Approximation of matrix functions VIA ORTHOGONAL MATRIX POLYNOMIALS

Manuel Domínguez de la Iglesia ${ }^{1}$

Instituto de Matemáticas C.U., UNAM
First Joint International Meeting of the Israel Mathematical Union and the Mexican Mathematical Society

Oaxaca, September 11, 2015
${ }^{1}$ Supported by PAPIIT-DGAPA-UNAM grant IA100515

Outline

(1) Orthogonal Polynomials

- Definitions and basic properties
- Differential equations
- Applications
(2) Orthogonal Matrix Polynomials
- Definitions and basic properties
- Matrix differential equations
- Applications

Outline

(1) Orthogonal Polynomials

- Definitions and basic properties
- Differential equations
- Applications
(2) Orthogonal Matrix Polynomials
- Definitions and basic properties
- Matrix differential equations
- Applications

Definitions and basic properties

Let ω be a positive measure on \mathbb{R} and denote $\left(p_{n}\right)_{n}$ a system of polynomials with $\operatorname{deg} p_{n}=n$ such that they are orthogonal w.r.t. ω, i.e.

$$
\int_{\mathbb{R}} p_{n}(x) p_{m}(x) d \omega(x)=0, \quad n \neq m
$$

Set $(f, g)_{\omega}=\int_{\mathbb{R}} f(x) g(x) d \omega(x)$ and $\|f\|_{\omega}^{2}=(f, f)_{\omega}$. These are the scalar product and the norm for the weighted function space

For any function $f \in L_{\omega}^{2}(\mathbb{R})$ the series

Definitions and basic properties

Let ω be a positive measure on \mathbb{R} and denote $\left(p_{n}\right)_{n}$ a system of polynomials with $\operatorname{deg} p_{n}=n$ such that they are orthogonal w.r.t. ω, i.e.

$$
\int_{\mathbb{R}} p_{n}(x) p_{m}(x) d \omega(x)=0, \quad n \neq m
$$

Set $(f, g)_{\omega}=\int_{\mathbb{R}} f(x) g(x) d \omega(x)$ and $\|f\|_{\omega}^{2}=(f, f)_{\omega}$. These are the scalar product and the norm for the weighted function space

$$
L_{\omega}^{2}(\mathbb{R})=\left\{f: \mathbb{R} \rightarrow \mathbb{R}: \int_{\mathbb{R}} f^{2}(x) d \omega(x)<\infty\right\}
$$

For any function $f \in L_{\omega}^{2}(\mathbb{R})$ the series

is called the generalized Fourier series of f

Definitions and basic properties

Let ω be a positive measure on \mathbb{R} and denote $\left(p_{n}\right)_{n}$ a system of polynomials with $\operatorname{deg} p_{n}=n$ such that they are orthogonal w.r.t. ω, i.e.

$$
\int_{\mathbb{R}} p_{n}(x) p_{m}(x) d \omega(x)=0, \quad n \neq m
$$

Set $(f, g)_{\omega}=\int_{\mathbb{R}} f(x) g(x) d \omega(x)$ and $\|f\|_{\omega}^{2}=(f, f)_{\omega}$. These are the scalar product and the norm for the weighted function space

$$
L_{\omega}^{2}(\mathbb{R})=\left\{f: \mathbb{R} \rightarrow \mathbb{R}: \int_{\mathbb{R}} f^{2}(x) d \omega(x)<\infty\right\}
$$

For any function $f \in L_{\omega}^{2}(\mathbb{R})$ the series

$$
(S f)(x)=\sum_{k=0}^{\infty} \hat{f}_{k} p_{k}(x), \quad \hat{f}_{k}=\frac{\left(f, p_{k}\right)_{\omega}}{\left\|p_{k}\right\|_{\omega}^{2}}
$$

is called the generalized Fourier series of f.

Definitions and basic properties

The series $(S f)(x)$ converges in average or in the sense of $L_{\omega}^{2}(\mathbb{R})$, meaning that if $f_{n}(x)=\sum_{k=0}^{n} \hat{f}_{k} p_{k}(x)$, then the following holds

$$
\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{\omega}=0
$$

The polynomial $f_{n} \in \mathbb{P}_{n}$ satisfies the following minimization property

So it is important to compute the coefficients \hat{f}_{k}. This can be done approximating the integrals using Gaussian quadratures, so the discrete truncation of f is the best approximation of f in the least-squares sense. Additionally all families of orthogonal polynomials (OPs) $\left(p_{n}\right)_{n}$ satisfy a three term recurrence relation (Jacobi operator)

where

Definitions and basic properties

The series $(S f)(x)$ converges in average or in the sense of $L_{\omega}^{2}(\mathbb{R})$, meaning that if $f_{n}(x)=\sum_{k=0}^{n} \hat{f}_{k} p_{k}(x)$, then the following holds

$$
\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{\omega}=0
$$

The polynomial $f_{n} \in \mathbb{P}_{n}$ satisfies the following minimization property

$$
\left\|f-f_{n}\right\|_{\omega}=\min _{q \in \mathbb{P}_{n}}\|f-q\|_{\omega}
$$

So it is important to compute the coefficients \hat{f}_{k}. This can be done approximating the integrals using Gaussian quadratures, so the discrete truncation of f is the best approximation of f in the least-squares sense. Additionally all families of orthogonal polynomials (OPs) $\left(p_{n}\right)_{n}$ satisfy a three term recurrence relation (Jacobi operator)

where

Definitions and basic properties

The series $(S f)(x)$ converges in average or in the sense of $L_{\omega}^{2}(\mathbb{R})$, meaning that if $f_{n}(x)=\sum_{k=0}^{n} \hat{f}_{k} p_{k}(x)$, then the following holds

$$
\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{\omega}=0
$$

The polynomial $f_{n} \in \mathbb{P}_{n}$ satisfies the following minimization property

$$
\left\|f-f_{n}\right\|_{\omega}=\min _{q \in \mathbb{P}_{n}}\|f-q\|_{\omega}
$$

So it is important to compute the coefficients \hat{f}_{k}. This can be done approximating the integrals using Gaussian quadratures, so the discrete truncation of f is the best approximation of f in the least-squares sense.

Additionally all families of orthogonal polynomials (OPs) $\left(p_{n}\right)_{n}$ satisfy a three term recurrence relation (Jacobi operator)

where

Definitions and basic properties

The series $(S f)(x)$ converges in average or in the sense of $L_{\omega}^{2}(\mathbb{R})$, meaning that if $f_{n}(x)=\sum_{k=0}^{n} \hat{f}_{k} p_{k}(x)$, then the following holds

$$
\lim _{n \rightarrow \infty}\left\|f-f_{n}\right\|_{\omega}=0
$$

The polynomial $f_{n} \in \mathbb{P}_{n}$ satisfies the following minimization property

$$
\left\|f-f_{n}\right\|_{\omega}=\min _{q \in \mathbb{P}_{n}}\|f-q\|_{\omega}
$$

So it is important to compute the coefficients \hat{f}_{k}. This can be done approximating the integrals using Gaussian quadratures, so the discrete truncation of f is the best approximation of f in the least-squares sense. Additionally all families of orthogonal polynomials (OPs) $\left(p_{n}\right)_{n}$ satisfy a three term recurrence relation (Jacobi operator)

$$
x p_{n}(x)=a_{n} p_{n+1}(x)+b_{n} p_{n}(x)+c_{n} p_{n-1}(x), \quad p_{-1}=0, \quad p_{0} \in \mathbb{R}
$$

where

$$
a_{n}=\frac{\left(x p_{n}, p_{n+1}\right)_{\omega}}{\left(p_{n+1}, p_{n+1}\right)_{\omega}}, \quad b_{n}=\frac{\left(x p_{n}, p_{n}\right)_{\omega}}{\left(p_{n}, p_{n}\right)_{\omega}}, \quad c_{n}=\frac{\left(x p_{n}, p_{n-1}\right)_{\omega}}{\left(p_{n-1}, p_{n-1}\right)_{\omega}}
$$

Differential equations

Among all families of OPs there are some special instances that have special importance. These families usually satisfy an additional property.

Bochner (1929) (Routh (1884)): characterize ($\left.p_{n}\right)_{n}$ satisfying $d p_{n} \equiv f_{2}(x) p_{n}^{\prime \prime}(x)+f_{1}(x) p_{n}^{\prime}(x)=\lambda_{n} p_{n}(x)$
where $\operatorname{deg} f_{2} \leq 2$ and $\operatorname{deg} f_{1}=1$
This is equivalent to the symmetry (or self-adjointness) of the second-order differential operator

$$
d=f_{2}(x) \partial_{x}^{2}+f_{1}(x) \partial_{x}^{1}
$$

with respect to $(\cdot, \cdot)_{\omega}, i . e$.
$\left(d p_{n}, p_{m}\right)_{\omega}=\left(p_{n}, d p_{m}\right)_{\omega}, \quad n, m \geq 0$
The relation between the coefficients of the differential operator d and the weight function ω is what is called the Pearson equation
\square

Differential equations

Among all families of OPs there are some special instances that have special importance. These families usually satisfy an additional property.

Bochner (1929) (Routh (1884)): characterize $\left(p_{n}\right)_{n}$ satisfying

$$
d p_{n} \equiv f_{2}(x) p_{n}^{\prime \prime}(x)+f_{1}(x) p_{n}^{\prime}(x)=\lambda_{n} p_{n}(x)
$$

where $\operatorname{deg} f_{2} \leq 2$ and $\operatorname{deg} f_{1}=1$.
This is equivalent to the symmetry (or self-adjointness) of the second-order differential operator

$$
d=f_{2}(x) \partial_{x}^{2}+f_{1}(x) \partial_{x}^{1}
$$

with respect to $(\cdot, \cdot)_{\omega}$,i.e.

$$
\left(d p_{n}, p_{m}\right)_{\omega}=\left(p_{n}, d p_{m}\right)_{\omega}, \quad n, m \geq 0
$$

The relation between the coefficients of the differential operator d and the weight function ω is what is called the Pearson equation

DIFFERENTIAL EQUATIONS

Among all families of OPs there are some special instances that have special importance. These families usually satisfy an additional property.

Bochner (1929) (Routh (1884)): characterize $\left(p_{n}\right)_{n}$ satisfying

$$
d p_{n} \equiv f_{2}(x) p_{n}^{\prime \prime}(x)+f_{1}(x) p_{n}^{\prime}(x)=\lambda_{n} p_{n}(x)
$$

where $\operatorname{deg} f_{2} \leq 2$ and $\operatorname{deg} f_{1}=1$.
This is equivalent to the symmetry (or self-adjointness) of the second-order differential operator

$$
d=f_{2}(x) \partial_{x}^{2}+f_{1}(x) \partial_{x}^{1}
$$

with respect to $(\cdot, \cdot)_{\omega}$,i.e.

$$
\left(d p_{n}, p_{m}\right)_{\omega}=\left(p_{n}, d p_{m}\right)_{\omega}, \quad n, m \geq 0
$$

The relation between the coefficients of the differential operator d and the weight function ω is what is called the Pearson equation

$$
\left(f_{2}(x) \omega(x)\right)^{\prime}=f_{1}(x) \omega(x)
$$

plus boundary conditions.

Classical families

Hermite: $f_{2}(x)=1, d \omega(x)=\mathrm{e}^{-x^{2}} d x, x \in \mathbb{R}$:

$$
H_{n}(x)^{\prime \prime}-2 x H_{n}(x)^{\prime}=-2 n H_{n}(x)
$$

Laguerre: $f_{2}(x)=x, d \omega(x)=x^{\alpha} e^{-x} d x, \alpha>-1, x \in \mathbb{R}_{+}$

$$
x L_{n}^{\alpha}(x)^{\prime \prime}+(\alpha+1-x) L_{n}^{\alpha}(x)^{\prime}=-n L_{n}^{\alpha}(x)
$$

Jacobi: $f_{2}(x)=1-x^{2}, d \omega(x)=(1-x)^{\alpha}(1-x)^{\beta} d x, x \in(-1,1)$:

Among the Jacobi polynomials we have the well known

- Chebychev polynomials: when $\alpha=\beta=-1 / 2$.
- Legendre or spherical polynomials: when $\alpha=\beta=0$.
- Gegenbauer or ultraspherical polynomials: when $\alpha=\beta=\lambda-1 / 2$.

Classical families

Hermite: $f_{2}(x)=1, d \omega(x)=\mathrm{e}^{-x^{2}} d x, x \in \mathbb{R}$:

$$
H_{n}(x)^{\prime \prime}-2 x H_{n}(x)^{\prime}=-2 n H_{n}(x)
$$

Laguerre: $f_{2}(x)=x, d \omega(x)=x^{\alpha} \mathrm{e}^{-x} d x, \alpha>-1, x \in \mathbb{R}_{+}$:

$$
x L_{n}^{\alpha}(x)^{\prime \prime}+(\alpha+1-x) L_{n}^{\alpha}(x)^{\prime}=-n L_{n}^{\alpha}(x)
$$

J Jacobi: $f_{2}(x)=1-x^{2}, d \omega(x)=(1-x)^{\alpha}(1-x)^{\beta} d x, x \in(-1,1)$:
 $-n(n+\alpha+\beta+1) P_{n}^{(\alpha, \beta)}(x), \quad \alpha, \beta>-1$
Among the Jacobi polynomials we have the well known

- Chebychev polynomials: when $\alpha=\beta=-1 / 2$.
- Legendre or spherical polynomials: when $\alpha=\beta=0$.
- Gegenbauer or ultraspherical polynomials: when $\alpha=\beta=\lambda-1 / 2$.

Classical families

Hermite: $f_{2}(x)=1, d \omega(x)=\mathrm{e}^{-x^{2}} d x, x \in \mathbb{R}$:

$$
H_{n}(x)^{\prime \prime}-2 x H_{n}(x)^{\prime}=-2 n H_{n}(x)
$$

Laguerre: $f_{2}(x)=x, d \omega(x)=x^{\alpha} \mathrm{e}^{-x} d x, \alpha>-1, x \in \mathbb{R}_{+}$:

$$
x L_{n}^{\alpha}(x)^{\prime \prime}+(\alpha+1-x) L_{n}^{\alpha}(x)^{\prime}=-n L_{n}^{\alpha}(x)
$$

Jacobi: $f_{2}(x)=1-x^{2}, d \omega(x)=(1-x)^{\alpha}(1-x)^{\beta} d x, x \in(-1,1)$:

$$
\begin{gathered}
\left(1-x^{2}\right) P_{n}^{(\alpha, \beta)}(x)^{\prime \prime}+(\beta-\alpha-(\alpha+\beta+2) x) P_{n}^{(\alpha, \beta)}(x)^{\prime}= \\
-n(n+\alpha+\beta+1) P_{n}^{(\alpha, \beta)}(x), \quad \alpha, \beta>-1
\end{gathered}
$$

Among the Jacobi polynomials we have the well known

- Chebychev polynomials: when $\alpha=\beta=-1 / 2$.
- Legendre or spherical nolynomials: when $\alpha=\beta=0$.

Classical families

Hermite: $f_{2}(x)=1, d \omega(x)=\mathrm{e}^{-x^{2}} d x, x \in \mathbb{R}$:

$$
H_{n}(x)^{\prime \prime}-2 x H_{n}(x)^{\prime}=-2 n H_{n}(x)
$$

Laguerre: $f_{2}(x)=x, d \omega(x)=x^{\alpha} \mathrm{e}^{-x} d x, \alpha>-1, x \in \mathbb{R}_{+}$:

$$
x L_{n}^{\alpha}(x)^{\prime \prime}+(\alpha+1-x) L_{n}^{\alpha}(x)^{\prime}=-n L_{n}^{\alpha}(x)
$$

Jacobi: $f_{2}(x)=1-x^{2}, d \omega(x)=(1-x)^{\alpha}(1-x)^{\beta} d x, x \in(-1,1)$:

$$
\begin{gathered}
\left(1-x^{2}\right) P_{n}^{(\alpha, \beta)}(x)^{\prime \prime}+(\beta-\alpha-(\alpha+\beta+2) x) P_{n}^{(\alpha, \beta)}(x)^{\prime}= \\
-n(n+\alpha+\beta+1) P_{n}^{(\alpha, \beta)}(x), \quad \alpha, \beta>-1
\end{gathered}
$$

Among the Jacobi polynomials we have the well known

- Chebychev polynomials: when $\alpha=\beta=-1 / 2$.
- Legendre or spherical polynomials: when $\alpha=\beta=0$.
- Gegenbauer or ultraspherical polynomials: when $\alpha=\beta=\lambda-1 / 2$.

Applications

- Approximation theory: Interpolation, Gaussian integrations, quadrature formulae, least-square approximation, numerical differentiation, etc.
- Operator theory: Jacobi, Hankel or Toeplitz operators.
- Continued fractions.
- Group representation theory: spherical functions.
- Harmonic analysis: Hermite functions are eigenfunctions of the Fourier transform.
- Stochastic processes: Markov chains and diffusion processes.
- Electrostatic equilibrium with logarithmic potential: using zeros of OPs.
- Quantum mechanics: quantum harmonic oscillator, hydrogen atom, etc.
- ••

Outline

(1) Orthogonal Polynomials

- Definitions and basic properties
- Differential equations
- Applications
(2) Orthogonal Matrix Polynomials
- Definitions and basic properties
- Matrix differential equations
- Applications

Definitions and basic properties

Matrix-valued polynomials on the real line:

$$
\boldsymbol{P}(x)=\boldsymbol{C}_{n} x^{n}+\boldsymbol{C}_{n-1} x^{n-1}+\cdots+\boldsymbol{C}_{0}, \quad \boldsymbol{C}_{i} \in \mathbb{C}^{N \times N}, \quad x \in \mathbb{R}
$$

Krein (1949): orthogonal matrix polynomials (OMP)
Orthogonality: weight matrix \boldsymbol{W} (positive definite with finite moments).
Let $\left(\boldsymbol{P}_{n}\right)_{n}$ a system of matrix polynomials with $\operatorname{deg} \boldsymbol{P}_{n}$ and nonsingular leading coefficient such that they are orthogonal in the following sense

$$
\left\langle\boldsymbol{P}_{n}, \boldsymbol{P}_{m}\right\rangle \boldsymbol{w}=\int_{\mathbb{R}} \boldsymbol{P}_{n}(x) d \boldsymbol{W}(x) \boldsymbol{P}_{m}^{*}(x)=\mathbf{0}_{N}, \quad n \neq m
$$

This is a sesquilinear form and it is not a scalar product in the common sense, but it has properties similar to the usual Hilbert spaces.
Now we have the weighted matrix function space

$$
L_{W}^{2}\left(\mathbb{R} ; \mathbb{C}^{N \times N}\right)=\left\{\boldsymbol{F}: \mathbb{R} \rightarrow \mathbb{C}^{N \times N}: \int_{\mathbb{R}} \boldsymbol{F}(x) d \boldsymbol{W}(x) \boldsymbol{F}^{*}(x)<\infty\right\}
$$

Definitions and basic properties

Matrix-valued polynomials on the real line:

$$
\boldsymbol{P}(x)=\boldsymbol{C}_{n} x^{n}+\boldsymbol{C}_{n-1} x^{n-1}+\cdots+\boldsymbol{C}_{0}, \quad \boldsymbol{C}_{i} \in \mathbb{C}^{N \times N}, \quad x \in \mathbb{R}
$$

Krein (1949): orthogonal matrix polynomials (OMP).
Orthogonality: weight matrix W (positive definite with finite moments)
Let $\left(P_{n}\right)_{n}$ a system of matrix polynomials with $\operatorname{deg} P_{n}$ and nonsingular leading coefficient such that they are orthogonal in the following sense

This is a sesquilinear form and it is not a scalar product in the common sense, but it has properties similar to the usual Hilbert spaces.
Now we have the weighted matrix function space

Definitions and basic properties

Matrix-valued polynomials on the real line:

$$
\boldsymbol{P}(x)=\boldsymbol{C}_{n} x^{n}+\boldsymbol{C}_{n-1} x^{n-1}+\cdots+\boldsymbol{C}_{0}, \quad \boldsymbol{C}_{i} \in \mathbb{C}^{N \times N}, \quad x \in \mathbb{R}
$$

Krein (1949): orthogonal matrix polynomials (OMP).
Orthogonality: weight matrix \boldsymbol{W} (positive definite with finite moments). Let $\left(\boldsymbol{P}_{n}\right)_{n}$ a system of matrix polynomials with $\operatorname{deg} \boldsymbol{P}_{n}$ and nonsingular leading coefficient such that they are orthogonal in the following sense

$$
\left\langle\boldsymbol{P}_{n}, \boldsymbol{P}_{m}\right\rangle \boldsymbol{w}=\int_{\mathbb{R}} \boldsymbol{P}_{n}(x) d \boldsymbol{W}(x) \boldsymbol{P}_{m}^{*}(x)=\mathbf{0}_{N}, \quad n \neq m
$$

This is a sesquilinear form and it is not a scalar product in the common sense, but it has properties similar to the usual Hilbert spaces. Now we have the weighted matrix function space

Definitions and basic properties

Matrix-valued polynomials on the real line:

$$
\boldsymbol{P}(x)=\boldsymbol{C}_{n} x^{n}+\boldsymbol{C}_{n-1} x^{n-1}+\cdots+\boldsymbol{C}_{0}, \quad \boldsymbol{C}_{i} \in \mathbb{C}^{N \times N}, \quad x \in \mathbb{R}
$$

Krein (1949): orthogonal matrix polynomials (OMP).
Orthogonality: weight matrix \boldsymbol{W} (positive definite with finite moments). Let $\left(\boldsymbol{P}_{n}\right)_{n}$ a system of matrix polynomials with $\operatorname{deg} \boldsymbol{P}_{n}$ and nonsingular leading coefficient such that they are orthogonal in the following sense

$$
\left\langle\boldsymbol{P}_{n}, \boldsymbol{P}_{m}\right\rangle \boldsymbol{w}=\int_{\mathbb{R}} \boldsymbol{P}_{n}(x) d \boldsymbol{W}(x) \boldsymbol{P}_{m}^{*}(x)=\mathbf{0}_{N}, \quad n \neq m
$$

This is a sesquilinear form and it is not a scalar product in the common sense, but it has properties similar to the usual Hilbert spaces.
Now we have the weighted matrix function space

Definitions and basic properties

Matrix-valued polynomials on the real line:

$$
\boldsymbol{P}(x)=\boldsymbol{C}_{n} x^{n}+\boldsymbol{C}_{n-1} x^{n-1}+\cdots+\boldsymbol{C}_{0}, \quad \boldsymbol{C}_{i} \in \mathbb{C}^{N \times N}, \quad x \in \mathbb{R}
$$

Krein (1949): orthogonal matrix polynomials (OMP).
Orthogonality: weight matrix \boldsymbol{W} (positive definite with finite moments). Let $\left(\boldsymbol{P}_{n}\right)_{n}$ a system of matrix polynomials with $\operatorname{deg} \boldsymbol{P}_{n}$ and nonsingular leading coefficient such that they are orthogonal in the following sense

$$
\left\langle\boldsymbol{P}_{n}, \boldsymbol{P}_{m}\right\rangle \boldsymbol{w}=\int_{\mathbb{R}} \boldsymbol{P}_{n}(x) d \boldsymbol{W}(x) \boldsymbol{P}_{m}^{*}(x)=\mathbf{0}_{N}, \quad n \neq m
$$

This is a sesquilinear form and it is not a scalar product in the common sense, but it has properties similar to the usual Hilbert spaces. Now we have the weighted matrix function space

$$
L_{\boldsymbol{W}}^{2}\left(\mathbb{R} ; \mathbb{C}^{N \times N}\right)=\left\{\boldsymbol{F}: \mathbb{R} \rightarrow \mathbb{C}^{N \times N}: \int_{\mathbb{R}} \boldsymbol{F}(x) d \boldsymbol{W}(x) \boldsymbol{F}^{*}(x)<\infty\right\}
$$

which is a Hilbert space with the norm $\|\boldsymbol{F}\|_{w}^{2}=\operatorname{Tr}\langle\boldsymbol{F}, \boldsymbol{F}\rangle \boldsymbol{w}$.

Definitions and basic properties

Similarly, for any $\boldsymbol{F} \in L_{W}^{2}\left(\mathbb{R} ; \mathbb{C}^{N \times N}\right)$, the matrix-valued series

$$
(S \boldsymbol{F})(x)=\sum_{k=0}^{\infty} \hat{\boldsymbol{F}}_{k} \boldsymbol{P}_{k}(x), \quad \hat{\boldsymbol{F}}_{k}=\left\langle\boldsymbol{F}, \boldsymbol{P}_{k}\right\rangle \boldsymbol{w}\left\langle\boldsymbol{P}_{k}, \boldsymbol{P}_{k}\right\rangle_{\boldsymbol{w}}^{-1}
$$

is called the generalized matrix-valued Fourier series of \boldsymbol{F}.
The orthogonality of $\left(P_{n}\right)_{n}$ with respect to a weight matrix W is equivalent to a three term recurrence relation
where \boldsymbol{A}_{n} and \boldsymbol{C}_{n} are nonsingular matrices and $\boldsymbol{B}_{n}=\boldsymbol{B}_{n}^{*}$
That means that the OMP are eigenfunctions of a block triciagonal Jacobi operator:

Definitions and basic properties

Similarly, for any $\boldsymbol{F} \in L_{W}^{2}\left(\mathbb{R} ; \mathbb{C}^{N \times N}\right)$, the matrix-valued series

$$
(S \boldsymbol{F})(x)=\sum_{k=0}^{\infty} \hat{\boldsymbol{F}}_{k} \boldsymbol{P}_{k}(x), \quad \hat{\boldsymbol{F}}_{k}=\left\langle\boldsymbol{F}, \boldsymbol{P}_{k}\right\rangle \boldsymbol{w}\left\langle\boldsymbol{P}_{k}, \boldsymbol{P}_{k}\right\rangle_{\boldsymbol{w}}^{-1}
$$

is called the generalized matrix-valued Fourier series of \boldsymbol{F}.
The orthogonality of $\left(\boldsymbol{P}_{n}\right)_{n}$ with respect to a weight matrix \boldsymbol{W} is equivalent to a three term recurrence relation

$$
x \boldsymbol{P}_{n}(x)=\boldsymbol{A}_{n} \boldsymbol{P}_{n+1}(x)+\boldsymbol{B}_{n} \boldsymbol{P}_{n}(x)+\boldsymbol{C}_{n} \boldsymbol{P}_{n-1}(x), \quad \boldsymbol{P}_{-1}=\mathbf{0}
$$

where \boldsymbol{A}_{n} and \boldsymbol{C}_{n} are nonsingular matrices and $\boldsymbol{B}_{n}=\boldsymbol{B}_{n}^{*}$. Jacobi operator:

Definitions and basic properties

Similarly, for any $\boldsymbol{F} \in L_{W}^{2}\left(\mathbb{R} ; \mathbb{C}^{N \times N}\right)$, the matrix-valued series

$$
\left.(S \boldsymbol{F})(x)=\sum_{k=0}^{\infty} \hat{\boldsymbol{F}}_{k} \boldsymbol{P}_{k}(x), \quad \hat{\boldsymbol{F}}_{k}=\left\langle\boldsymbol{F}, \boldsymbol{P}_{k}\right\rangle \boldsymbol{w}\left\langle\boldsymbol{P}_{k}, \boldsymbol{P}_{k}\right\rangle\right\rangle_{w}^{-1}
$$

is called the generalized matrix-valued Fourier series of \boldsymbol{F}.
The orthogonality of $\left(\boldsymbol{P}_{n}\right)_{n}$ with respect to a weight matrix \boldsymbol{W} is equivalent to a three term recurrence relation

$$
x \boldsymbol{P}_{n}(x)=\boldsymbol{A}_{n} \boldsymbol{P}_{n+1}(x)+\boldsymbol{B}_{n} \boldsymbol{P}_{n}(x)+\boldsymbol{C}_{n} \boldsymbol{P}_{n-1}(x), \quad \boldsymbol{P}_{-1}=\mathbf{0}
$$

where \boldsymbol{A}_{n} and \boldsymbol{C}_{n} are nonsingular matrices and $\boldsymbol{B}_{n}=\boldsymbol{B}_{n}^{*}$.
That means that the OMP are eigenfunctions of a block tridiagonal Jacobi operator:

$$
x\left(\begin{array}{c}
\boldsymbol{P}_{0}(x) \\
\boldsymbol{P}_{1}(x) \\
\boldsymbol{P}_{2}(x) \\
\vdots
\end{array}\right)=\left(\begin{array}{ccccc}
\boldsymbol{B}_{0} & \boldsymbol{A}_{0} & & & \\
\boldsymbol{C}_{1} & \boldsymbol{B}_{1} & \boldsymbol{A}_{1} & & \\
& \boldsymbol{C}_{2} & \boldsymbol{B}_{2} & \boldsymbol{A}_{2} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{P}_{0}(x) \\
\boldsymbol{P}_{1}(x) \\
\boldsymbol{P}_{2}(x) \\
\vdots
\end{array}\right)
$$

Differential properties

Durán (1997): characterize families of OMP $\left(\boldsymbol{P}_{n}\right)_{n}$ satisfying

$$
\mathcal{D} \boldsymbol{P}_{n}(x) \equiv \boldsymbol{F}_{2}(x) \boldsymbol{P}_{n}^{\prime \prime}(x)+\boldsymbol{F}_{1}(x) \boldsymbol{P}_{n}^{\prime}(x)+\boldsymbol{F}_{0}(x) \boldsymbol{P}_{n}(x)=\boldsymbol{P}_{n}(x) \boldsymbol{\Gamma}_{n}
$$

where $\boldsymbol{F}_{2}(x), \boldsymbol{F}_{1}(x), \boldsymbol{F}_{0}(x)$ are matrix polynomials of degree at most 2,1 and 0 , respectively, and $\boldsymbol{\Gamma}_{n}$ is a Hermitian matrix.

The existence of such families is equivalent to the symmetry (or self-adjointness) of the matrix second-order differential operator

Differential properties

Durán (1997): characterize families of OMP $\left(\boldsymbol{P}_{n}\right)_{n}$ satisfying

$$
\mathcal{D} \boldsymbol{P}_{n}(x) \equiv \boldsymbol{F}_{2}(x) \boldsymbol{P}_{n}^{\prime \prime}(x)+\boldsymbol{F}_{1}(x) \boldsymbol{P}_{n}^{\prime}(x)+\boldsymbol{F}_{0}(x) \boldsymbol{P}_{n}(x)=\boldsymbol{P}_{n}(x) \boldsymbol{\Gamma}_{n}
$$

where $\boldsymbol{F}_{2}(x), \boldsymbol{F}_{1}(x), \boldsymbol{F}_{0}(x)$ are matrix polynomials of degree at most 2,1 and 0 , respectively, and $\boldsymbol{\Gamma}_{n}$ is a Hermitian matrix. In this section we will be using the inner product

$$
(\boldsymbol{P}, \boldsymbol{Q})_{\boldsymbol{w}}=\int_{\mathbb{R}} \boldsymbol{Q}^{*}(x) \boldsymbol{W}(x) \boldsymbol{P}(x) d x, \quad(\boldsymbol{P}, \boldsymbol{Q})_{\boldsymbol{w}}=\left\langle\boldsymbol{P}^{*}, \boldsymbol{Q}^{*}\right\rangle_{\boldsymbol{w}}^{*}
$$

The existence of such families is equivalent to the symmetry (or self-adjointness) of the matrix second-order differential operator

Differential properties

Durán (1997): characterize families of $\operatorname{OMP}\left(\boldsymbol{P}_{n}\right)_{n}$ satisfying

$$
\mathcal{D} \boldsymbol{P}_{n}(x) \equiv \boldsymbol{F}_{2}(x) \boldsymbol{P}_{n}^{\prime \prime}(x)+\boldsymbol{F}_{1}(x) \boldsymbol{P}_{n}^{\prime}(x)+\boldsymbol{F}_{0}(x) \boldsymbol{P}_{n}(x)=\boldsymbol{P}_{n}(x) \boldsymbol{\Gamma}_{n}
$$

where $\boldsymbol{F}_{2}(x), \boldsymbol{F}_{1}(x), \boldsymbol{F}_{0}(x)$ are matrix polynomials of degree at most 2,1 and 0 , respectively, and $\boldsymbol{\Gamma}_{n}$ is a Hermitian matrix. In this section we will be using the inner product

$$
(\boldsymbol{P}, \boldsymbol{Q})_{w}=\int_{\mathbb{R}} \boldsymbol{Q}^{*}(x) \boldsymbol{W}(x) \boldsymbol{P}(x) d x, \quad(\boldsymbol{P}, \boldsymbol{Q})_{w}=\left\langle\boldsymbol{P}^{*}, \boldsymbol{Q}^{*}\right\rangle_{w}^{*}
$$

The existence of such families is equivalent to the symmetry (or self-adjointness) of the matrix second-order differential operator

$$
\begin{aligned}
& \mathcal{D}=\boldsymbol{F}_{2}(x) \partial_{x}^{2}+\boldsymbol{F}_{1}(x) \partial_{x}^{1}+\boldsymbol{F}_{0}(x) \partial_{x}^{0} \\
& \text { with } \quad \mathcal{D} \boldsymbol{P}_{n}=\boldsymbol{P}_{n} \boldsymbol{\Gamma}_{n}
\end{aligned}
$$

\mathcal{D} is symmetric w.r.t. \boldsymbol{W} if $(\mathcal{D} \boldsymbol{P}, \boldsymbol{Q})_{w}=(\boldsymbol{P}, \mathcal{D} \boldsymbol{Q})_{w}$

How to generate examples

- Group Representation Theory: matrix-valued spherical functions associated with different groups (Grünbaum, Pacharoni, Tirao, Román, Zurrián, Koelink).
- Moment equations: from the symmetry equations we solve the corresponding equations (Durán, Grünbaum, MdI). In Durán-MdI (2008) we used this method to generate examples of OMP w.r.t. a weight matrix plus a Dirac delta at one point.
- Matrix-valued bispectral problem: solving the so-called ad-conditions

where k is the order of the differential operator, J is the Jacobi matrix and $\boldsymbol{\Gamma}$ is a diagonal matrix with the eigenvalues of \mathcal{D} (Castro, Grünbaum, Tirao). It was used to generate examples or order $k=1$ in Castro-Grünbaum $(2005,2008)$

How To GENERATE EXAMPLES

- Group Representation Theory: matrix-valued spherical functions associated with different groups (Grünbaum, Pacharoni, Tirao, Román, Zurrián, Koelink).
- Moment equations: from the symmetry equations we solve the corresponding equations (Durán, Grünbaum, MdI). In Durán-Mdl (2008) we used this method to generate examples of OMP w.r.t. a weight matrix plus a Dirac delta at one point.
ad-conditions

where k is the order of the differential operator, J is the Jacohi matrix and Γ is a diagonal matrix with the eigenvalues of D (Castro, Grünbaum, Tirao). It was used to generate examples or order $k=1$ in Castro-Grünbaum $(2005,2008)$

How to generate examples

- Group Representation Theory: matrix-valued spherical functions associated with different groups (Grünbaum, Pacharoni, Tirao, Román, Zurrián, Koelink).
- Moment equations: from the symmetry equations we solve the corresponding equations (Durán, Grünbaum, MdI). In Durán-MdI (2008) we used this method to generate examples of OMP w.r.t. a weight matrix plus a Dirac delta at one point.
- Matrix-valued bispectral problem: solving the so-called ad-conditions

$$
\operatorname{ad}_{J}^{k+1}(\boldsymbol{\Gamma})=\mathbf{0}
$$

where k is the order of the differential operator, \boldsymbol{J} is the Jacobi matrix and $\boldsymbol{\Gamma}$ is a diagonal matrix with the eigenvalues of \mathcal{D} (Castro, Grünbaum, Tirao). It was used to generate examples or order $k=1$ in Castro-Grünbaum $(2005,2008)$.

- Durán-Grünbaum (2004):

Symmetry equations (Pearson equations)

$$
\begin{aligned}
& \boldsymbol{F}_{2}^{*}(x) \boldsymbol{W}(x)=\boldsymbol{W}(x) \boldsymbol{F}_{2}(x) \\
& \boldsymbol{F}_{1}^{*}(x) \boldsymbol{W}(x)=\left(\boldsymbol{W}(x) \boldsymbol{F}_{2}(x)\right)^{\prime}-\boldsymbol{W}(x) \boldsymbol{F}_{1}(x) \\
& \boldsymbol{F}_{0}^{*}(x) \boldsymbol{W}(x)=\frac{1}{2}\left(\boldsymbol{W}(x) \boldsymbol{F}_{2}(x)\right)^{\prime \prime}-\left(\boldsymbol{W}(x) \boldsymbol{F}_{1}(x)\right)^{\prime}+\boldsymbol{W}(x) \boldsymbol{F}_{0}(x)
\end{aligned}
$$

$$
\lim _{x \rightarrow t} \boldsymbol{W}(x) \boldsymbol{F}_{2}(x)=\mathbf{0}=\lim _{x \rightarrow t}\left(\boldsymbol{W}(x) \boldsymbol{F}_{1}(x)-\boldsymbol{F}_{1}^{*}(x) \boldsymbol{W}(x)\right), \quad t=a, b
$$

General method: Suppose $\boldsymbol{F}_{2}(x)=f_{2}(x) \boldsymbol{I}$. We factorize

$$
\boldsymbol{W}(x)=\omega(x) \boldsymbol{T}(x) \boldsymbol{T}^{*}(x)
$$

where ω is a classical weight (Hermite, Laguerre o Jacobi) and T is a matrix function solution of the first-order differential equation

- Durán-Grünbaum (2004):

Symmetry equations (Pearson equations)

$$
\begin{aligned}
& \boldsymbol{F}_{2}^{*}(x) \boldsymbol{W}(x)=\boldsymbol{W}(x) \boldsymbol{F}_{2}(x) \\
& \boldsymbol{F}_{1}^{*}(x) \boldsymbol{W}(x)=\left(\boldsymbol{W}(x) \boldsymbol{F}_{2}(x)\right)^{\prime}-\boldsymbol{W}(x) \boldsymbol{F}_{1}(x) \\
& \boldsymbol{F}_{0}^{*}(x) \boldsymbol{W}(x)=\frac{1}{2}\left(\boldsymbol{W}(x) \boldsymbol{F}_{2}(x)\right)^{\prime \prime}-\left(\boldsymbol{W}(x) \boldsymbol{F}_{1}(x)\right)^{\prime}+\boldsymbol{W}(x) \boldsymbol{F}_{0}(x)
\end{aligned}
$$

$$
\lim _{x \rightarrow t} \boldsymbol{W}(x) \boldsymbol{F}_{2}(x)=\mathbf{0}=\lim _{x \rightarrow t}\left(\boldsymbol{W}(x) \boldsymbol{F}_{1}(x)-\boldsymbol{F}_{1}^{*}(x) \boldsymbol{W}(x)\right), \quad t=a, b
$$

General method: Suppose $\boldsymbol{F}_{2}(x)=f_{2}(x) \boldsymbol{I}$. We factorize

$$
\boldsymbol{W}(x)=\omega(x) \boldsymbol{T}(x) \boldsymbol{T}^{*}(x)
$$

where ω is a classical weight (Hermite, Laguerre o Jacobi) and \boldsymbol{T} is a matrix function solution of the first-order differential equation

$$
\boldsymbol{T}^{\prime}(x)=\boldsymbol{G}(x) \boldsymbol{T}(x), \quad \boldsymbol{T}(c)=\boldsymbol{I}, \quad c \in(a, b)
$$

(1) The first symmetry equations is trivial.
(3) Defining

$$
\boldsymbol{F}_{1}(x)=2 f_{2}(x) \boldsymbol{G}(x)+\frac{\left(f_{2}(x) \omega(x)\right)^{\prime}}{\omega(x)} \boldsymbol{I}
$$

the second symmetry equation also holds.
a Finally the third symmetry equation is equivalent to

$$
\left(\boldsymbol{W}(x) \boldsymbol{F}_{1}(x)-\boldsymbol{F}_{1}^{*}(x) \boldsymbol{W}(x)\right)^{\prime}=2\left(\boldsymbol{W}(x) \boldsymbol{F}_{0}-\boldsymbol{F}_{0}^{*} \boldsymbol{W}(x)\right)
$$

Therefore, it is enough to find \boldsymbol{F}_{0} such that
$x(x)=T^{-1}(x)\left(f_{2}(x) G(x)+f_{2}(x) G(x)^{2}+\frac{\left(f_{2}(x) \omega(x)\right)^{\prime}}{\omega(x)} G(x)-F_{0}\right) T(x)$
is Hermitian for all x.

This method has been generalized when \boldsymbol{F}_{2} is not necessarily a scalar function (Durán, 2008).
(1) The first symmetry equations is trivial.
(2) Defining

$$
\boldsymbol{F}_{1}(x)=2 f_{2}(x) \boldsymbol{G}(x)+\frac{\left(f_{2}(x) \omega(x)\right)^{\prime}}{\omega(x)} \boldsymbol{I}
$$

the second symmetry equation also holds.
(- Finally the third symmetry equation is equivalent to

$$
\left(\boldsymbol{W}(x) \boldsymbol{F}_{1}(x)-\boldsymbol{F}_{1}^{*}(x) \boldsymbol{W}(x)\right)^{\prime}=2\left(\boldsymbol{W}(x) \boldsymbol{F}_{0}-\boldsymbol{F}_{0}^{*} \boldsymbol{W}(x)\right)
$$

Therefore, it is enough to find \boldsymbol{F}_{0} such that

is Hermitian for all x.

This method has been generalized when F_{2} is not necessarily a scalar function (Durán, 2008)
(1) The first symmetry equations is trivial.
(2) Defining

$$
\boldsymbol{F}_{1}(x)=2 f_{2}(x) \boldsymbol{G}(x)+\frac{\left(f_{2}(x) \omega(x)\right)^{\prime}}{\omega(x)} \boldsymbol{I}
$$

the second symmetry equation also holds.
(3) Finally the third symmetry equation is equivalent to

$$
\left(\boldsymbol{W}(x) \boldsymbol{F}_{1}(x)-\boldsymbol{F}_{1}^{*}(x) \boldsymbol{W}(x)\right)^{\prime}=2\left(\boldsymbol{W}(x) \boldsymbol{F}_{0}-\boldsymbol{F}_{0}^{*} \boldsymbol{W}(x)\right)
$$

Therefore, it is enough to find \boldsymbol{F}_{0} such that
$\chi(x)=\boldsymbol{T}^{-1}(x)\left(f_{2}(x) \boldsymbol{G}(x)+f_{2}(x) \boldsymbol{G}(x)^{2}+\frac{\left(f_{2}(x) \omega(x)\right)^{\prime}}{\omega(x)} \boldsymbol{G}(x)-\boldsymbol{F}_{0}\right) \boldsymbol{T}(x)$
is Hermitian for all x.

This method has been generalized when \boldsymbol{F}_{2} is not necessarily a scalar function (Durán, 2008).
(1) The first symmetry equations is trivial.
(2) Defining

$$
\boldsymbol{F}_{1}(x)=2 f_{2}(x) \boldsymbol{G}(x)+\frac{\left(f_{2}(x) \omega(x)\right)^{\prime}}{\omega(x)} \boldsymbol{I}
$$

the second symmetry equation also holds.
(3) Finally the third symmetry equation is equivalent to

$$
\left(\boldsymbol{W}(x) \boldsymbol{F}_{1}(x)-\boldsymbol{F}_{1}^{*}(x) \boldsymbol{W}(x)\right)^{\prime}=2\left(\boldsymbol{W}(x) \boldsymbol{F}_{0}-\boldsymbol{F}_{0}^{*} \boldsymbol{W}(x)\right)
$$

Therefore, it is enough to find \boldsymbol{F}_{0} such that

$$
\chi(x)=\boldsymbol{T}^{-1}(x)\left(f_{2}(x) \boldsymbol{G}(x)+f_{2}(x) \boldsymbol{G}(x)^{2}+\frac{\left(f_{2}(x) \omega(x)\right)^{\prime}}{\omega(x)} \boldsymbol{G}(x)-\boldsymbol{F}_{0}\right) \boldsymbol{T}(x)
$$

is Hermitian for all x.
This method has been generalized when \boldsymbol{F}_{2} is not necessarily a scalar function (Durán, 2008).

EXAMPLES

Let $f_{2}=\boldsymbol{I}$ and $\omega=e^{-x^{2}}$. Then $\boldsymbol{G}(x)=\boldsymbol{A}+2 \boldsymbol{B} x$

$$
\left\{\begin{array}{l}
\text { Si } \boldsymbol{B}=\mathbf{0} \Rightarrow \boldsymbol{W}(x)=e^{-x^{2}} e^{\boldsymbol{A} x} e^{\boldsymbol{A}^{*} x} \\
\text { Si } \boldsymbol{A}=\mathbf{0} \Rightarrow \boldsymbol{W}(x)=e^{-x^{2}} e^{\boldsymbol{B} x^{2}} e^{\boldsymbol{B}^{*} x^{2}}
\end{array}\right.
$$

In the first case, a possible solution for the matrix function

$$
\chi(x)=\boldsymbol{A}^{2}-2 \boldsymbol{A} x-e^{-\boldsymbol{A} x} \boldsymbol{F}_{0} e^{\boldsymbol{A} x}
$$

to be Hermitian is choosing $\boldsymbol{F}_{0}=\boldsymbol{A}^{2}-2 \boldsymbol{J}$, where

In the second case, a possible solution for the matrix function

$$
\chi^{\prime}(x)=2 \boldsymbol{B}+\left(4 \boldsymbol{B}^{2}-4 \boldsymbol{B}\right) x^{2}-e^{-\boldsymbol{B} x^{2}} \boldsymbol{F}_{0} e^{\boldsymbol{B} x^{2}}
$$

to be Hermitian is choosing $\boldsymbol{F}_{0}=2 \boldsymbol{B}-4 \boldsymbol{J}$ with $\underset{\text { B }}{B}=\sum_{0}^{N-1}(-1)^{j+1} \boldsymbol{A}^{j}$

Examples

Let $f_{2}=\boldsymbol{I}$ and $\omega=e^{-x^{2}}$. Then $\boldsymbol{G}(x)=\boldsymbol{A}+2 \boldsymbol{B} x$

$$
\left\{\begin{array}{l}
\text { Si } \boldsymbol{B}=\mathbf{0} \Rightarrow \boldsymbol{W}(x)=e^{-x^{2}} e^{\boldsymbol{A x} x} e^{\boldsymbol{A}^{*} x} \\
\text { Si } \boldsymbol{A}=\mathbf{0} \Rightarrow \boldsymbol{W}(x)=e^{-x^{2}} e^{\boldsymbol{B} x^{2}} e^{\boldsymbol{B}^{*} x^{2}}
\end{array}\right.
$$

In the first case, a possible solution for the matrix function

$$
\chi(x)=\boldsymbol{A}^{2}-2 \boldsymbol{A} x-e^{-\boldsymbol{A} x} \boldsymbol{F}_{0} e^{\boldsymbol{A} x}
$$

to be Hermitian is choosing $\boldsymbol{F}_{0}=\boldsymbol{A}^{2}-2 \boldsymbol{J}$, where
$\boldsymbol{A}=\left(\begin{array}{ccccc}0 & \nu_{1} & 0 & \cdots & 0 \\ 0 & 0 & \nu_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \nu_{N-1} \\ 0 & 0 & 0 & \cdots & 0\end{array}\right), \quad \boldsymbol{J}=\left(\begin{array}{ccccc}N-1 & 0 & \cdots & 0 & 0 \\ 0 & N-2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 0\end{array}\right)$
In the second case, a possible solution for the matrix function

Examples

Let $f_{2}=\boldsymbol{I}$ and $\omega=e^{-x^{2}}$. Then $\boldsymbol{G}(x)=\boldsymbol{A}+2 \boldsymbol{B} x$

$$
\left\{\begin{array}{l}
\text { Si } \boldsymbol{B}=\mathbf{0} \Rightarrow \boldsymbol{W}(x)=e^{-x^{2}} e^{\boldsymbol{A} x} e^{\boldsymbol{A}^{*} x} \\
\text { Si } \boldsymbol{A}=\mathbf{0} \Rightarrow \boldsymbol{W}(x)=e^{-x^{2}} e^{\boldsymbol{B} x^{2}} e^{\boldsymbol{B}^{*} x^{2}}
\end{array}\right.
$$

In the first case, a possible solution for the matrix function

$$
\chi(x)=\boldsymbol{A}^{2}-2 \boldsymbol{A} x-e^{-\boldsymbol{A} x} \boldsymbol{F}_{0} e^{\boldsymbol{A} x}
$$

to be Hermitian is choosing $\boldsymbol{F}_{0}=\boldsymbol{A}^{2}-2 \boldsymbol{J}$, where

$$
\boldsymbol{A}=\left(\begin{array}{ccccc}
0 & \nu_{1} & 0 & \cdots & 0 \\
0 & 0 & \nu_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \nu_{N-1} \\
0 & 0 & 0 & \cdots & 0
\end{array}\right), \quad \boldsymbol{J}=\left(\begin{array}{ccccc}
N-1 & 0 & \cdots & 0 & 0 \\
0 & N-2 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
0 & 0 & \cdots & 0 & 0
\end{array}\right)
$$

In the second case, a possible solution for the matrix function

$$
\chi(x)=2 \boldsymbol{B}+\left(4 \boldsymbol{B}^{2}-4 \boldsymbol{B}\right) x^{2}-e^{-\boldsymbol{B} x^{2}} \boldsymbol{F}_{0} e^{\boldsymbol{B} x^{2}}
$$

to be Hermitian is choosing $\boldsymbol{F}_{0}=2 \boldsymbol{B}-4 \boldsymbol{J}$ with $\boldsymbol{B}=\sum_{j=1}^{N-1}(-1)^{j+1} \boldsymbol{A}^{j}$

EXAMPLES

The same can be done for $f_{2}=x I$ and $\omega=x^{\alpha} e^{-x}$. Then

$$
\begin{gathered}
\boldsymbol{G}(x)=\boldsymbol{A}+\frac{\boldsymbol{B}}{x} \\
\left\{\begin{array}{l}
\text { If } \boldsymbol{B}=\mathbf{0} \Rightarrow x^{\alpha} e^{-x} e^{\boldsymbol{A} x} e^{\boldsymbol{A}^{*} x} \\
\text { If } \boldsymbol{A}=\mathbf{0} \Rightarrow x^{\alpha} e^{-x} x^{\boldsymbol{B}} x^{\boldsymbol{B}}
\end{array}\right.
\end{gathered}
$$

and for $f_{2}=\left(1-x^{2}\right)$ I and $\omega=(1-x)^{\alpha}(1+x)^{\beta}$. Then

Examples have also been found where the matrices \boldsymbol{A} and B do

Examples

The same can be done for $f_{2}=x I$ and $\omega=x^{\alpha} e^{-x}$. Then

$$
\begin{gathered}
\boldsymbol{G}(x)=\boldsymbol{A}+\frac{\boldsymbol{B}}{x} \\
\left\{\begin{array}{l}
\text { If } \boldsymbol{B}=\mathbf{0} \Rightarrow x^{\alpha} e^{-x} e^{\boldsymbol{A x}} e^{\mathbf{A}^{*} x} \\
\text { If } \boldsymbol{A}=\mathbf{0} \Rightarrow x^{\alpha} e^{-x} x^{\boldsymbol{B}} x^{\boldsymbol{B}}
\end{array}\right.
\end{gathered}
$$

and for $f_{2}=\left(1-x^{2}\right) \boldsymbol{I}$ and $\omega=(1-x)^{\alpha}(1+x)^{\beta}$. Then

$$
\boldsymbol{G}(x)=\frac{\boldsymbol{A}}{1-x}+\frac{\boldsymbol{B}}{1+x}
$$

$$
\left\{\begin{array}{l}
\text { If } \boldsymbol{B}=\mathbf{0} \Rightarrow(1-x)^{\alpha}(1+x)^{\beta}(1-x)^{\boldsymbol{A}}(1-x)^{\boldsymbol{A}} \\
\text { If } \boldsymbol{A}=\mathbf{0} \Rightarrow(1-x)^{\alpha}(1+x)^{\beta}(1+x)^{\boldsymbol{B}}(1+x)^{\boldsymbol{B}}
\end{array}\right.
$$

Examples have also been found where the matrices A and B do

Examples

The same can be done for $f_{2}=x \boldsymbol{I}$ and $\omega=x^{\alpha} e^{-x}$. Then

$$
\begin{gathered}
\boldsymbol{G}(x)=\boldsymbol{A}+\frac{\boldsymbol{B}}{x} \\
\left\{\begin{array}{l}
\text { If } \boldsymbol{B}=\mathbf{0} \Rightarrow x^{\alpha} e^{-x} e^{\boldsymbol{A} x} e^{\boldsymbol{A}^{*} x} \\
\text { If } \boldsymbol{A}=\mathbf{0} \Rightarrow x^{\alpha} e^{-x} x^{\boldsymbol{B}} x^{\boldsymbol{B}}
\end{array}\right.
\end{gathered}
$$

and for $f_{2}=\left(1-x^{2}\right)$ I and $\omega=(1-x)^{\alpha}(1+x)^{\beta}$. Then

$$
\boldsymbol{G}(x)=\frac{\boldsymbol{A}}{1-x}+\frac{\boldsymbol{B}}{1+x}
$$

$$
\left\{\begin{array}{l}
\text { If } \boldsymbol{B}=\mathbf{0} \Rightarrow(1-x)^{\alpha}(1+x)^{\beta}(1-x)^{\boldsymbol{A}}(1-x)^{\boldsymbol{A}} \\
\text { If } \boldsymbol{A}=\mathbf{0} \Rightarrow(1-x)^{\alpha}(1+x)^{\beta}(1+x)^{\boldsymbol{B}}(1+x)^{\boldsymbol{B}}
\end{array}\right.
$$

Examples have also been found where the matrices \boldsymbol{A} and \boldsymbol{B} do not commute (Durán-MdI and Grünbaum-Pacharoni-Tirao).

New Phenomena

- For a fixed family of OMP, there may exist several linear independent matrix differential operators having the family of OMP as eigenfunctions (Castro, Durán, Mdl, Grünbaum, Pacharoni, Tirao, Román).
- For a fixed matrix differential operator, there may exist infinite linear independent families of OMP that are eigenfunctions of the same fixed differential operator (Durán, MdI).
- There exist examples of OMP satisfying odd-order matrix differential equations (Castro, Grünbaum, Durán, MdI).
- There exist families of ladder operators (annihilation and creation or lowering and raising) for some examples of OMP, some of them of 0-th order (Grünbaum, MdI, Martínez-Finkelshtein).

Applications

- Gaussian quadrature formulae: for any $\boldsymbol{F}, \boldsymbol{G} \in L_{W}^{2}\left(\mathbb{R} ; \mathbb{C}^{N \times N}\right)$ it is possible to approximate the integral

$$
\int_{\mathbb{R}} \boldsymbol{F}(x) d \boldsymbol{W}(x) \boldsymbol{G}^{*}(x) \approx \sum_{k=1}^{m} \boldsymbol{F}\left(x_{k}\right) \boldsymbol{\Lambda}_{k} \boldsymbol{G}^{*}\left(x_{k}\right)
$$

where x_{k} are the zeros of the OMP \boldsymbol{P}_{k} (i.e. $\operatorname{det} \boldsymbol{P}_{k}(x)=0$) counting all multiplicities and $\boldsymbol{\Lambda}_{k}$ are certain matrices (van Assche-Sinap, Durán-Polo).
between Sobolev OPs with the inner product

and OMP. The reason is that the Sobolev OPs satisfy certain higher-order difference equation, so it is possible to rewrite them in terms of OMP (Durán-van Assche)

Applications

- Gaussian quadrature formulae: for any $\boldsymbol{F}, \boldsymbol{G} \in L_{W}^{2}\left(\mathbb{R} ; \mathbb{C}^{N \times N}\right)$ it is possible to approximate the integral

$$
\int_{\mathbb{R}} \boldsymbol{F}(x) d \boldsymbol{W}(x) \boldsymbol{G}^{*}(x) \approx \sum_{k=1}^{m} \boldsymbol{F}\left(x_{k}\right) \boldsymbol{\Lambda}_{k} \boldsymbol{G}^{*}\left(x_{k}\right)
$$

where x_{k} are the zeros of the OMP \boldsymbol{P}_{k} (i.e. $\operatorname{det} \boldsymbol{P}_{k}(x)=0$) counting all multiplicities and $\boldsymbol{\Lambda}_{k}$ are certain matrices (van Assche-Sinap, Durán-Polo).

- Sobolev orthogonal polynomials: It has been found a relation between Sobolev OPs with the inner product

$$
\left\langle p_{n}, p_{m}\right\rangle=\int p_{n} p_{m} d \mu+\sum_{i=1}^{M} \sum_{j=0}^{M_{i}} \lambda_{i j} p_{n}^{(j)}\left(c_{i}\right) p_{m}^{(j)}\left(c_{i}\right)=\delta_{n m}, \quad c_{i} \in \mathbb{R}
$$

and OMP. The reason is that the Sobolev OPs satisfy certain higher-order difference equation, so it is possible to rewrite them in terms of OMP (Durán-van Assche).

Applications

- Bivariate Markov processes: The block tridiagonal structure of the Jacobi matrix for OMP is suitable for some processes called quasi-birth-and-death processes, defined on two-dimensional grids (Grünbaum, Dette, Reuther, Zygmunt, Clayton).
Additionally, the examples of OMP satisfying second-order differential equations are suitable for some processes called switching diffusion processes. Here we have a collection of N phases where a different diffusion is performed in each phase and is jumping to other phases according to a continuous time Markov chain (MdI).

Applications

- Bivariate Markov processes: The block tridiagonal structure of the Jacobi matrix for OMP is suitable for some processes called quasi-birth-and-death processes, defined on two-dimensional grids (Grünbaum, Dette, Reuther, Zygmunt, Clayton).
Additionally, the examples of OMP satisfying second-order differential equations are suitable for some processes called switching diffusion processes. Here we have a collection of N phases where a different diffusion is performed in each phase and is jumping to other phases according to a continuous time Markov chain (Mdl).
- Other applications: scattering theory (Geronimo), Lanczos method for block matrices (Golub, Underwood), time-and-band limiting problems (Durán, Grünbaum, Pacharoni, Zurrián), noncommutative integrable systems and Painlevé equations (Cafasso, MdI), etc.

