion processes: \mathcal{S} continuous. The infinitesimal operator \mathcal{A} is now a second-order matrix-valued differential operator (Berman, 1994)

$$
\mathcal{A}_{x}=\frac{1}{2} \boldsymbol{A}(x) \partial_{x}^{2}+\boldsymbol{B}(x) \partial_{x}^{1}+\boldsymbol{Q}(x) \partial_{x}^{0}
$$

where $\boldsymbol{A}(x)$ and $\boldsymbol{B}(x)$ are diagonal matrices and $\boldsymbol{Q}(x)$ is the infinitesimal operator of a finite continuous-time Markov chain. Again, the transition density and the Kolmogorov equations can be derived from \mathcal{A}.

Processes Related to MVOP

As in the scalar case, there are two situations where matrix-valued orthogonal polynomials (MVOP) can play an important role:

1. Quasi-birth-and-death processes: \mathcal{S} discrete. The infinitesimal operator is now a block-tridiagonal matrix \mathcal{A}

$$
\mathcal{A} \boldsymbol{f}(i)=\boldsymbol{A}_{n} \boldsymbol{f}(i+1)+\boldsymbol{B}_{n} \boldsymbol{f}(i)+\boldsymbol{C}_{n} \boldsymbol{f}(i-1), \quad \boldsymbol{f} \in \mathfrak{B}\left(\mathcal{S}^{N}\right)
$$

where each block $\boldsymbol{A}_{n}, \boldsymbol{B}_{n}, \boldsymbol{C}_{n}$ is a $N \times N$ matrix with the probabilistic properties depending on the case (discrete or continuous time). The transition probabilities and the Kolmogorov equations can be derived from \mathcal{A}.
2. Switching diffusion processes: \mathcal{S} continuous. The infinitesimal operator \mathcal{A} is now a second-order matrix-valued differential operator (Berman, 1994)

$$
\mathcal{A}_{x}=\frac{1}{2} \boldsymbol{A}(x) \partial_{x}^{2}+\boldsymbol{B}(x) \partial_{x}^{1}+\boldsymbol{Q}(x) \partial_{x}^{0}
$$

where $\boldsymbol{A}(x)$ and $\boldsymbol{B}(x)$ are diagonal matrices and $\boldsymbol{Q}(x)$ is the infinitesimal operator of a finite continuous-time Markov chain. Again, the transition density and the Kolmogorov equations can be derived from \mathcal{A}.

The main tool to study spectral methods will be the theory of MVOP.

Spectral methods

Given a matrix-valued infinitesimal operator \mathcal{A}, if we can find a spectral weight matrix $\boldsymbol{W}(x)$ associated with \mathcal{A}, and a set of orthogonal matrix eigenfunctions $\boldsymbol{F}(i, x)$ such that

$$
\mathcal{A} \boldsymbol{F}(i, x)=\boldsymbol{\Lambda}(i, x) \boldsymbol{F}(i, x)
$$

then it is possible to find spectral representations of the transition probabilities:

Same result if time is continuous (Dette-Reuther, 2010).
2. Switching diffusion processes: $F(i, x)=\Phi_{i}(x), \Lambda(i, x)=\Gamma_{i}, i \in\{0,1,2, \ldots\}, x \in(a, b)(M d I, 2012)$

Spectral methods

Given a matrix-valued infinitesimal operator \mathcal{A}, if we can find a spectral weight matrix $\boldsymbol{W}(x)$ associated with \mathcal{A}, and a set of orthogonal matrix eigenfunctions $\boldsymbol{F}(i, x)$ such that

$$
\mathcal{A} \boldsymbol{F}(i, x)=\boldsymbol{\Lambda}(i, x) \boldsymbol{F}(i, x)
$$

then it is possible to find spectral representations of the transition probabilities:

1. Quasi-birth-and-death processes: $\boldsymbol{F}(i, x)=\boldsymbol{\Phi}_{i}(x), \boldsymbol{\Lambda}(i, x)=x \boldsymbol{I}, i \in\{0,1,2, \ldots\}, x \in[-1,1]$ (Grünbaum and Dette-Reuther-Studden-Zygmunt, 2007).

$$
\boldsymbol{P}_{i j}^{n}=\left(\int_{-1}^{1} x^{n} \boldsymbol{\Phi}_{i}(x) \mathrm{d} \boldsymbol{W}(x) \boldsymbol{\Phi}_{j}^{*}(x)\right)\left(\int_{-1}^{1} \boldsymbol{\Phi}_{j}(x) \mathrm{d} \boldsymbol{W}(x) \boldsymbol{\Phi}_{j}^{*}(x)\right)^{-1}
$$

Same result if time is continuous (Dette-Reuther, 2010).

Spectral methods

Given a matrix-valued infinitesimal operator \mathcal{A}, if we can find a spectral weight matrix $\boldsymbol{W}(x)$ associated with \mathcal{A}, and a set of orthogonal matrix eigenfunctions $\boldsymbol{F}(i, x)$ such that

$$
\mathcal{A} \boldsymbol{F}(i, x)=\boldsymbol{\Lambda}(i, x) \boldsymbol{F}(i, x)
$$

then it is possible to find spectral representations of the transition probabilities:

1. Quasi-birth-and-death processes:
$\boldsymbol{F}(i, x)=\boldsymbol{\Phi}_{i}(x), \boldsymbol{\Lambda}(i, x)=x \boldsymbol{I}, i \in\{0,1,2, \ldots\}, x \in[-1,1]$ (Grünbaum and Dette-Reuther-Studden-Zygmunt, 2007).

$$
\boldsymbol{P}_{i j}^{n}=\left(\int_{-1}^{1} x^{n} \boldsymbol{\Phi}_{i}(x) \mathrm{d} \boldsymbol{W}(x) \boldsymbol{\Phi}_{j}^{*}(x)\right)\left(\int_{-1}^{1} \boldsymbol{\Phi}_{j}(x) \mathrm{d} \boldsymbol{W}(x) \boldsymbol{\Phi}_{j}^{*}(x)\right)^{-1}
$$

Same result if time is continuous (Dette-Reuther, 2010).
2. Switching diffusion processes:

$$
\boldsymbol{F}(i, x)=\boldsymbol{\Phi}_{i}(x), \boldsymbol{\Lambda}(i, x)=\boldsymbol{\Gamma}_{i}, i \in\{0,1,2, \ldots\}, x \in(a, b)(\mathrm{MdI}, 2012)
$$

$$
\boldsymbol{P}(t ; x, y)=\sum_{n=0}^{\infty} \boldsymbol{\Phi}_{n}(x) e^{\boldsymbol{\Gamma}_{n} t} \boldsymbol{\Phi}_{n}^{*}(y) \boldsymbol{W}(y)
$$

Outline

(1) Markov processes and OP

- Markov processes
- Bivariate Markov processes
(2) The Example
- The first stochastic model
- The second stochastic model

Matrix-valued spherical functions

Spherical functions associated with groups of the form G / K where (G, K) is a Gel'fand pair are very much related with OP (Helgason, Vilenkin, Klimyk). They are eigenfunctions of the Casimir operator associated with the group.

not until very recently where the connection with MVOP was discovered by

 Grünbaum-Pacharoni-Tirao (2003)1. Complex projective space: $P_{n}(\mathbb{C})=S U(n+1) / U(n)$.

Grünbaum-Pacharoni-Tirao (2002). Later it was found the relation with stochastic processes by Grünbaum-Mdl (2008), Grünbaum-Pacharoni-Tirao (2012) and Mdl (2012)
2. Complex hyperbolic plane: $H_{2}(\mathbb{C})=\mathrm{SU}(2,1) / \mathrm{U}(2)$. Pacharoni-Román-Tirao (2006). Dual to the complex projective plane $P_{2}(\mathbb{C})=\mathrm{SU}(3) / \mathrm{U}(2)$.
3. Real sphere: $S^{n}=S O(n+1) / O(n)$. Tirao-Zurrián (2013). Also connected with the real projective space $P_{n}(\mathbb{R})=\mathrm{SO}(n+1) / \mathrm{O}(n)$

In all cases (and others not mentioned) an explicit expression of the weight matrix, the second-order differential operator, the three-term recurrence relation and other structural formulas were derived for the matrix-valued spherical
functions. In most of the cases the relation with MVOP

Matrix-valued spherical functions

Spherical functions associated with groups of the form G / K where (G, K) is a Gel'fand pair are very much related with OP (Helgason, Vilenkin, Klimyk). They are eigenfunctions of the Casimir operator associated with the group. The extension to the matrix-valued case was started by Tirao (1977) but it was not until very recently where the connection with MVOP was discovered by Grünbaum-Pacharoni-Tirao (2003):

In all cases (and others not mentioned) an explicit expression of the weight matrix, the second-order differential operator, the three-term recurrence relation and other structural formulas were derived for the matrix-valued spherical

Matrix-valued spherical functions

Spherical functions associated with groups of the form G / K where (G, K) is a Gel'fand pair are very much related with OP (Helgason, Vilenkin, Klimyk). They are eigenfunctions of the Casimir operator associated with the group.
The extension to the matrix-valued case was started by Tirao (1977) but it was not until very recently where the connection with MVOP was discovered by Grünbaum-Pacharoni-Tirao (2003):

1. Complex projective space: $P_{n}(\mathbb{C})=\mathrm{SU}(n+1) / \mathrm{U}(n)$.

Grünbaum-Pacharoni-Tirao (2002). Later it was found the relation with stochastic processes by Grünbaum-MdI (2008), Grünbaum-Pacharoni-Tirao (2012) and Mdl (2012).
2. Complex hyperbolic plane: $H_{2}(\mathbb{C})=\operatorname{SU}(2,1) / U(2)$. Pacharoni-Román-Tirao (2006). Dual to the complex projective plane $P_{2}(\mathbb{C})=\operatorname{SU}(3) / U(2)$.
3. Real sphere: $S^{n}=S O(n+1) / O(n)$. Tirao-Zurrián (2013). Also connected with the real projective space $P_{n}(\mathbb{R})=\mathrm{SO}(n+1) / \mathrm{O}(n)$.

In all cases (and others not mentioned) an explicit expression of the weight matrix, the second-order differential operator, the three-term recurrence relation and other structural formulas were derived for the matrix-valued spherical functions. In most of the cases the relation with MVOP was also given. $\bar{\square}$

Matrix-valued spherical functions

Spherical functions associated with groups of the form G / K where (G, K) is a Gel'fand pair are very much related with OP (Helgason, Vilenkin, Klimyk). They are eigenfunctions of the Casimir operator associated with the group.
The extension to the matrix-valued case was started by Tirao (1977) but it was not until very recently where the connection with MVOP was discovered by Grünbaum-Pacharoni-Tirao (2003):

1. Complex projective space: $P_{n}(\mathbb{C})=\mathrm{SU}(n+1) / \mathrm{U}(n)$.

Grünbaum-Pacharoni-Tirao (2002). Later it was found the relation with stochastic processes by Grünbaum-Mdl (2008), Grünbaum-Pacharoni-Tirao (2012) and Mdl (2012).
2. Complex hyperbolic plane: $H_{2}(\mathbb{C})=\operatorname{SU}(2,1) / U(2)$. Pacharoni-Román-Tirao (2006). Dual to the complex projective plane $P_{2}(\mathbb{C})=\operatorname{SU}(3) / U(2)$.
3. Real sphere: $S^{n}=S O(n+1) / O(n)$. Tirao-Zurrián (2013). Also connected with the real projective space $P_{n}(\mathbb{R})=\mathrm{SO}(n+1) / \mathrm{O}(n)$.

In all cases (and others not mentioned) an explicit expression of the weight matrix, the second-order differential operator, the three-term recurrence relation and other structural formulas were derived for the matrix-valued spherical functions. In most of the cases the relation with MVOP was also given.

The pair $(\mathrm{SU}(2) \times \mathrm{SU}(2)$, diag $\mathrm{SU}(2))$

Koornwinder (1985) studied spherical functions associated with pairs of the form ($K \times K, K$), where the subgroup is diagonally embedded and $K=\operatorname{SU}(2)$.

> More recently Koelink-van Pruijssen-Román (2012) studied with a different approach this example and give the relation with MVOP (related to S^{3}) For $\ell \in \mathbb{N}$ and $N=2 \ell+1$ they produced a one-parameter family of $N \times N$ MVOP where the weight matrix is

where $\Psi_{0}(y)$ is certain matrix-valued function containing spherical functions. The corresponding symmetric second-order differential operator is given by

where

where $E_{i j}=1$ if $i=j$ and 0 elsewhere; and with eigenvalue

The pair $(\mathrm{SU}(2) \times \mathrm{SU}(2)$, diag $\mathrm{SU}(2))$

Koornwinder (1985) studied spherical functions associated with pairs of the form ($K \times K, K$), where the subgroup is diagonally embedded and $K=\operatorname{SU}(2)$. More recently Koelink-van Pruijssen-Román (2012) studied with a different approach this example and give the relation with MVOP (related to S^{3}).

MVOP where the weight matrix is

where $\Psi_{0}(y)$ is certain matrix-valued function containing spherical functions. The corresponding symmetric second-order differential operator is given by

where

where $E_{i j}=1$ if $i=j$ and 0 elsewhere; and with eigenvalue

The pair $(\mathrm{SU}(2) \times \mathrm{SU}(2)$, diag $\mathrm{SU}(2))$

Koornwinder (1985) studied spherical functions associated with pairs of the form ($K \times K, K$), where the subgroup is diagonally embedded and $K=\operatorname{SU}(2)$. More recently Koelink-van Pruijssen-Román (2012) studied with a different approach this example and give the relation with MVOP (related to S^{3}). For $\ell \in \mathbb{N}$ and $N=2 \ell+1$ they produced a one-parameter family of $N \times N$ MVOP where the weight matrix is

$$
W(y)=[y(1-y)]^{\nu-1 / 2} \Psi_{0}(y) T\left(\Psi_{0}(y)\right)^{*}, \quad T_{i j}=\delta_{i j}\binom{2 \ell}{i} \frac{(\nu)_{i}}{(\nu+2 \ell-i)_{i}}
$$

where $\Psi_{0}(y)$ is certain matrix-valued function containing spherical functions.

where

where $E_{i j}=1$ if $i=j$ and 0 elsewhere; and with eigenvalue

The pair (SU(2) $\times \mathrm{SU}(2)$, diag $\mathrm{SU}(2))$

Koornwinder (1985) studied spherical functions associated with pairs of the form ($K \times K, K$), where the subgroup is diagonally embedded and $K=\operatorname{SU}(2)$. More recently Koelink-van Pruijssen-Román (2012) studied with a different approach this example and give the relation with MVOP (related to S^{3}). For $\ell \in \mathbb{N}$ and $N=2 \ell+1$ they produced a one-parameter family of $N \times N$ MVOP where the weight matrix is

$$
W(y)=[y(1-y)]^{\nu-1 / 2} \Psi_{0}(y) T\left(\Psi_{0}(y)\right)^{*}, \quad T_{i j}=\delta_{i j}\binom{2 \ell}{i} \frac{(\nu)_{i}}{(\nu+2 \ell-i)_{i}}
$$

where $\Psi_{0}(y)$ is certain matrix-valued function containing spherical functions.
The corresponding symmetric second-order differential operator is given by

$$
D=y(1-y) \partial_{y}^{2}+(C+\nu-y(2 \ell+2 \nu+1)) \partial_{y}-(V-(\nu-1)(2 \ell+\nu+1))
$$

where

$$
C=-\sum_{0}^{2 \ell-1} \frac{(2 \ell-i+1)}{2} E_{i, i+1}+\sum_{0}^{2 \ell} \frac{(2 \ell+3)}{2} E_{i i}-\sum_{1}^{2 \ell} \frac{i+1}{2} E_{i, i-1}, V=-\sum_{0}^{2 \ell} i(2 \ell-i) E_{i, i}
$$

where $E_{i j}=1$ if $i=j$ and 0 elsewhere; and with eigenvalue

$$
\Lambda_{n}=-n(n-1)-n(2 \ell+2 \nu+1)-(V-(\nu-1)(2 \ell+\nu+1))
$$

Three important facts

1. The structure of the group induces the existence of a constant matrix Y such that we can decompose by blocks the weight matrix W in the form

$$
\widetilde{W}(y)=Y W(y) Y^{*}=\left(\begin{array}{c|c}
W_{1}(y) & 0 \\
\hline 0 & W_{2}(y)
\end{array}\right)
$$

where W_{1} is $(\ell+1) \times(\ell+1)$ and W_{2} is $\ell \times \ell$. So we will study the probabilistic aspects of these two independent processes $(\ell=1)$.
> 2. We look for certain family of MVOP such that the corresponding block tridiagonal Jacobi matrix \mathcal{A} has a "stochastic" interpretation, meaning that the sum of each row of \mathcal{A} is ≤ 0 and the off-diagonal entries of \mathcal{A} are ≥ 0 (therefore the infinitesimal operator of a continuous-time Markov chain)
> 3. Also, in order to find a "stochastic" second-order differential operator, we will perform a y-dependent transformation $S(y)$ such that $\mathcal{D}=S^{-1}(D S)$. Then

> By "stochastic" we mean that $A(y)$ is diagonal, the sum of each row of $Q(y)$ is ≤ 0 and the off-diagonal entries of $Q(y)$ are ≥ 0 (therefore the infinitesimal

Three important facts

1. The structure of the group induces the existence of a constant matrix Y such that we can decompose by blocks the weight matrix W in the form

$$
\widetilde{W}(y)=Y W(y) Y^{*}=\left(\begin{array}{c|c}
W_{1}(y) & 0 \\
\hline 0 & W_{2}(y)
\end{array}\right)
$$

where W_{1} is $(\ell+1) \times(\ell+1)$ and W_{2} is $\ell \times \ell$. So we will study the probabilistic aspects of these two independent processes $(\ell=1)$.
2. We look for certain family of MVOP such that the corresponding block tridiagonal Jacobi matrix \mathcal{A} has a "stochastic" interpretation, meaning that the sum of each row of \mathcal{A} is ≤ 0 and the off-diagonal entries of \mathcal{A} are ≥ 0 (therefore the infinitesimal operator of a continuous-time Markov chain).
> 3. Also, in order to find a
> second-order differential operator, we will perform a y-dependent transformation $S(y)$ such that $\mathcal{D}=S^{-1}(D S)$. Then≤ 0 and the off-diagonal entries of $Q(y)$ are ≥ 0 (therefore the infinitesimal

Three important facts

1. The structure of the group induces the existence of a constant matrix Y such that we can decompose by blocks the weight matrix W in the form

$$
\widetilde{W}(y)=Y W(y) Y^{*}=\left(\begin{array}{c|c}
W_{1}(y) & 0 \\
\hline 0 & W_{2}(y)
\end{array}\right)
$$

where W_{1} is $(\ell+1) \times(\ell+1)$ and W_{2} is $\ell \times \ell$. So we will study the probabilistic aspects of these two independent processes $(\ell=1)$.
2. We look for certain family of MVOP such that the corresponding block tridiagonal Jacobi matrix \mathcal{A} has a "stochastic" interpretation, meaning that the sum of each row of \mathcal{A} is ≤ 0 and the off-diagonal entries of \mathcal{A} are ≥ 0 (therefore the infinitesimal operator of a continuous-time Markov chain).
3. Also, in order to find a "stochastic" second-order differential operator, we will perform a y-dependent transformation $S(y)$ such that $\mathcal{D}=S^{-1}(D S)$. Then

$$
\mathcal{D}=y(1-y) \partial_{y}^{2}+A(y) \partial_{y}+Q(y)
$$

By "stochastic" we mean that $A(y)$ is diagonal, the sum of each row of $Q(y)$ is ≤ 0 and the off-diagonal entries of $Q(y)$ are ≥ 0 (therefore the infinitesimal operator of a continuous-time finite Markov chain).

The first stochastic model $3 \times 3(\ell=1)$

Let $W_{1}(y)(2 \times 2)$ and $w_{2}(y)$ (scalar) be the corresponding block weight matrices and denote by $Q_{n, 1}$ and $q_{n, 2}$ the corresponding families of MVOP satisfying $Q_{n, 1}(0) \boldsymbol{e}_{2}=\boldsymbol{e}_{2}, \boldsymbol{e}_{2}=(1,1)^{T}$ and $q_{n, 2}(0)=1$.

1. A birth-and-death process: The polynomials $q_{n, 2}$ satisfy the three-term recurrence relation

where the coefficients are given by

Therefore the Jacobi matrix is

The first stochastic model $3 \times 3(\ell=1)$

Let $W_{1}(y)(2 \times 2)$ and $w_{2}(y)$ (scalar) be the corresponding block weight matrices and denote by $Q_{n, 1}$ and $q_{n, 2}$ the corresponding families of MVOP satisfying $Q_{n, 1}(0) \boldsymbol{e}_{2}=\boldsymbol{e}_{2}, \boldsymbol{e}_{2}=(1,1)^{T}$ and $q_{n, 2}(0)=1$.

1. A birth-and-death process: The polynomials $q_{n, 2}$ satisfy the three-term recurrence relation

$$
-y q_{n, 2}(y)=a_{n} q_{n+1,2}(y)-\left(a_{n}+c_{n}\right) q_{n, 2}(y)+c_{n} q_{n-1,2}(y)
$$

where the coefficients are given by

$$
a_{n}=\frac{2 \nu+n+2}{4(\nu+n+1)}, \quad c_{n}=\frac{n}{4(\nu+n+1)}
$$

Therefore the Jacobi matrix is

$$
\mathcal{A}_{2}=\left(\begin{array}{ccccc}
-\frac{1}{2} & \frac{1}{2} & 0 & & \\
\frac{1}{4(\nu+2)} & -\frac{1}{2} & \frac{2 \nu+3}{4(\nu+2)} & 0 & \\
0 & \frac{1}{2(\nu+3)} & -\frac{1}{2} & \frac{\nu+2}{2(\nu+3)} & 0 \\
& & \ddots & \ddots & \ddots
\end{array}\right), \quad \nu>-3 / 2
$$

and it is the infinitesimal operator of a birth-and-death process.

The potential coefficients (inverse of the norms of $q_{n, 2}$) are

$$
\pi_{0}=1, \quad \pi_{n}=\frac{2(\nu+n+1)(2 \nu+3)_{n-1}}{n!}, \quad n \geq 1
$$

while the (normalized) weight is given by

$$
w_{2}(y)=\frac{4^{\nu+1} \Gamma(\nu+2)}{\sqrt{\pi} \Gamma(\nu+3 / 2)}[y(1-y)]^{\nu+1 / 2}, \quad y \in(0,1), \quad \nu>-3 / 2
$$

Therefore we have the Karlin-McGregor representation

Since we have the explicit expression of the weight $w_{2}(y)$ we can study the recurrence of the process. For $-3 / 2<\nu \leq-1 / 2$ the process is null recurrent (since $\sum \pi_{n}=\infty$), while if $\nu>-1 / 2$ then the process is transient.

This birth-and-death process can be seen as a rational variant of the one-server queue as the length of the queue increases.

The potential coefficients (inverse of the norms of $q_{n, 2}$) are

$$
\pi_{0}=1, \quad \pi_{n}=\frac{2(\nu+n+1)(2 \nu+3)_{n-1}}{n!}, \quad n \geq 1
$$

while the (normalized) weight is given by

$$
w_{2}(y)=\frac{4^{\nu+1} \Gamma(\nu+2)}{\sqrt{\pi} \Gamma(\nu+3 / 2)}[y(1-y)]^{\nu+1 / 2}, \quad y \in(0,1), \quad \nu>-3 / 2
$$

Therefore we have the Karlin-McGregor representation

$$
\begin{aligned}
P_{i j}^{(2)}(t) & =\mathbb{P}\left(X_{t}=j \mid X_{0}=i\right)=\pi_{j} \int_{0}^{1} e^{-y t} q_{i, 2}(y) q_{j, 2}(y) w_{2}(y) d y \\
& =\frac{2(\nu+j+1)(2 \nu+3)_{j-1} 4^{\nu+1} \Gamma(\nu+2)}{j!\sqrt{\pi} \Gamma(\nu+3 / 2)} \int_{0}^{1} e^{-y t} q_{i, 2} q_{j, 2}[y(1-y)]^{\nu+1 / 2} d y
\end{aligned}
$$

Since we have the explicit expression of the weight $w_{2}(y)$ we can study the
recurrence of the process. For $-3 / 2<\nu \leq-1 / 2$ the process is null recurrent
(since $\sum \pi_{n}=\infty$), while if $\nu>-1 / 2$ then the process is transient.
This birth-and-death process can be seen as a rational variant of the one-server queue as the length of the queue increases.

The potential coefficients (inverse of the norms of $q_{n, 2}$) are

$$
\pi_{0}=1, \quad \pi_{n}=\frac{2(\nu+n+1)(2 \nu+3)_{n-1}}{n!}, \quad n \geq 1
$$

while the (normalized) weight is given by

$$
w_{2}(y)=\frac{4^{\nu+1} \Gamma(\nu+2)}{\sqrt{\pi} \Gamma(\nu+3 / 2)}[y(1-y)]^{\nu+1 / 2}, \quad y \in(0,1), \quad \nu>-3 / 2
$$

Therefore we have the Karlin-McGregor representation

$$
\begin{aligned}
P_{i j}^{(2)}(t) & =\mathbb{P}\left(X_{t}=j \mid X_{0}=i\right)=\pi_{j} \int_{0}^{1} e^{-y t} q_{i, 2}(y) q_{j, 2}(y) w_{2}(y) d y \\
& =\frac{2(\nu+j+1)(2 \nu+3)_{j-1} 4^{\nu+1} \Gamma(\nu+2)}{j!\sqrt{\pi} \Gamma(\nu+3 / 2)} \int_{0}^{1} e^{-y t} q_{i, 2} q_{j, 2}[y(1-y)]^{\nu+1 / 2} d y
\end{aligned}
$$

Since we have the explicit expression of the weight $w_{2}(y)$ we can study the recurrence of the process. For $-3 / 2<\nu \leq-1 / 2$ the process is null recurrent (since $\sum \pi_{n}=\infty$), while if $\nu>-1 / 2$ then the process is transient.

This birth-and-death process can be seen as a rational variant of the one-server queue as the length of the queue increases.

The potential coefficients (inverse of the norms of $q_{n, 2}$) are

$$
\pi_{0}=1, \quad \pi_{n}=\frac{2(\nu+n+1)(2 \nu+3)_{n-1}}{n!}, \quad n \geq 1
$$

while the (normalized) weight is given by

$$
w_{2}(y)=\frac{4^{\nu+1} \Gamma(\nu+2)}{\sqrt{\pi} \Gamma(\nu+3 / 2)}[y(1-y)]^{\nu+1 / 2}, \quad y \in(0,1), \quad \nu>-3 / 2
$$

Therefore we have the Karlin-McGregor representation

$$
\begin{aligned}
P_{i j}^{(2)}(t) & =\mathbb{P}\left(X_{t}=j \mid X_{0}=i\right)=\pi_{j} \int_{0}^{1} e^{-y t} q_{i, 2}(y) q_{j, 2}(y) w_{2}(y) d y \\
& =\frac{2(\nu+j+1)(2 \nu+3)_{j-1} 4^{\nu+1} \Gamma(\nu+2)}{j!\sqrt{\pi} \Gamma(\nu+3 / 2)} \int_{0}^{1} e^{-y t} q_{i, 2} q_{j, 2}[y(1-y)]^{\nu+1 / 2} d y
\end{aligned}
$$

Since we have the explicit expression of the weight $w_{2}(y)$ we can study the recurrence of the process. For $-3 / 2<\nu \leq-1 / 2$ the process is null recurrent (since $\sum \pi_{n}=\infty$), while if $\nu>-1 / 2$ then the process is transient.

This birth-and-death process can be seen as a rational variant of the one-server queue as the length of the queue increases.
2. A quasi-birth-and-death process: The polynomials $Q_{n, 1}(y)$ satisfy the three-term recurrence relation

$$
-y Q_{n, 1}(y)=A_{n} Q_{n+1,1}(y)+B_{n} Q_{n, 1}(y)+C_{n} Q_{n-1,1}(y)
$$

where the coefficients are given by

$$
A_{n}=\left(\begin{array}{cc}
\frac{2 \nu+n+2}{4(\nu+n+2)} & 0 \\
0 & \frac{(n+\nu)(2 \nu+n+2)}{4(\nu+n+1)^{2}}
\end{array}\right), B_{n}=\left(\begin{array}{cc}
-\frac{1}{2} & \frac{\nu}{2(\nu+n)(\nu+n+2)} \\
\frac{1+\nu}{2(\nu+n+1)^{2}} & -\frac{1}{2}
\end{array}\right), C_{n}=\left(\begin{array}{cc}
\frac{n}{4(\nu+n)} & 0 \\
0 & \frac{n(\nu+n+2)}{4(\nu+n+1)^{2}}
\end{array}\right)
$$

Therefore the Jacobi matrix (pentadiagonal) is
$\mathcal{A}_{1}=\left(\begin{array}{cc|cc|cc|cc|c}-\frac{1}{2} & \frac{1}{2(\nu+2)} & \frac{\nu+1}{2(\nu+2)} & 0 & 0 & 0 & 0 & 0 & \cdots \\ \frac{1}{2(\nu+1)} & -\frac{1}{2} & 0 & \frac{\nu}{2(\nu+1)} & 0 & 0 & 0 & 0 & \cdots \\ \hline \frac{1}{4(\nu+1)} & 0 & -\frac{1}{2} & \frac{\nu}{2(\nu+1)(\nu+3)} & \frac{2 \nu+3}{4(\nu+3)} & 0 & 0 & 0 & \cdots \\ 0 & \frac{\nu+3}{4(\nu+2)^{2}} & \frac{1+\nu}{2(\nu+2)^{2}} & -\frac{1}{2} & 0 & \frac{(1+\nu)(2 \nu+3)}{4(\nu+2)^{2}} & 0 & 0 & \cdots \\ \hline 0 & 0 & \frac{1}{2(\nu+2)} & 0 & -\frac{1}{2} & \frac{1}{2(\nu+2)(\nu+4)} & \frac{\nu+2}{2(\nu+4)} & 0 & \cdots \\ 0 & 0 & 0 & \frac{\nu+4}{2(\nu+3)^{2}} & \frac{1+\nu}{2(\nu+3)^{2}} & -\frac{1}{2} & 0 & \frac{(2+\nu)^{2}}{2(\nu+3)^{2}} & \cdots \\ \hline & & & \ddots & \ddots & \ddots & \ddots & \ddots\end{array}\right)$
and it is the infinitesimal operator of a quasi-birth-and-death process $(\nu \geq 0)$.

The (normalized) weight matrix is given by
$W_{1}(y)=\frac{4^{\nu+1 / 2} \Gamma(\nu+1)}{\sqrt{\pi} \Gamma(\nu+1 / 2)}[y(1-y)]^{\nu-1 / 2}\left(\begin{array}{cc}1-\frac{2(1+\nu)}{\nu+1 / 2} y(1-y) & \frac{\nu+1}{\nu+2}(1-2 y) \\ \frac{\nu+1}{\nu+2}(1-2 y) & \frac{\nu+1}{\nu+2}\left(1-\frac{2 \nu}{\nu+1 / 2} y(1-y)\right)\end{array}\right), \quad \nu \geq 0$
Each block entry (i, j) of $P^{(1)}(t)$ admits a Karlin-McGregor representation

$$
\Pi_{0}=I, \quad \Pi_{n}=\left(\left\|Q_{n, 1}\right\|_{W_{1}}^{2}\right)^{-1}=\frac{2(2 \nu+3)_{n-1}}{n!}\left(\begin{array}{cc}
\frac{(\nu+1)^{2}}{\nu+n+1} & 0 \\
0 & \frac{\nu(\nu+2)(\nu+n+1)}{(\nu+n)(\nu+n+2)}
\end{array}\right)
$$

We can also compute explicitly the invariant measure of the process

$$
\begin{aligned}
\pi & =\left(\left(\Pi_{0} e_{2}\right)^{\top} ;\left(\Pi_{1} e_{2}\right)^{\top} ;\left(\Pi_{2} e_{2}\right)^{\top} ; \cdots\right), e_{2}^{\top}=(1,1) \\
& =\left(1,1 ; \frac{2(\nu+1)^{2}}{\nu+2}, \frac{2 \nu(\nu+2)^{2}}{(\nu+1)(\nu+3)} ; \frac{(2 \nu+3)(\nu+1)^{2}}{\nu+3}, \frac{(2 \nu+3) \nu(\nu+3)}{\nu+4}\right.
\end{aligned}
$$

In a similar way studied in the scalar case, the process is null recurrent for $0 \leq \nu \leq 1 / 2$, while if $\nu>1 / 2$ then the process will be transient.

The (normalized) weight matrix is given by
$W_{1}(y)=\frac{4^{\nu+1 / 2} \Gamma(\nu+1)}{\sqrt{\pi} \Gamma(\nu+1 / 2)}[y(1-y)]^{\nu-1 / 2}\left(\begin{array}{cc}1-\frac{2(1+\nu)}{\nu+1 / 2} y(1-y) & \frac{\nu+1}{\nu+2}(1-2 y) \\ \frac{\nu+1}{\nu+2}(1-2 y) & \frac{\nu+1}{\nu+2}\left(1-\frac{2 \nu}{\nu+1 / 2} y(1-y)\right)\end{array}\right), \quad \nu \geq 0$
Each block entry (i, j) of $P^{(1)}(t)$ admits a Karlin-McGregor representation

$$
\begin{gathered}
P_{i j}^{(1)}(t)=\left(\int_{0}^{1} e^{-y t} Q_{i, 1}(y) W_{1}(y) Q_{j, 1}^{*}(y) d x\right) \Pi_{j} \\
\Pi_{0}=I, \quad \Pi_{n}=\left(\left\|Q_{n, 1}\right\|_{W_{1}}^{2}\right)^{-1}=\frac{2(2 \nu+3)_{n-1}}{n!}\left(\begin{array}{cc}
\frac{(\nu+1)^{2}}{\nu+n+1} & 0 \\
0 & \frac{\nu(\nu+2)(\nu+n+1)}{(\nu+n)(\nu+n+2)}
\end{array}\right)
\end{gathered}
$$

We can also compute explicitly the invariant measure of the process
\square

In a similar way studied in the scalar case, the process is null recurrent for $0 \leq \nu \leq 1 / 2$, while if $\nu>1 / 2$ then the process will be transient.

The (normalized) weight matrix is given by

$$
W_{1}(y)=\frac{4^{\nu+1 / 2} \Gamma(\nu+1)}{\sqrt{\pi} \Gamma(\nu+1 / 2)}[y(1-y)]^{\nu-1 / 2}\left(\begin{array}{cc}
1-\frac{2(1+\nu)}{\nu+1 / 2} y(1-y) & \frac{\nu+1}{\nu+2}(1-2 y) \\
\frac{\nu+1}{\nu+2}(1-2 y) & \frac{\nu+1}{\nu+2}\left(1-\frac{2 \nu}{\nu+1 / 2} y(1-y)\right)
\end{array}\right), \quad \nu \geq 0
$$

Each block entry (i, j) of $P^{(1)}(t)$ admits a Karlin-McGregor representation

$$
\begin{gathered}
P_{i j}^{(1)}(t)=\left(\int_{0}^{1} e^{-y t} Q_{i, 1}(y) W_{1}(y) Q_{j, 1}^{*}(y) d x\right) \Pi_{j} \\
\Pi_{0}=I, \quad \Pi_{n}=\left(\left\|Q_{n, 1}\right\|_{W_{1}}^{2}\right)^{-1}=\frac{2(2 \nu+3)_{n-1}}{n!}\left(\begin{array}{cc}
\frac{(\nu+1)^{2}}{\nu+n+1} & 0 \\
0 & \frac{\nu(\nu+2)(\nu+n+1)}{(\nu+n)(\nu+n+2)}
\end{array}\right)
\end{gathered}
$$

We can also compute explicitly the invariant measure of the process

$$
\begin{aligned}
\boldsymbol{\pi} & =\left(\left(\Pi_{0} \boldsymbol{e}_{2}\right)^{T} ;\left(\Pi_{1} \boldsymbol{e}_{2}\right)^{T} ;\left(\Pi_{2} \boldsymbol{e}_{2}\right)^{T} ; \cdots\right), \quad \boldsymbol{e}_{2}^{T}=(1,1) \\
& =\left(1,1 ; \frac{2(\nu+1)^{2}}{\nu+2}, \frac{2 \nu(\nu+2)^{2}}{(\nu+1)(\nu+3)} ; \frac{(2 \nu+3)(\nu+1)^{2}}{\nu+3}, \frac{(2 \nu+3) \nu(\nu+3)}{\nu+4} ; \cdots\right)
\end{aligned}
$$

In a similar way studied in the scalar case, the process is null recurrent for $0 \leq \nu \leq 1 / 2$, while if $\nu>1 / 2$ then the process will be transient.

The (normalized) weight matrix is given by

$$
W_{1}(y)=\frac{4^{\nu+1 / 2} \Gamma(\nu+1)}{\sqrt{\pi} \Gamma(\nu+1 / 2)}[y(1-y)]^{\nu-1 / 2}\left(\begin{array}{cc}
1-\frac{2(1+\nu)}{\nu+1 / 2} y(1-y) & \begin{array}{c}
\frac{\nu+1}{\nu+2}(1-2 y) \\
\frac{\nu+1}{\nu+2}(1-2 y)
\end{array} \\
\frac{\nu+1}{\nu+2}\left(1-\frac{2 \nu}{\nu+1 / 2} y(1-y)\right)
\end{array}\right), \quad \nu \geq 0
$$

Each block entry (i, j) of $P^{(1)}(t)$ admits a Karlin-McGregor representation

$$
\begin{gathered}
P_{i j}^{(1)}(t)=\left(\int_{0}^{1} e^{-y t} Q_{i, 1}(y) W_{1}(y) Q_{j, 1}^{*}(y) d x\right) \Pi_{j} \\
\Pi_{0}=I, \quad \Pi_{n}=\left(\left\|Q_{n, 1}\right\|_{W_{1}}^{2}\right)^{-1}=\frac{2(2 \nu+3)_{n-1}}{n!}\left(\begin{array}{cc}
\frac{(\nu+1)^{2}}{\nu+n+1} & 0 \\
0 & \frac{\nu(\nu+2)(\nu+n+1)}{(\nu+n)(\nu+n+2)}
\end{array}\right)
\end{gathered}
$$

We can also compute explicitly the invariant measure of the process

$$
\begin{aligned}
\boldsymbol{\pi} & =\left(\left(\Pi_{0} \boldsymbol{e}_{2}\right)^{T} ;\left(\Pi_{1} \boldsymbol{e}_{2}\right)^{T} ;\left(\Pi_{2} \boldsymbol{e}_{2}\right)^{T} ; \cdots\right), \quad \boldsymbol{e}_{2}^{T}=(1,1) \\
& =\left(1,1 ; \frac{2(\nu+1)^{2}}{\nu+2}, \frac{2 \nu(\nu+2)^{2}}{(\nu+1)(\nu+3)} ; \frac{(2 \nu+3)(\nu+1)^{2}}{\nu+3}, \frac{(2 \nu+3) \nu(\nu+3)}{\nu+4} ; \cdots\right)
\end{aligned}
$$

In a similar way studied in the scalar case, the process is null recurrent for $0 \leq \nu \leq 1 / 2$, while if $\nu>1 / 2$ then the process will be transient.

Interpretation: We have a 2 phases quasi-birth-and-death process. If the process moves along any of the phases, then the process can add (or remove) 2 elements to the queue. On the contrary, if the process moves from one phase to another, then the process add (or remove) 1 element to the queue. As the length of the queue increases, it is very unlikely that a transition between phases occurs. Therefore this quasi-birth-and-death process may be viewed as a rational variation of a couple of one-server queues where the interaction between them is significant in the first states of the queue.

$v=1,50$ transitions

The second stochastic model $3 \times 3(\ell=1)$

Let $S(y)$ be the transformation matrix

$$
S(y)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1-2 y & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Let $W_{1}(y)(2 \times 2)$ and $w_{2}(y)$ (scalar) be the corresponding block weight matrices and denote by $Q_{n, 1}$ and $q_{n, 2}$ the corresponding families of matrix-valued orthogonal functions (need not to be polynomials any more).

1. A diffusion process with killing: The functions $q_{n, 2}$ can be written as
where $C_{n}^{(\lambda)}$ is the family of monic Gegenbauer polynomials.
These are eigenfunctions of the second-order differential operator

The second stochastic model $3 \times 3(\ell=1)$

Let $S(y)$ be the transformation matrix

$$
S(y)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1-2 y & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Let $W_{1}(y)(2 \times 2)$ and $w_{2}(y)$ (scalar) be the corresponding block weight matrices and denote by $Q_{n, 1}$ and $q_{n, 2}$ the corresponding families of matrix-valued orthogonal functions (need not to be polynomials any more).

1. A diffusion process with killing: The functions $q_{n, 2}$ can be written as

$$
q_{n, 2}(y)=-2 i \sqrt{y(1-y)} C_{n}^{(\nu+1)}(y)
$$

where $C_{n}^{(\lambda)}$ is the family of monic Gegenbauer polynomials.
These are eigenfunctions of the second-order differential operator

The second stochastic model $3 \times 3(\ell=1)$

Let $S(y)$ be the transformation matrix

$$
S(y)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1-2 y & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Let $W_{1}(y)(2 \times 2)$ and $w_{2}(y)$ (scalar) be the corresponding block weight matrices and denote by $Q_{n, 1}$ and $q_{n, 2}$ the corresponding families of matrix-valued orthogonal functions (need not to be polynomials any more).

1. A diffusion process with killing: The functions $q_{n, 2}$ can be written as

$$
q_{n, 2}(y)=-2 i \sqrt{y(1-y)} C_{n}^{(\nu+1)}(y)
$$

where $C_{n}^{(\lambda)}$ is the family of monic Gegenbauer polynomials. These are eigenfunctions of the second-order differential operator

$$
\mathcal{D}_{2}=y(1-y) \partial_{y}^{2}+(\nu+1 / 2)(1-2 y) \partial_{y}-\frac{\nu(1-2 y)^{2}}{2 y(1-y)}, \quad \nu \geq 0
$$

with eigenvalue

$$
\lambda_{n, 2}=-1-n(n+2 \nu+2)
$$

The weight function is

$$
w_{2}(y)=\frac{4^{\nu-1}(1+\nu)_{2}[y(1-y)]^{\nu-1 / 2}}{\nu+1 / 2}
$$

Therefore the spectral representation of the transition density function is

$p(t ; x, y)=\sum_{n=0}^{\infty} e^{\lambda_{n, 2} t} q_{n, 2}(x) \overline{q_{n, 2}(y)} \pi_{n} w_{2}(y)$
where

$$
\pi_{n}^{-1}=\left\|q_{n, 2}\right\|_{w_{2}}^{2}=\frac{\sqrt{\pi}(1+\nu)(2+\nu) n!\Gamma(\nu+\lfloor n / 2\rfloor+3 / 2)}{4^{n+1} 2^{n}(\nu+1 / 2) \Gamma(n+\nu+2)(\lceil n / 2\rceil+\nu+2)_{\lfloor n / 2\rfloor}}
$$

The weight function is

$$
w_{2}(y)=\frac{4^{\nu-1}(1+\nu)_{2}[y(1-y)]^{\nu-1 / 2}}{\nu+1 / 2}
$$

Therefore the spectral representation of the transition density function is

$$
\begin{aligned}
p(t ; x, y) & =\sum_{n=0}^{\infty} e^{\lambda_{n, 2} t} q_{n, 2}(x) \overline{q_{n, 2}(y)} \pi_{n} w_{2}(y) \\
& =e^{-t} \sqrt{x(1-x)} \frac{4^{\nu}(1+\nu)_{2}[y(1-y)]^{\nu}}{\nu+1 / 2} \sum_{n=0}^{\infty} e^{-n(n+2 \nu+2) t} C_{n}^{(\nu+1)}(x) C_{n}^{(\nu+1)}(y) \pi_{n}
\end{aligned}
$$

where

$$
\pi_{n}^{-1}=\left\|q_{n, 2}\right\|_{w_{2}}^{2}=\frac{\sqrt{\pi}(1+\nu)(2+\nu) n!\Gamma(\nu+\lfloor n / 2\rfloor+3 / 2)}{4^{n+1} 2^{n}(\nu+1 / 2) \Gamma(n+\nu+2)(\lceil n / 2\rceil+\nu+2)_{\lfloor n / 2\rfloor}}
$$

This process can be regarded as a Wright-Fisher model involving only equal mutation effects with killing. The behavior of the boundary points can be analyzed in terms of the parameter $\nu \geq 0$. Indeed, 0 and 1 are regular boundaries if $0 \leq \nu<1 / 2$, while entrance boundaries if $\nu \geq 1 / 2$. When the process is close to 0 or 1 , then almost immediately the process is killed. The closer the trajectory is to $1 / 2$ the more time it will take to the process to be killed.

2. A switching diffusion process: The functions $Q_{n, 1}$ are eigenfunctions of the matrix-valued second-order differential operator $(\nu \geq 0)$

$$
\begin{aligned}
\mathcal{D}_{1}=y(1-y) \partial_{y}^{2} & +\left(\begin{array}{cc}
(\nu+1 / 2)(1-2 y) & 0 \\
0 & (\nu+3 / 2)(1-2 y)-\frac{1}{1-2 y}
\end{array}\right) \partial_{y} \\
& +\frac{1}{2 y(1-y)}\left(\begin{array}{cc}
-\nu(1-2 y)^{2} & \nu(1-2 y)^{2} \\
1+\nu & -(1+\nu)
\end{array}\right)
\end{aligned}
$$

with eigenvalue

$$
\Lambda_{n, 1}=\left(\begin{array}{cc}
-1-n(n+2 \nu+2) & 0 \\
0 & -n(n+2 \nu+2)
\end{array}\right), \quad n \geq 0
$$

and weight matrix

$$
W_{1}(y)=\frac{4^{\nu-1}(2+\nu)[y(1-y)]^{\nu-1 / 2}}{\nu+1 / 2}\left(\begin{array}{cc}
1+\nu & 0 \\
0 & \nu(1-2 y)^{2}
\end{array}\right)
$$

The matrix-valued transition density probability can be written as

2. A switching diffusion process: The functions $Q_{n, 1}$ are eigenfunctions of the matrix-valued second-order differential operator ($\nu \geq 0$)

$$
\begin{aligned}
\mathcal{D}_{1}=y(1-y) \partial_{y}^{2}+ & \left(\begin{array}{cc}
(\nu+1 / 2)(1-2 y) & 0 \\
0 & (\nu+3 / 2)(1-2 y)-\frac{1}{1-2 y}
\end{array}\right) \partial_{y} \\
& +\frac{1}{2 y(1-y)}\left(\begin{array}{cc}
-\nu(1-2 y)^{2} & \nu(1-2 y)^{2} \\
1+\nu & -(1+\nu)
\end{array}\right)
\end{aligned}
$$

with eigenvalue

$$
\Lambda_{n, 1}=\left(\begin{array}{cc}
-1-n(n+2 \nu+2) & 0 \\
0 & -n(n+2 \nu+2)
\end{array}\right), \quad n \geq 0
$$

and weight matrix

$$
W_{1}(y)=\frac{4^{\nu-1}(2+\nu)[y(1-y)]^{\nu-1 / 2}}{\nu+1 / 2}\left(\begin{array}{cc}
1+\nu & 0 \\
0 & \nu(1-2 y)^{2}
\end{array}\right)
$$

The matrix-valued transition density probability can be written as

$$
\begin{aligned}
& P(t ; x, y)=\sum_{n=0}^{\infty} Q_{n, 1}(x) \Pi_{n} e^{\Lambda_{n, 1} t} Q_{n, 1}^{*}(y) W_{1}(y) \\
& \Pi_{n}^{-1}=\left\|Q_{n, 1}\right\|_{W_{1}}^{2}=\pi_{n}^{-1}\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{\nu(n+\nu+2)}{(\nu+1)(n+\nu)}
\end{array}\right)
\end{aligned}
$$

Probabilistic properties:

- 0 and 1 are regular boundaries if $0 \leq \nu<1 / 2$, while they are entrance boundaries if $\nu \geq 1 / 2$. The important difference now is that in the second phase the drift coefficient tends to ∞ if $y=1 / 2$. It turns out that if we approach $1 / 2$ (on the left or on the right) then, it will always be an entrance boundary.
- If the process is near 0 or 1 , then the diagonal coefficients of $Q(y)$ are very large, meaning that all phases are instantaneous. We also observe that if the process is near $1 / 2$ then the entry $(1,1)$ of $Q(y)$ is very small, meaning that phase 1 is absorbing.
- The process tends to stay more time at phase 1 than in phase 2.

> This process can also be regarded as a variant of the Wright-Fisher model involving only mutation effects with two different phases. The behavior of the boundaries 0 and 1 in both phases is exactly the same, but, while the process is at phase 2 , starting for instance at an interior point of $\left[0,1 / 2^{-}\right)$, then there is a force blocking the pass through the threshold located at $1 / 2$ (same if the interior point is located at $\left.\left(1 / 2^{+}, 1\right]\right)$. If the process is at phase 1 , it can move along the whole state space $[0,1]$ without any restriction at the point $1 / 2$

Probabilistic properties:

- 0 and 1 are regular boundaries if $0 \leq \nu<1 / 2$, while they are entrance boundaries if $\nu \geq 1 / 2$. The important difference now is that in the second phase the drift coefficient tends to ∞ if $y=1 / 2$. It turns out that if we approach $1 / 2$ (on the left or on the right) then, it will always be an entrance boundary.
- If the process is near 0 or 1 , then the diagonal coefficients of $Q(y)$ are very large, meaning that all phases are instantaneous. We also observe that if the process is near $1 / 2$ then the entry $(1,1)$ of $Q(y)$ is very small, meaning that phase 1 is absorbing.
- The process tends to stay more time at phase 1 than in phase 2.

This process can also be regarded as a variant of the Wright-Fisher model involving only mutation effects with two different phases. The behavior of the boundaries 0 and 1 in both phases is exactly the same, but, while the process is at phase 2 , starting for instance at an interior point of $\left[0,1 / 2^{-}\right.$), then there is a force blocking the pass through the threshold located at $1 / 2$ (same if the interior point is located at $\left.\left(1 / 2^{+}, 1\right]\right)$. If the process is at phase 1 , it can move along the whole state space $[0,1]$ without any restriction at the point $1 / 2$.
$v=1 / 4,6$ changes

$\mathrm{v}=1,9$ changes

The vector-valued invariant distribution (if it exists) is given by

$$
\psi(y)=\frac{4^{\nu} \Gamma(\nu+2)[y(1-y)]^{\nu-1 / 2}}{\sqrt{\pi}(2+\nu) \Gamma(\nu+3 / 2)}\left(1+\nu, \nu(1-2 y)^{2}\right)
$$

[^0]: ${ }^{1}$ Joint work with Pablo Román

[^1]: 3. Diffusion processes:
