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Orthogonal Polynomials Orthogonal Matrix Polynomials

Definitions and basic properties

Let ω be a positive measure on R and denote (pn)n a system of
polynomials with deg pn = n such that they are orthogonal w.r.t. ω, i.e.∫

R
pn(x)pm(x)dω(x) = 0, n 6= m

Set (f , g)ω =
∫
R f (x)g(x)dω(x) and ‖f ‖2

ω = (f , f )ω. These are the
scalar product and the norm for the weighted function space

L2
ω(R) =

{
f : R→ R :

∫
R
f 2(x)dω(x) <∞

}
For any function f ∈ L2

ω(R) the series

(Sf )(x) =
∞∑
k=0

f̂kpk(x), f̂k =
(f , pk)ω
‖pk‖2

ω

is called the generalized Fourier series of f .
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Orthogonal Polynomials Orthogonal Matrix Polynomials

Definitions and basic properties

The series (Sf )(x) converges in average or in the sense of L2
ω(R),

meaning that if fn(x) =
∑n

k=0 f̂kpk(x), then the following holds

lim
n→∞

‖f − fn‖ω = 0

The polynomial fn ∈ Pn satisfies the following minimization property

‖f − fn‖ω = min
q∈Pn

‖f − q‖ω

So it is important to compute the coefficients f̂k . This can be done
approximating the integrals using Gaussian quadratures, so the discrete
truncation of f is the best approximation of f in the least-squares sense.

Additionally all families of orthogonal polynomials (OPs) (pn)n satisfy a
three term recurrence relation (Jacobi operator)

xpn(x) = anpn+1(x) + bnpn(x) + cnpn−1(x), p−1 = 0, p0 ∈ R

where

an =
(xpn, pn+1)ω

(pn+1, pn+1)ω
, bn =

(xpn, pn)ω
(pn, pn)ω

, cn =
(xpn, pn−1)ω

(pn−1, pn−1)ω
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Orthogonal Polynomials Orthogonal Matrix Polynomials

Differential equations

Among all families of OPs there are some special instances that have
special importance. These families usually satisfy an additional property.

Bochner (1929) (Routh (1884)): characterize (pn)n satisfying

dpn ≡ f2(x)p′′n (x) + f1(x)p′n(x) = λnpn(x)

where deg f2 ≤ 2 and deg f1 = 1.

This is equivalent to the symmetry (or self-adjointness) of the
second-order differential operator

d = f2(x)∂2
x + f1(x)∂1

x

with respect to (·, ·)ω,i.e.

(dpn, pm)ω = (pn, dpm)ω, n,m ≥ 0

The relation between the coefficients of the differential operator d and
the weight function ω is what is called the Pearson equation

(f2(x)ω(x))′ = f1(x)ω(x)

plus boundary conditions.
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Classical families

Hermite: f2(x) = 1, dω(x) = e−x
2

dx , x ∈ R:

Hn(x)′′ − 2xHn(x)′ = −2nHn(x)

Laguerre: f2(x) = x , dω(x) = xαe−xdx , α > −1, x ∈ R+:

xLαn (x)′′ + (α + 1− x)Lαn (x)′ = −nLαn (x)

Jacobi: f2(x) = 1− x2, dω(x) = (1− x)α(1− x)βdx , x ∈ (−1, 1):

(1− x2)P(α,β)
n (x)′′ + (β − α− (α + β + 2)x)P(α,β)

n (x)′ =

−n(n + α + β + 1)P(α,β)
n (x), α, β > −1

Among the Jacobi polynomials we have the well known

Chebychev polynomials: when α = β = −1/2.

Legendre or spherical polynomials: when α = β = 0.

Gegenbauer or ultraspherical polynomials: when α = β = λ− 1/2.
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Applications

Approximation theory: Interpolation, Gaussian integrations,
quadrature formulae, least-square approximation, numerical
differentiation, etc.

Operator theory: Jacobi, Hankel or Toeplitz operators.

Continued fractions.

Group representation theory: spherical functions.

Harmonic analysis: Hermite functions are eigenfunctions of
the Fourier transform.

Stochastic processes: Markov chains and diffusion processes.

Electrostatic equilibrium with logarithmic potential: using
zeros of OPs.

Quantum mechanics: quantum harmonic oscillator, hydrogen
atom, etc.

· · ·
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Orthogonal Polynomials Orthogonal Matrix Polynomials

Definitions and basic properties

Matrix-valued polynomials on the real line:

P(x) = C nx
n + C n−1x

n−1 + · · ·+ C 0, C i ∈ CN×N , x ∈ R

Krein (1949): orthogonal matrix polynomials (OMP).
Orthogonality: weight matrix W (positive definite with finite moments).
Let (Pn)n a system of matrix polynomials with deg Pn and nonsingular
leading coefficient such that they are orthogonal in the following sense

〈Pn,Pm〉W =

∫
R
Pn(x)dW (x)P∗m(x) = 0N , n 6= m

This is a sesquilinear form and it is not a scalar product in the common
sense, but it has properties similar to the usual Hilbert spaces.
Now we have the weighted matrix function space

L2
W (R;CN×N) =

{
F : R→ CN×N :

∫
R
F (x)dW (x)F ∗(x) <∞

}
which is a Hilbert space with the norm ‖F‖2

W = Tr〈F ,F 〉W .
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Definitions and basic properties

Similarly, for any F ∈ L2
W (R;CN×N), the matrix-valued series

(SF )(x) =
∞∑
k=0

F̂ kPk(x), F̂ k = 〈F ,Pk〉W 〈Pk ,Pk〉−1
W

is called the generalized matrix-valued Fourier series of F .

The orthogonality of (Pn)n with respect to a weight matrix W is
equivalent to a three term recurrence relation

xPn(x) = AnPn+1(x) + BnPn(x) + C nPn−1(x), P−1 = 0

where An and C n are nonsingular matrices and Bn = B∗n.
That means that the OMP are eigenfunctions of a block tridiagonal
Jacobi operator:

x


P0(x)
P1(x)
P2(x)

...

 =


B0 A0

C 1 B1 A1

C 2 B2 A2

. . .
. . .

. . .




P0(x)
P1(x)
P2(x)

...
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Differential properties

Durán (1997): characterize families of OMP (Pn)n satisfying

DPn(x) ≡ F 2(x)P ′′n (x) + F 1(x)P ′n(x) + F 0(x)Pn(x) = Pn(x)Γn

where F 2(x),F 1(x),F 0(x) are matrix polynomials of degree at most 2, 1
and 0, respectively, and Γn is a Hermitian matrix.
In this section we will be using the inner product

(P,Q)W =

∫
R
Q∗(x)W (x)P(x) dx , (P,Q)W = 〈P∗,Q∗〉∗W

The existence of such families is equivalent to the symmetry (or
self-adjointness) of the matrix second-order differential operator

D = F 2(x)∂2
x + F 1(x)∂1

x + F 0(x)∂0
x

with DPn = PnΓn

D is symmetric w.r.t. W if (DP,Q)W = (P,DQ)W
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self-adjointness) of the matrix second-order differential operator

D = F 2(x)∂2
x + F 1(x)∂1

x + F 0(x)∂0
x

with DPn = PnΓn

D is symmetric w.r.t. W if (DP,Q)W = (P,DQ)W
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How to generate examples

Group Representation Theory: matrix-valued spherical
functions associated with different groups (Grünbaum,
Pacharoni, Tirao, Román, Zurrián, Koelink).

Moment equations: from the symmetry equations we solve
the corresponding equations (Durán, Grünbaum, MdI). In
Durán-MdI (2008) we used this method to generate examples
of OMP w.r.t. a weight matrix plus a Dirac delta at one point.

Matrix-valued bispectral problem: solving the so-called
ad-conditions

adk+1
J (Γ) = 0

where k is the order of the differential operator, J is the
Jacobi matrix and Γ is a diagonal matrix with the eigenvalues
of D (Castro, Grünbaum, Tirao). It was used to generate
examples or order k = 1 in Castro-Grünbaum (2005, 2008).
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Durán-Grünbaum (2004):

Symmetry equations (Pearson equations)

F ∗2(x)W (x) = W (x)F 2(x)

F ∗1(x)W (x) = (W (x)F 2(x))′ −W (x)F 1(x)

F ∗0(x)W (x) =
1

2
(W (x)F 2(x))′′ − (W (x)F 1(x))′ + W (x)F 0(x)

lim
x→t

W (x)F 2(x) = 0 = lim
x→t

(W (x)F 1(x)− F ∗1(x)W (x)), t = a, b

General method: Suppose F 2(x) = f2(x)I . We factorize

W (x) = ω(x)T (x)T ∗(x),

where ω is a classical weight (Hermite, Laguerre o Jacobi) and T
is a matrix function solution of the first-order differential equation

T ′(x) = G (x)T (x), T (c) = I , c ∈ (a, b)
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1 The first symmetry equations is trivial.

2 Defining

F 1(x) = 2f2(x)G (x) +
(f2(x)ω(x))′

ω(x)
I

the second symmetry equation also holds.

3 Finally the third symmetry equation is equivalent to

(W (x)F 1(x)− F ∗1(x)W (x))′ = 2(W (x)F 0 − F ∗0W (x))

Therefore, it is enough to find F 0 such that

χ(x) = T−1(x)

(
f2(x)G (x)+f2(x)G (x)2+

(f2(x)ω(x))′

ω(x)
G (x)−F 0

)
T (x)

is Hermitian for all x .

This method has been generalized when F 2 is not necessarily a scalar

function (Durán, 2008).
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Examples

Let f2 = I and ω = e−x
2

. Then G (x) = A + 2Bx{
Si B = 0⇒W (x) = e−x

2

eAxeA∗x

Si A = 0⇒W (x) = e−x
2

eBx2

eB∗x2

In the first case, a possible solution for the matrix function

χ(x) = A2 − 2Ax − e−AxF 0e
Ax

to be Hermitian is choosing F 0 = A2 − 2J , where

A =


0 ν1 0 · · · 0
0 0 ν2 · · · 0
...

...
...

. . .
...

0 0 0 · · · νN−1

0 0 0 · · · 0

 , J =


N − 1 0 · · · 0 0

0 N − 2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 0


In the second case, a possible solution for the matrix function

χ(x) = 2B + (4B2 − 4B)x2 − e−Bx2

F 0e
Bx2

to be Hermitian is choosing F 0 = 2B − 4J with B =
∑N−1

j=1 (−1)j+1Aj
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Examples

The same can be done for f2 = xI and ω = xαe−x .Then

G (x) = A +
B
x{

If B = 0⇒ xαe−xeAxeA∗x

If A = 0⇒ xαe−xxBxB

and for f2 = (1− x2)I and ω = (1− x)α(1 + x)β. Then

G (x) =
A

1− x
+

B
1 + x{

If B = 0⇒ (1− x)α(1 + x)β(1− x)A(1− x)A

If A = 0⇒ (1− x)α(1 + x)β(1 + x)B(1 + x)B

Examples have also been found where the matrices A and B do
not commute (Durán-MdI and Grünbaum-Pacharoni-Tirao).
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New phenomena

For a fixed family of OMP, there may exist several linear
independent matrix differential operators having the family of
OMP as eigenfunctions (Castro, Durán, MdI, Grünbaum,
Pacharoni, Tirao, Román).

For a fixed matrix differential operator, there may exist infinite
linear independent families of OMP that are eigenfunctions of
the same fixed differential operator (Durán, MdI).

There exist examples of OMP satisfying odd-order matrix
differential equations (Castro, Grünbaum, Durán, MdI).

There exist families of ladder operators (annihilation and
creation or lowering and raising) for some examples of OMP,
some of them of 0-th order (Grünbaum, MdI,
Mart́ınez-Finkelshtein).
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Applications

Gaussian quadrature formulae: for any F ,G ∈ L2
W (R;CN×N)

it is possible to approximate the integral∫
R

F (x)dW (x)G ∗(x) ≈
m∑

k=1

F (xk)ΛkG ∗(xk)

where xk are the zeros of the OMP Pk (i.e. det Pk(x) = 0)
counting all multiplicities and Λk are certain matrices (van
Assche-Sinap, Durán-Polo).
Sobolev orthogonal polynomials: It has been found a relation
between Sobolev OPs with the inner product

〈pn, pm〉 =

∫
pnpmdµ+

M∑
i=1

Mi∑
j=0

λijp
(j)
n (ci )p

(j)
m (ci ) = δnm, ci ∈ R

and OMP. The reason is that the Sobolev OPs satisfy certain
higher-order difference equation, so it is possible to rewrite
them in terms of OMP (Durán-van Assche).
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Applications

Bivariate Markov processes: The block tridiagonal structure of
the Jacobi matrix for OMP is suitable for some processes
called quasi-birth-and-death processes, defined on
two-dimensional grids (Grünbaum, Dette, Reuther, Zygmunt,
Clayton).
Additionally, the examples of OMP satisfying second-order
differential equations are suitable for some processes called
switching diffusion processes. Here we have a collection of N
phases where a different diffusion is performed in each phase
and is jumping to other phases according to a continuous time
Markov chain (MdI).

Other applications: scattering theory (Geronimo), Lanczos
method for block matrices (Golub, Underwood),
time-and-band limiting problems (Durán, Grünbaum,
Pacharoni, Zurrián), noncommutative integrable systems and
Painlevé equations (Cafasso, MdI), etc.
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