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Abstract

Let F be a finite group. We consider the lamplighter group L =
F oZ over F . We prove that L has a classifying space for proper actions
EL which is a complex of dimension two. We use this to give an ex-
plicit proof of the Baum-Connes conjecture (without coefficients), that
states that the assembly map µLi : KL

i (EL) → Ki(C
∗L) (i = 0, 1) is

an isomorphism. Actually, K0(C
∗L) is free abelian of countable rank,

with an explicit basis consisting of projections in C∗L, while K1(C
∗L)

is infinite cyclic, generated by the unitary of C∗L implementing the
shift. Finally we show that, for F abelian, the C∗-algebra C∗L is
completely characterized by |F | up to isomorphism.

1 Introduction

The Baum-Connes conjecture for a discrete group G states that the assembly

map

µGi : KG
i (EG)→ Ki(C

∗
r (G)), i = 0, 1

is an isomorphism between two abelian groups: on the left hand side the

G-equivariant K -homology of EG, that will be referred as the topological
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side; and on the right hand side the K -theory of C∗r (G), to which we refer as

the analytical side (see [4]).

Although this conjecture is still open in some cases (including the paradig-

matic instance SL(3,Z)), it is proved for a large class of groups including

a-T-menable groups (in particular amenable groups), by prominent work of

Higson-Kasparov in [16]. Naturally it is of strong interest to add more exam-

ple of groups to this list, but this is not the goal of this article. In contrast, we

focus on one specific class of amenable groups and compute their K -theory

directly, avoiding in particular the use of the Dirac-dual Dirac method or

even KK -theory at all.

Our motivation is to understand better the K -groups of these groups and

the way they are identified by the assembly map. Moreover, we go beyond

the fact that µGi : KG
i (EG) → Ki(C

∗(G)) is abstractly an isomorphism (as

provided by the Higson-Kasparov approach) and present explicit sets of gen-

erators which are identified by the assembly map.

In this article we study the Baum-Connes conjecture for the class of lamp-

lighter groups L = F o Z = (⊕ZF ) oα Z, with F a (non-trivial) finite group

and α the shift. For the case of classical lamplighter groups L = (Z/nZ) o Z
computations for the K -theory of C∗L have implicitly appeared in different

contexts, see for instance ([1], Example 6.10), ([6], Theorem 15), ([11], Theo-

rem 4.12), ([12], Section 6.5) or ([22], Example 3). Our approach is different

from the previous ones in two ways: first, we treat lamplighter groups of finite

groups in full generality; and second, we specify generators for the K -groups

and show their relevance in the context of Baum-Connes.

Let B = ⊕ZF , denote by Min F the set of equivalence classes of minimal

projections in the group ring CF , and denote by F̂ the set of equivalence

classes of irreducible unitary representations of F . We summarise now the

result of our calculations in Proposition 4 and Theorem 3:

• KL
0 (EL) is a free abelian group of countable rank, and its basis is

indexed by the orbits of the shift Z y F̂ (Z).

• K0(C
∗L) is a free abelian group of countable rank, and its basis is

indexed by the orbits of the shift Z yMinF (Z).

• KL
1 (EL) is an infinite cyclic group; actually the inclusion Z → L in-

duces an isomorphism Z = KZ
1 (EZ)→ KL

1 (EL).
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• K1(C
∗L) is an infinite cyclic group generated by the K1-class of the

unitary u which generates the shift.

Putting all these facts together, we deduce the Baum-Connes isomorphism

as a result of our K -theoretic computations (Theorem 4):

Theorem A. Let L = F oZ be the lamplighter group over some (non-trivial)

finite group F . The map µL0 : KL
0 (EL) → K0(C

∗L) is an isomorphism

between two free abelian groups of countably infinite rank. The map µL1 :

KL
1 (EL)→ K1(C

∗L) is an isomorphism between two infinite cyclic groups.

On page 21 of their seminal paper [3], P. Baum and A. Connes for-

mulated the trace conjecture. It says that for a group G the image of

τ∗ : K0(C
∗
r (G)) → R is the subgroup of Q generated by all numbers 1

|H| ,

where H ⊂ G runs though all finite subgroups of G. After counterexamples

to the trace conjecture were found (see [30]), W. Lück formulated in [18] the

modified trace conjecture: the image of τ∗ should be contained in the subring

of Q generated by the same 1
|H| ’s; he proved (Theorem 0.3 in [18]) that this

follows from surjectivity of the the assembly map. For our lamplighter groups

L = F o Z, this gives immediately Im τ∗ = Z[ 1
|F | ]. In Proposition 5 we give a

direct proof of this fact, based on our K-theory computations.

It follows from Theorem A that the K -theory of C∗L does not depend on

the finite group F ; i.e., varying the group F , the corresponding C∗-algebras

C∗L cannot be distinguished by K-theory. It seems a natural question to

classify the C∗L’s up to ∗-isomorphism. We have only partial results, which

however yield a complete classification when F is abelian.

Theorem B. Let F1, F2 be finite groups, with F1 abelian. The following are

equivalent:

1. C∗(F1 o Z) ' C∗(F2 o Z);

2. F2 is abelian and |F1| = |F2|.

Our paper is organized as follows.

Sections 2 and 3 are preliminaries. Section 2 is about Bredon homology,

which is useful in computing KG
∗ (EG). In particular, since the semi-direct

product decomposition L = B oα Z of the lamplighter groups is the key to

the computations of this article, we explain the Mart́ınez spectral sequence

[20] that enables to compute Bredon homology of extensions in a similar way
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Lyndon-Hochschild-Serre sequence computes ordinary homology; Section 3

is about invariants and co-invariants of group actions on free abelian groups,

that turn out to be useful in subsequent computations. Section 4 provides

a verification of the Baum-Connes conjecture for the locally finite group B.

The conjecture is inherited by co-limits of groups, so it holds for abstract

reasons for B, but for later use we need explicit computations, based on the

existence of a 1-dimensional model (i.e. a tree) for EB.

Section 5 is the core of the paper. Building on a construction by Fluch

[13], we obtain an explicit two-dimensional model for EL. Because of di-

mension 2, the Mart́ınez spectral sequence degenerates on the E2-page and

allows for a detailed computation of the topological side of Baum-Connes.

On the analytical side, the crossed product decomposition C∗L = C∗Boα Z
allows to appeal to the Pimsner-Voiculescu 6-term exact sequence [24] as the

main tool for computations. Having explicit sets of generators on both sides

we can prove Theorem A and check the trace conjecture.

In section 6, we present some applications of our results to topological

dynamics. If we allow the finite group F in L = F o Z to be abelian then we

get a well-known dynamical system (X,Z, α), with X = B̂ =
∏
F̂ a Cantor

set and α the full shift. We present a very explicit basis for K0(C(X) oα Z)

(which was known to be a free abelian group of countable rank, see [23]).

In addition to this, we give a simple algebraic proof for a known theorem of

Livs̆ic [17] characterizing α-coboundaries in C(X,Z).

Finally in section 7 we prove Theorem B and show that, for every finite

group F , the C∗-algebra C∗L has stable rank 2.

Acknowledgements: We thank I. Chatterji, D. Kerr, W. Lück, N.C.

Phillips and D. Zagier for some useful conversations or exchanges, and F.

Duchene for her help with the pictures.

2 Background on the left hand side of Baum-

Connes

2.1 Classifying space for proper actions

Here we discuss classifying spaces for families, which is the main object of

study of the left-hand side of Baum-Connes conjecture. We provide a mild

introduction, the interested reader is referred to the excellent survey [19].
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Let G be a discrete group. A topological space X is a G-space if G acts

by homeomorphisms on X.

Definition 1. Let G be a group, H ≤ G a subgroup, X an H-space. Con-

sider the action of H over the product G×X given by h(g, x) = (gh−1, hx).

The induced G-space G ×H X is defined as the orbit space (G ×X)/H un-

der the previous H-action, endowed in turn with the action of G given by

g[g′, x] = [gg′, x]. It is easy to see that this action is well-defined.

Now we are ready to define the concept of proper action:

Definition 2. An action of a discrete group G on a G-space X is called

proper is there are finite subgroups Gi < G and open subspaces Xi ⊂ X with

Xi invariant under the action of Gi, such that the G-maps G ×Gi Xi ↪→ X

are embeddings, and X =
⋃
iG×Gi Xi.

It is easy to see that the isotropy groups of a proper G-action are finite

subgroups of G.

Definition 3. A G-CW-complex is a G-space endowed with a filtration by

closed subspaces X0 ⊂ X1 ⊂ . . . ⊂ X, with X0 discrete, X =
⋃
X i for every

i, and such that:

• A subspace of X is closed if and only if its intersection with every

element of the filtration is so.

• Every X i is build from X i−1 using a push-out

Sn−1 ×∆n
//

��

Xn−1

��
Bn ×∆n

// Xn

with ∆i a discrete G-space for every i. A G-CW-complex is said n-

dimensional if Xn = X for a certain n.

It is known that a G-CW complex is proper if and only if all the isotropy

groups are finite.

Let now F be a family of subgroups of a group G that is closed under

passing to subgroups and conjugation.
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Definition 4. A classifying space for the family F is a G-CW-complex EFG

such that XH is contractible for every H ∈ F and empty if H /∈ F. If F is

the family of finite subgroups of F, EFG is usually denoted EG, and called

the classifying space for proper actions of G.

There is a universal construction that always guarantees the existence of

a model for EF, and this classifying space is always unique up to G-homotopy

equivalence ([4], 1.6-1.7.)

2.2 Bredon homology

2.2.1 Generalities

In this section we introduce the main concepts concerning Bredon homology.

More details can be found, for example, in [21], part I.

As it happens in the ordinary case, Bredon homology of a group is defined

in terms of projective resolutions, that can be constructed algebraically or by

using a cellular chain complex. We will recall briefly the necessary definitions

for the second approach, while the reader interested in a more algebraic

treatment is referred to [21], pages 8-9.

Definition 5. Let G be a discrete group, F a collection of subgroups of G.

The orbit category OFG is the category whose objects are the left cosets

G/H with H ∈ F, and whose morphisms are the G-maps G/H → G/K.

The category of contravariant (resp. covariant) functors from OFG to abelian

groups is denoted by ModFG (resp. G-ModF), and its objects are called OFG-

modules. A OFG-module P is called projective is the functor Mor(P,−) from

ModFG to abelian groups is exact.

As the category OFG is abelian, projective resolutions can be defined,

and it can be seen that the category has enough projectives. In order to

construct homology groups, we should be able to construct such resolutions

in a systematic way. As the nature of our work is topological, we will first

construct projectives associated to G-spaces, and then we will use them to

build projective resolutions of G.

Let us define now the cellular complex. Let X be a G-CW-complex, and

let F be a family of subgroups of G that contains the isotropy groups of the

action. Let ∆i, for i ≥ 0, be the discrete spaces that appear in the definition

of X as a G-pushout. Then for every H ∈ F, we define Ci(X
H) = Z[∆H

i ],
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the free abelian group with base the fixed-point set ∆H
i . Now we may define

a OFG-module Ci(X) by assigning to every homogeneous space G/H the

abelian group Ci(X
H). There are boundary operators δi : Ci(X)→ Ci−1(X)

and an augmentation C0(X)→ Z (here Z is the constant module with value

Z) induced by the corresponding boundaries and augmentation of the cellular

chain complexes of the fixed point spaces. Note that if i > dim(X), Ci(X)

is trivial.

Definition 6. Given OFG-modules M and N , its categorical tensor prod-

uct M
⊗

FN is the quotient abelian group
⊕

FM(G/K) ⊗ N(G/K), by the

relation generated by M(φ)(m) ⊗ n ∼ m ⊗ N(φ)(n), for m ∈ M(G/K),

n ∈ N(G/K), and φ : G/K → G/K a morphism. In this way a functor

−⊗F N : ModFG → Ab is defined.

Now we are ready to define Bredon homology groups with coefficients for

the case of a G-space:

Definition 7. If X is a G-CW-complex and N ∈ G-ModF, with F con-

taining all the isotropy groups of the G-action in X, then the Bredon ho-

mology groups of X with coefficients in N are defined as HF
i (X;N) =

Hi(C∗(X)
⊗

FN)). The boundaries are induced by those of C∗(X).

In particular, if X = EFG, C∗(X) is a projective resolution of Z, and this

implies that HF
∗ (EFG;N) is equivalent to HF

i (G;N). Observe that HF
0 (G;N)

can be identified with colimOFGN(G/K).

2.2.2 The class of finite subgroups

In this subsection we assume that F is the collection of finite subgroups of G.

First we define the OFG-module RC ∈ G-ModF, which are the appropriate

coefficients in the context of Baum-Connes conjecture (see Theorem 2 below).

The value of this functor on G/K (K a finite subgroup of G) is RC(K), the

complex representation ring of K; and to a G-map G/H → G/K, given by

an inclusion gHg−1 ⊂ K, we associate the homomorphism

IndKgHg−1 : RC(H) = RC(gHg−1)→ RC(K),

where Ind denotes the induced representation.

The next two results will be a key tool in the computation of the low-

dimensional Bredon homology groups.
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Theorem 1. (Theorem I.3.17 in [21]) If dim EG = 1 (i.e. EG is a tree),

then HF
i (G,RC) = 0 for i > 1 and there is an exact sequence

0→ HF
1 (G,RC)→

⊕
[e]

RC(Ge)
f→
⊕
[v]

RC(Gv)→ HF
0 (G,RC)→ 0,

where the direct sums are respectively taken over the G-orbits of edges and

vertices of the tree EG, and Ge and Gv stand for the isotropy groups of

the edges and the vertices, respectively. For π ∈ RC(Ge), we have f(π) =

(Ind
Ge−
Ge

π,−IndGe+Ge
π) ∈ RC(Ge−)⊕RC(Ge+).

Aside its intrinsic interest, we would like to compute Bredon homology

groups because of their relation with the left hand-side in the Baum-Connes

conjecture. In the following, KG
i stands for theG-homology theory associated

to the O(G)-spectrum Ktop,G (more information in [21], I.5). For us, of special

interest will be the following theorem of Mislin, that is in turn a simplified

version of the Atiyah-Hirzebruch spectral sequence in the case in which there

is a low-dimensional model for EG:

Theorem 2. ([21], Theorem I.5.27) Let G be an arbitrary group such that

there exists a model for EG of dimension not bigger than 2. Then there is a

natural short exact sequence:

0→ HF
0 (G;RC)→ KG

0 (EG)→ HF
2 (G;RC)→ 0,

and a natural isomorphism HF
1 (G;RC) ' KG

1 (EG).

2.3 Mart́ınez spectral sequence

The main tool we are going to use to compute Bredon homology is an appro-

priate version of the Lyndon-Hochschild-Serre spectral sequence, developed

by C. Mart́ınez in [20], and that we briefly describe in this section.

Let N → G → G̃ be a group extension, and consider a family F of

subgroups of G. Now we consider another family h̃ of subgroups of G̃, such

that for any L ∈ F the quotient LN/N belongs to h̃; and such that if N ≤ S

and S/N belongs to h̃, then S ∩ K ∈ F for every K ∈ F. In particular, if

these two families are the collections of finite subgroups, the two conditions

hold. Consider now h = {S ≤ G : N ≤ S and S/N ∈ h̃}, the “pullback” of

the family h̃.
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Let now G be a group and a OFG-module D of coefficients. There is an

equivalence of categories G-Modh → G̃-Modh̃ given by D̃(G̃/S̃) = D(G/S),

where S is the pullback of S̃ in G. In this way it is defined a first quadrant

spectral sequence such that E2
p,q = H h̃

p(G̃,HF∩−
q (−, D)), and converging to

E∞p,q = HF
p+q(G,D).

Some observations are pertinent here:

• In the page E2, HF∩−
q (−, D) is a module in G-Modh̃.

• The values of HF∩−
q (−, D) are computed in the following way: first take

an element Ṽ < G̃ in h̃, and consider its pullback V in G. Then consider

the family FV of the subgroups in F which are subgroups of V . Then

the value of the functor HF∩−
q (−, D) over Ṽ is HFV

q (V,D). This fact

makes clear the similarity with the classical Lyndon-Hochschild-Serre

spectral sequence.

• There is a corresponding spectral sequence for Bredon cohomology, the

we will not define here. In fact, the spectral sequence is constructed in

a more general framework, see [20].

3 Invariants and co-invariants

In our computations for both sides of the Baum-Connes conjecture for lamp-

lighter groups, the relevant K -homology and K -theory groups will appear as

invariants and co-invariants of a certain Z-action on an abelian group. We

will spend some time here discussing these concepts.

For M a G-module, we denote by MG the sub-module of G-invariants

(i.e. the G-fixed points), and by MG = M/ < m−g.m : m ∈M, g ∈ G > the

module of G-co-invariants. If X is a set, ZX denotes the free abelian group

on X, i.e. the group of almost everywhere zero functions X → Z.

Lemma 1. Let G be a countable group, and X be a countable G-space; then

the space (ZX)G of invariants can be identified with ZY , where Y is the set

of finite orbits in X; and the space (ZX)G of co-invariants can be identified

with Z(G\X). In particular, both are free abelian groups.

Proof. Since a G-fixed function on X must be constant on G-orbits, the

first claim is clear. For the second: let S be a system of representatives for
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G-orbits in X. Then the map

I : ZX → Z(G\X) : φ 7→ (s 7→
∑
g∈G

φ(g.s))

is onto with kernel precisely 〈gφ− φ : g ∈ G, φ ∈ ZX〉.

If S is a system of representatives for the G-orbits in X, as in the above

proof, then ZX =< g.m−m : m ∈M, g ∈ G > ⊕ZS gives a splitting of the

quotient map ZX → (ZX)G.

Let F be a finite pointed set, pointed by some element o ∈ F . We denote

by F (Z) the countable set of maps Z→ F that are almost everywhere equal

to o. We want to apply Lemma 1 to X = F (Z), with G = Z acting by the

shift α. We describe a set of representatives for the orbits of α on X. For

g ∈ F , by abuse of notation we also denote by g the element of F (Z) taking

the value g at k = 0 and o at k 6= 0. For n ≥ 0, ε ∈ F n, and g, h ∈ F\{o},
let gεh be the element of F (Z) defined by

(gεh)(k) =


g if k = 0
εk if k = 1, ..., n
h if k = n+ 1
o otherwise.

Lemma 2. A set S of representatives for the α-orbits on F (Z), is:

S = {g : g ∈ F} ∪ {gεh : n ≥ 0, ε ∈ F n, g, h ∈ F\{o}}.

In particular Z(F (Z)) is the direct sum of < m− α(m) : m ∈ Z(F (Z)) > and

ZS.

Proof. It is clear that no two distinct elements of S are in the same orbit for

the shift α. For η ∈ F (Z), let the support of η, denoted by supp η, be the set

of integers k where ηk 6= o. If supp η is empty, then η = δo0. If supp η has

just one point, then η is in the same orbit as some δg0 with g 6= o. If supp η

has at least two points, then by shifting the minimum of supp η to 0 we get

some gεh.
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4 The Baum-Connes conjecture for locally fi-

nite groups

Let F be a finite group. Then C∗F = CF , the complex group ring, and

EF = {∗}, the one-point space. SoK1(C
∗F ) = KF

1 (EF ) = 0 whileK0(C
∗F )

and KF
0 (EF ) are both naturally isomorphic to the (complex) representation

ring RC(F ), that is the free abelian group ZF̂ on the set F̂ of irreducible

representations of F . Recall that CF =
⊕

π∈F̂ Mdimπ(C), where Mn(C) de-

notes the algebra of n×n-matrices with complex coefficients. From Example

II.2.11 in [21], the assembly map µF0 : RC(F )→ K0(CF ) maps π ∈ F̂ to the

class [eπ] of a minimal idempotent eπ ∈Mdimπ(C).

When F is a subgroup of the finite group G, denote by i : F → G the

inclusion; we have a commutative diagram

RC(F )
IndGF−→ RC(G)

µF0 ↓ ↓ µG0

K0(C
∗F )

i∗−→ K0(C
∗G),

which is commutative by Proposition 2.3.1 in [14].

Now let B be a (countable) locally finite group, given as the co-limit of

an increasing sequence (Bn)n>0 of finite groups. By Corollary I.5.2 in [21],

KB
i (EB) is the co-limit of the KBn

i (EBn)’s, and by Theorem I.5.10 in [21]

the assembly map µBi is the co-limit of the µBni ’s (and the Baum-Connes

conjecture holds for B). For later computations with lamplighter groups, we

need to identify explicitly the co-limits on both sides of the assembly map.

Observe that B acts over EB, which is a tree basically given by Bass-Serre

theory: the sets of vertices and edges are both identified with
∐

n>0B/Bn,

connecting the edge gBn the vertices gBn and gBn+1 (for g ∈ B). Hence, B

appears as the fundamental group of a ray of groups with vertices v1, v2, ...,

vertex group Bn at vn and edge group Bn at the edge vnvn+1.
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Proposition 1. Let (Fn)n>0 be a collection of finite groups, set Bn = ⊕nk=1Fk
and B = ⊕∞k=1Fk. Embed the dual B̂n into B̂n+1 = B̂n × F̂n+1 by

sn : B̂n → B̂n+1 : πn 7→ πn ⊗ 1Fn+1 ,

where 1Fn denotes the trivial 1-dimensional representation of Fn. Then the

free abelian group on the co-limit of the system of sets (B̂n, sn)n>0, is naturally

isomorphic to KB
0 (EB).

Proof. By Theorem 1, we have HFin
i (B,RC) = 0 for i ≥ 1; so by Theorem

2, HFin
0 (B;RC) ' KB

0 (EB). Using the description of B as the fundamental

group of a ray of groups, and appealing to Theorem 1 again, HFin
0 (B;RC) is

the co-kernel of f :
⊕

n>0RC(Bn) →
⊕

n>0RC(Bn). Remark that f maps

πn ∈ RC(Bn) to (πn,−IndBn+1

Bn
πn) ∈ RC(Bn) ⊕ RC(Bn+1). Now, denoting

by λFn the regular representation of Fn, we have by an easy application of

12



Frobenius reciprocity:

Ind
Bn+1

Bn
πn = πn ⊗ λFn+1 =

∑
σ∈F̂n+1

dimσ · (πn ⊗ σ).

Since B̂n+1 = B̂n× F̂n+1, we denote by rn : B̂n+1 → B̂n the projection on the

first factor, and we may re-write:

Ind
Bn+1

Bn
πn =

∑
πn+1∈B̂n+1:rn(πn+1)=πn

dimπn+1

dim rn(πn+1)
· πn+1.

We now view
⊕

n>0RC(Bn) as Z(
∐

n>0 B̂n), the group of integer-valued

functions with finite support on the disjoint union
∐

n>0 B̂n. In that picture

we have, for φ ∈ Z(
∐

n>0 B̂n):

(f(φ))(πn) = φ(πn)− φ(rn−1(πn)).
dimπn

dim rn−1(πn)
(1)

(where πn ∈ B̂n).

Consider now the subgroup H =: Z(
∐

n>0(B̂n\sn−1(B̂n−1))). The propo-

sition will follow from:

Claim: Imf ⊕H = Z(
∐

n>0 B̂n) (so H ' Coker f).

To prove the claim, first observe that Imf + H = Z(
∐

n>0 B̂n). To see

this, we first prove by induction over n that every πn ∈ B̂n (viewed as a

basis element of Z(
∐

n>0 B̂n)) is in Imf + H. This is clear for n = 1, as

Z(B̂1) ⊂ H. For n > 1, this is also clear if πn /∈ sn−1(B̂n−1) (then πn ∈ H).

So assume πn = sn−1(πn−1) = πn−1 ⊗ 1Fn , for some πn−1 ∈ B̂n−1. Then

f(πn−1) = πn−1 − πn −
∑

σ∈F̂n,σ 6=1Fn

dimσ · (πn−1 ⊗ σ),

or

πn = πn−1 − f(πn−1)−
∑

σ∈F̂n,σ 6=1Fn

dimσ · (πn−1 ⊗ σ).

Using the induction hypothesis for πn−1, the right hand-side belongs to

Imf +H.

It remains to show that Imf ∩H = {0}, so let φ ∈ Z(
∐

n>0 B̂n) be such

that f(φ) vanishes on
∐

n>0 sn(B̂n). We prove that φ is identically zero. So

for π ∈ B̂n, we have, using rn ◦ sn = IdB̂n and formula (1):

0 = f(φ)(sn(πn)) = φ(sn(πn))− φ(πn),
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i.e. φ(πn) = φ(sn(πn)). Iterating, we have for every k > 0:

φ(sn+k(...(sn(πn)))) = φ(πn).

Since φ has finite support, for k large enough we have φ(sn+k(...(sn(πn)))) =

0, hence φ(πn) = 0.

For F a finite group, we denote byMin(F ) the set of equivalence classes of

minimal idempotents in the group ring CF . If we write CF =
⊕

π∈F̂ Mdimπ(C)

as above, Min(F ) can be realized by picking a rank one projection in each

direct summand.

If S is a pointed set, pointed by o ∈ S, we define S(Z) as the set of maps

Z → S taking the value o for almost every integer, pointed by the constant

map with value o. If F is a finite group, the dual F̂ is pointed by the

trivial representation 1F , and the set Min(F ) is pointed by the projection

pF = 1
|F |
∑

g∈F g associated with the trivial representation.

We come back to the setup of Proposition 1. At the level of group rings,

the analogue of the map sn of Proposition 1 is given by the non-unital,

injective homomorphism

jn : CBn → CBn+1 = CBn ⊗ CFn+1 : x 7→ x⊗ pFn+1 ,

such that

(jn)∗ ◦ µBn0 = µ
Bn+1

0 ◦ sn.

Then jn(Min(Bn)) ⊂ Min(Bn+1) and K0(C
∗B) appears as the free abelian

group on the co-limit of the system of sets (Min(Bn), jn)n>0.

When all Fn’s are equal to the same finite group F , our computations

immediately yield:

Corollary 1. Let F be a non-trivial finite group, and B = ⊕ZF . Then:

1. The free abelian group Z(F̂ (Z)) is naturally isomorphic to KB
0 (EB),

with isomorphism

π ∈ F̂ (Z) 7→ ⊗k∈supp ππk ∈ RC(⊕k∈supp πFk) ⊂ KB
0 (EB)

(where Fk denotes the k-th copy of F in B).

14



2. The free abelian group Z((Min(F ))(Z)) is naturally isomorphic to K0(C
∗B),

with isomorphism

e ∈ (Min(F ))(Z) 7→ [⊗k∈supp eek] ∈Min(⊕k∈supp eFk) ⊂ K0(C
∗B),

and in particular the constant map with value pF is mapped to [1], the

class of 1 in C∗B.

3. For π ∈ F̂ (Z) we have µB(π) = ⊗k∈supp πµF (πk) ∈ K0(C
∗B).

�

5 Lamplighter groups over finite groups

Let F be a finite group, B = ⊕ZF and L = F o Z = B o Z, where Z acts on

B by the shift.

5.1 A model for EL

Let B be a group, and α ∈ Aut(B) an automorphism. A result of M. Fluch

(Proposition 5.11 in [13]) states that, if B admits a n-dimensional model for

EB, then the semi-direct product L = B o Z admits a (n + 1)-dimensional

EL. In particular, if B is a locally finite group, we observed in Section 4

that B admits a tree as EB; from Fluch’s result, L admits a 2-dimensional

EL. We now recall Fluch’s construction.

Let B be the co-limit of an increasing sequence (Bn)n>0 of finite groups.

We recall that EB is a tree X, with vertex and edge sets V = E =∐
n>0B/Bn, where the edge xBn connects the vertices xBn and xBn+1 (for

x ∈ B); there is an edge between cosets xBn and yBn+1 if and only if xBn ⊂
yBn+1. Let α be an automorphism of B; we assume that α−1(Bn) ⊂ Bn+1

for every n.

Example 1. Let α be the shift on B = ⊕ZF , with F a finite group. Set

Bn =: ⊕nk=−nF : then B is the co-limit of the Bn’s, and α−1(Bn) ⊂ Bn+1.

For k ∈ Z, let Xk be the tree X with twisted B-action: g ·k xBn =

α−k(g)xBn, for g, x ∈ B. Let fk : Xk → Xk+1 be defined by fk(xBn) =

α−1(x)Bn+1; it follows from our assumption that fk is well-defined; it is

easily checked that fk is B-equivariant:

fk(g ·k xBn) = g ·k+1 fk(xBn),
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and fk maps edges of Xk to edges of Xk+1.

Now we define the space Y as a “mapping telescope”:

Y = (
∐
k∈Z

(Xk × [k, k + 1]))/ ∼,

where (xBn, k+1) in the componentXk×[k, k+1] is identified to (fk(xBn), k+

1) in the component Xk+1 × [k + 1, k + 2]. Since fk is B-equivariant, the B-

actions on the components glue together to yield a B-action on Y . We call

the sub-complex Xk the k-th level of Y .

We also have a “vertical” action of Z on Y defined by σ(xBn, t) =

(xBn, t + 1). It is easily checked that this action is well-defined, and free

with fundamental domain D =: X0 × [0, 1[. Moreover, for (xBn, t) ∈ Y with

k ≤ t ≤ k + 1 and g ∈ B, we have:

σ ◦ g ◦ σ−1(xBn, t) = σ ◦ g(xBn, t− 1) = σ(α1−k(g)xBn, t− 1)

= (α1−k(g)xBn, t) = α(g)(xBn, t).

So σ ◦ g ◦ σ−1 = α(g), i.e. the B-action and Z-action on Y combine into an

action of L = B o Z. Since vertex stabilizers are clearly finite, the action of

L on Y is proper.
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Proposition 2. The space Y is a 2-dimensional model for EL.

Proof. Let H be a subgroup of L. We must look at the fixed point set Y H

and prove that it is empty if H is infinite, and contractible if H is finite. We

consider two cases.

• H is not contained in B (implying that H is infinite): then Y H = ∅.

• H is contained in B. Then a point (xBn, t) ∈ σk(D) is H-fixed if and

only if H ⊂ αk(xBnx
−1). This already implies that Y H = ∅ if H is

infinite. Let H be finite then. We follow Fluch’s proof. As Y H is a CW-

complex, Whitehead Theorem implies that it is enough to show that it

is weakly contractible, i.e. πn(Y H) is trivial for every n ≥ 0. Now XH is

a subtree of X, hence is contractible, and so is XH
k = Xαk(H) for every

k ∈ Z. Hence, Y H is a mapping telescope of a collection of contractible

spaces XH
k . Now, every representative Sn → Y H of an element on

πn(Y H) is contained, by compactness, in a finite subtelescope of Y H ,

which retracts by deformation in XH
k for k � 0. Hence, πn(Y H) is

trivial and Y H weakly contractible, thus contractible.

It follows from Proposition 2.3 in [31] that L = F o Z admits a proper

isometric action on a product of 2 trees (which is therefore a CAT(0) square-

complex), but the example in Proposition 2 is better adapted to the semi-

direct product decomposition L = B o Z.
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5.2 Computations on the left-hand side

In this section we will compute Bredon homology with coefficients in the

complex representation ring RC of the infinite cyclic (split) extensions of

countable locally finite of the form G = BoZ, with B countable locally finite.

Our main tool will be Mart́ınez spectral sequence, introduced in Section 2.3,

that we will use to compute Bredon homology of the extension B → G→ Z
with coefficients in the complex representation ring. In the notation of that

section, N = B is the countable locally finite group and G̃ are the integers.

Again F will be the family of finite subgroups of G, and h̃ the family of finite

subgroups of Z, that consists only in the trivial group. Observe that in this

case the preimage of h̃ has only one element, identified with B. Now, in the

notation above the E2-page of the sequence is:

E2
p,q = Hp(Z;HFB

q (B;RC)).

Let us compute all the modules in the E2-page. First recall that the

proper geometric dimension of Z is 1, as the real line is a minimal dimension

model for EZ. Hence, E2
p,q should be trivial if p ≥ 2. Moreover, by Theo-

rem 2, Bredon homology of B with coefficients in RC is only non-trivial in

dimension zero, and this implies that E2
p,q = 0 if q ≥ 1. Hence, the page E2

is concentrated in the vertical axis, and the spectral sequence collapses in

this page, E2
p,q = E∞p,q. Hence we only need to compute E2

0,0 and E2
1,0, which

in turn will be respectively isomorphic to HF0 (G;RC) and HF1 (G;RC).

Proposition 3. In the previous notation, HF0 (G;RC) is the space of co-

invariants of the action of Z on HFB0 (B;RC), and HF1 (G;RC) is the space of

invariants.

Proof. As stated above, HF0 (G;RC) and HF1 (G;RC) are respectively iso-

morphic to H0(Z;HFB
0 (B;RC)) and H1(Z;HFB

0 (B;RC)), and the statements

about co-invariants and invariants are a consequence of [9] (Example 1 in

page 58), as we are dealing here with ordinary homology with coefficients.

Now we can particularise our result for lamplighter groups.

Proposition 4. If L = F o Z is the lamplighter group over the (non-trivial)

finite group F , then HF0 (L;RC) is a free abelian group with a countable base

indexed by the orbits of Z on F̂ (Z), and HF1 (L;RC) = Z is identified with

the infinite cyclic subgroup in Z(F̂ (Z)) generated by the base-point in F̂ (Z).

Moreover, these groups are respectively isomorphic to KL
0 (EL) and KL

1 (EL).
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Proof. By the computations involving Mart́ınez spectral sequence, we have

HF2 (L;RC) = 0; by Theorem 2, we then have HFi (L;RC) ' KL
i (EL) for

i = 0, 1. By Proposition 3, these groups correspond respectively to the co-

invariants and invariants of Z acting on HF0 (B;RC); and Corollary 1 implies

that the latter is naturally isomorphic to Z(F̂ (Z))), with Z acting by shift.

The result then follows from Lemma 1, observing that the shift has a unique

finite orbit on F̂ (Z), namely the fixed point provided by the base-point o.

Remark 1. It is interesting to point out here another result by P. Baum and

A. Connes ([2], Proposition 15.2) where, for every discrete countable group

G, it is constructed a Chern character Ch∗ : KG
i (EG)→

⊕
j≥0Hi+2j(G,FG)

where FG is the complex vector space generated by finite order elements in

G, with G acting by conjugation; Ch∗ becomes an isomorphism after ten-

soring by C. An alternative construction of W. Lück (Theorem 0.7 in [18])

provides, after inverting orders of finite subgroups of G, an identification be-

tween KG
i (EG) and the direct sum, over conjugacy classes of finite cyclic

subgroups C of G, of abelian groups which are basically (non-equivariant) K-

homology groups of the fixed point point set (EG)C. All this makes KG
i (EG)

computable rationally, and this can be used as a test case before undertaking

computations with the spectral sequence, which are usually more complicated.

See also the discussion in ([21], I.3.25).

5.3 Computations on the right-hand side

In this section we present the computations for the K -groups Ki(C
∗L), i =

0, 1, for L = BoZ, and B = F (Z), F a (non-trivial) finite group. Recall that

for every amenable group G, we have C∗G = C∗rG.

Let A be a unital C∗-algebra on which Z acts via α ∈ Aut(A). We may

construct A oα Z, with u ∈ A oα Z be the unitary which implements the

action in this construction. Abstractly, A oα Z is the universal C∗-algebra

generated by A and u corresponding to the relation α(a) = uau−1 for a ∈ A.

In our case C∗(L) = C∗(B) oα Z, where α denotes the shift on C∗B.

A very convenient tool for computing the K -theory of crossed products

by Z is the Pimsner-Voiculescu 6-term exact sequence (P-V), see Theorem
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2.4 in [24]:

K0(A)
Id−α∗−→ K0(A)

ι∗−→ K0(Aoα Z)

∂1 ↑ ↓ ∂0

K1(Aoα Z)
ι∗←− K1(A)

Id−α∗←− K1(A)

Let [u] ∈ K1(Aoα Z) be the K -theory class of the basic unitary u ∈ Ao Z
generating the Z-action on A.

Theorem 3. Let L = B oα Z, with B = ⊕ZF , F a non-trivial finite group.

Then K0(C
∗L) identifies with the free abelian group on the orbit space of the

shift on Min(F )(Z), and K1(C
∗L) is the infinite cyclic group generated by

[u].

Proof. We plug C∗B and C∗L in the P-V exact sequence; by Corollary 1,

K0(C
∗B) is identified, α-equivariantly, with Z((Min(F ))(Z)). Since C∗B is

an AF-algebra, its K1-group is zero.

Z((Min(F ))(Z))
Id−α∗−→ Z((Min(F ))(Z))

ι∗−→ K0(C
∗(L))

∂1 ↑ ↓
K1(C

∗L) ←− 0 ←− 0

By injectivity of ∂1 and exactness of the sequence K1(C
∗L) ' Ker(Id−α∗) =

Z.pF , where pF denotes the constant map taking the value pF on Z; it cor-

responds to the class [1] of 1 in K0(C
∗B) (see Corollary 1). Moreover we

know from Lemma 2 in [27] that ∂1[u] = −[1]. Hence K1(C
∗L) = Z.[u]. In

order to compute K0(C
∗L), we focus on the right side of the diagram. Sur-

jectivity of ι∗ implies that K0(C
∗L) ' Z((Min(F ))(Z))/Kerι∗. By exactness

of the diagram we get Kerι∗ = Im(Id − α∗). Hence K0(C
∗L) is the set of

co-invariants of the shift in Z((Min(F ))(Z)), which is described by Lemma 1

and Lemma 2.

5.4 The Baum-Connes conjecture and the trace con-
jecture

Now we will describe explicitly Baum-Connes isomorphism.

Theorem 4. Let L = F oZ be the lamplighter group over some (non-trivial)

finite group F .
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a) The map µL0 : KL
0 (EL) → K0(C

∗L) is an isomorphism between two

free abelian groups of countably infinite rank.

b) The map µL1 : KL
1 (EL) → K1(C

∗L) is an isomorphism between two

infinite cyclic groups. More precisely, denoting by i : Z→ L the inclu-

sion, we have a commuting diagram of isomorphisms:

Z = KZ
1 (EZ)

µZ1→ K1(C
∗Z) = Z

i∗ ↓ ↓ i∗
KL

1 (EL)
µL1→ K1(C

∗L)

Proof. 1. Case of µL0 . We already know that KL
0 (EL), K0(C

∗L) are free

abelian on countably many generators. Let ι denote inclusion of B into

L. Consider the following diagram:

KB
0 (EB)

Id−α∗→ KB
0 (EB)

ι∗→ KL
0 (EL) → 0

µB0 ↓ µB0 ↓ µL0 ↓

K0(C
∗B)

Id−α∗→ K0(C
∗B)

ι∗→ K0(C
∗L) → 0

This diagram commutes, by functoriality of the assembly map (see [21],

Corollary II.1.3). By Proposition 4 and his proof (resp. by Theorem 3

and its proof), the top line (resp. bottom line) is exact. Since µB0 is an

isomorphism (as we already mentioned), µL0 is an isomorphism too, by

the suitable version of the Five Lemma.

2. Case of µL1 . The diagram commutes, again by functoriality of the as-

sembly map. We must show that the left hand-side vertical and bottom

horizontal maps are isomorphisms. Let p : L→ Z be the quotient map,

and let t be the generator of KZ
1 (EZ) ' Z as described in [21], sec-

tion II.4.2. We know by Proposition 4 that KL
1 (EL) is infinite cyclic.

Denote by u any of its two generators. Since p∗ ◦ i∗ is the identity of

KZ
1 (EZ), we know that i∗(t) is non-zero in KL

1 (EL). Let k be the non-

zero integer such that i∗(t) = k.u. By commutativity of the diagram

we have:

k.µL1 (u) = µL1 (i∗(t)) = i∗(µ
Z
1 (t)).

But µZ
1 (t) is the canonical generator of K1(C

∗(Z)) = K1(C(S1)) =

Z (see [21], Proposition II.4.1), and by Theorem 3 the inclusion i :
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C∗(Z)→ C∗(L) induces an isomorphism at the level of K1. So i∗(µ
Z
1 (t))

is a generator of K1(C
∗(L)) = Z, which implies k = ±1 and both i∗

and µL1 are isomorphisms.

Now we present the proof of the trace conjecture for C∗(L).

Proposition 5. For L = F oZ, Let τ : C∗L→ C be the canonical trace. The

induced homomorphism τ∗ : K0(C
∗L) → R at the K-theory level has Z[ 1

|F | ]

as its image.

Proof. Let L = Boα Z, and let τ : C∗L→ C be the canonical trace on C∗L.

For B the subgroup of L, the restriction of τ on C∗B, still denoted by τ ,

gives the canonical trace on C∗B. Surjectivity of ι∗ : K0(C
∗B) → K0(C

∗L),

as in Theorem 3, implies that τ∗(K0(C
∗L)) = τ∗(K0(C

∗B)). Hence we need

to show τ∗(K0(C
∗B)) = Z[ 1

|F | ].

View B as B = lim−→Bn with Bn’s finite groups. We obtain the inductive

limit C∗B = lim−→CBn. Since K -theory commutes with inductive limits,

we have K0(C
∗B) = lim−→K0(CBn). Similar to before the canonical trace

τ on C∗B restricts to the canonical trace τ on CBn’s for n ∈ N. Therefore

τ∗(C
∗B) = lim−→(τ∗(K0(CBn)), ιn), with ιn’s inclusions the ιn : τ∗(K0(CBn))→

τ∗(K0(CBn+1)) for n ∈ N. This way we reduce to finite groups; the trace

conjecture for finite groups is of course well-known, we give below a proof for

completeness. It immediately implies that τ∗(K0(C
∗(L)) = lim−→ ( 1

|F |nZ, ιn) =

Z[ 1
|F | ].

Claim: For a finite group H, consider τ∗ : K0(CH) → R. Then Im τ∗ =
1
|H|Z.

Proof of the claim: Consider the minimal projection pH = 1
|H|
∑

h∈H h

associated to the trivial representation of H as in Section 4. Since τ(pH) =
1
|H| we get that 1

|H|Z ⊂ τ∗(K0(CH)). To show the converse, for π ∈ Ĥ

consider the character associated to π, i.e. χπ(h) = Tr(π(h)) for h ∈ H.

Consider first pπ = dimπ
|H| χπ the minimal central projection in CH such that

CH = ⊕π∈ĤpπCH ∼= ⊕π∈ĤMdimπ(C). They satisfy τ(pπ) = (dimπ)2

|H| . Now

every pπ is the sum of dimπ minimal projections in Mdimπ(C), all with the

same trace; hence, the trace of a minimal projection in CH is dimπ
|H| ∈

1
|H|Z.

This finishes the proof. �
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6 Applications to full shifts

Suppose that F is a (non-trivial) finite abelian group. Then B = ⊕ZF is a

countable abelian group, so C∗B identifies via Fourier transform with C(B̂),

where B̂ is the Pontryagin dual of B, here B̂ = F̂ Z, a Cantor set.

Let Y be a Cantor set; it is well-known that K0(C(Y )) = C(Y,Z), the

integer-valued continuous functions on Y . Let φ be a homeomorphism of Y ,

for instance the shift on B̂ (called the full shift in topological dynamics). It

was first observed by Putnam in Theorem 1.1 of [28] that K1(C(Y )oφZ) =<

[u] > and K0(C(Y ) oφ Z) ∼= C(Y,Z)/Im(Id− φ∗) , as a consequence of the

P-V sequence1. For the full shift it follows from our Theorem 3.

It is probably folklore that C(Y,Z) is a free abelian group on countably

many generators. To apply our results to full shifts, we need an explicit

identification, so we spell out Corollary 1 for K0(C
∗B) in the case where F

is abelian.

We may identify Min(F ) with F̂ , the character group of F . For ε ∈
F̂ (Z), let χε be the characteristic function of the clopen set {x ∈ B̂ : xk =

εk, for every k ∈ supp ε}. Note that, if 1 denotes the constant map with

value 1 (the trivial character of B), then χ1 is the constant function 1. The

following is then a re-writing of Corollary 1:

Proposition 6. The map

β : Z(F̂ (Z))→ C(B̂,Z) :
∑
ε∈F̂ (Z)

aεε 7→
∑
ε∈F̂ (Z)

aεχε

is a (shift-equivariant) isomorphism. �

Observe that the group structure of F̂ is irrelevant in Proposition 6. We

only use the fact that it is a finite pointed space.

Denoting again by α the shift on C(B̂,Z), we denote by B1(B̂, α) =

{f − f ◦ α : f ∈ C(B̂,Z)} the space of 1-coboundaries, and by H1(B̂, α) =

C(B̂, α)/B1(B̂, α) the corresponding 1-cohomology group. Set L = F o Z.

Using the identification between K0(C
∗L) and H1(B̂, α) given by Theorem

3 and its proof, we see that H1(F̂Z , α) is free abelian on countably many

1The isomorphism K0(C(Y ) oφ Z) ∼= C(Y,Z)/Im(Id− φ∗) is indeed an isomorphism
of preordered groups, by Theorem 5.2 in [8].
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generators. This result was known (see [23], Theorem 19 in Chapter 4), but

our approach allows us to give an explicit basis, as we now explain2.

For A ⊂ Z, we say that a function f ∈ C(B̂,Z) only depends only the

coordinates in A if it factors through the restriction map B̂ → F̂A. Define

H̃(B̂,Z) = {f ∈ C(B̂,Z) | f only depends on the coordinates in N ∪ {0}

and f(x) = 0 if x0 = 1}.

Recall that, for g, h ∈ F̂\{1} and ε ∈ F̂ n, we defined elements g and gεh in

F̂ (Z), before Lemma 2:

g(k) =

{
g if k = 0
1 if k 6= 0

(gεh)(k) =


g if k = 0
εk if k = 1, ..., n
h if k = n+ 1
1 otherwise

The set of all those elements of F̂ (Z) is denoted by S.

Lemma 3. H̃(B̂,Z) is freely generated by the set B = {χg, χgεh | ε ∈ F̂ n, n ∈
N and g, h 6= 1}.

Proof. Clearly B ⊂ H̃(X,Z). By Proposition 6, the set B is the image under

the map β of the free set S\{1} in Z(F̂ (Z)), so it is a free subset of H̃(B̂,Z),

and it is enough to prove that B generates H̃(B̂,Z). We know that H̃(B̂,Z)

is generated by the set {χgε | g ∈ F̂ \ {1}, ε ∈ F n, n ∈ N}. We would like to

show that we may reduce the number of generating elements by putting aside

those clopen sets whose associated word gεh ends in 1, by producing them

from others. We show by induction on the length of word εh that all such

χgεh’s are in the span of B. Let n = 0, then χg ∈ B by definition. Assume

the result is true for n = m. For the case n = m+ 1, if h 6= 1, then χgεh ∈ B;

if h = 1 then write χgε1 as the following combination

χgεe = χgε −
∑
k 6=1

χgεk

Here the word associated to χgε has length m so by induction hypothesis it

is in B, and the words in the sum do not end in 1 hence they are in B as

well.

2The original argument consists in expressing H1(B̂, α) as a co-limit of free abelian
groups of finite rank, such that the consecutive quotients are torsion-free.
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Set then H(B̂,Z) = H̃(B̂,Z)+Z.1. Next result identifies the cohomology

group H1(B̂, α).

Proposition 7. H(B̂,Z) is the free abelian group on B ∪ {1}, and C(B̂,Z)

is the direct sum of B1(B̂,Z) and H(B̂,Z).

Proof. The first statement follows immediately from Lemma 3. For the sec-

ond: we observe that, by Proposition 6, B ∪ {1} = β(S). Since

Z(F̂ (Z)) =< m− α(m) : m ∈ Z(F̂ (Z)) > ⊕ Z(S)

by Lemma 2, we have C(B̂,Z) = B1(B̂, α)⊕H(B̂,Z) using Lemma 3.

We end with a characterization à la Livs̆ic of the coboundaries inB1(B̂, α).

It is worth noting that this result can be deduced from the more general The-

orem 4 in [17], and is also stated in Proposition 3.13.(b) of [8]. We provide

an almost entirely algebraic proof.

Theorem 5. For f ∈ C(B̂,Z), the following are equivalent:

1. f ∈ B1(B̂, α);

2.
∫
B̂
f dµ = 0 for every α-invariant probability measure µ on B̂;

3. For every n ≥ 1 and every n-periodic x ∈ B̂,

n∑
k=0

f(αk(x)) = 0

(i.e. f sums to 0 on the orbit of every periodic point).

Proof. The implications (1) ⇒ (2) ⇒ (3) are clear. To prove (3) ⇒ (1), we

take f ∈ C(B̂,Z) summing to zero on all periodic orbits, and must prove that

f is a coboundary. In view of Proposition 7, we may assume f ∈ H(B̂,Z)

and should check that f vanishes identically. For k ∈ Z, set fk =: f ◦ αk.
Write f =

∑
ε∈S aεχε (with aε ∈ Z, vanishing for all but finitely many).

Then fk =
∑

ε∈S aεχα−k(ε) =
∑

η∈α−k(S) aαk(η)χη. By Lemma 2, for k 6= `,

the sets α−k(S) and α−`(S) are disjoint, and then by Proposition 6 fk and

f` have disjoint supports. Now let x ∈ B̂ be n-periodic. By assumption,∑n−1
k=0 fk(x) = 0, and by disjointness of the supports of the fk’s we deduce

fk(x) = 0 for k = 0, 1, ..., n−1. In particular, f = f0 vanishes on any periodic

point in B̂. Since periodic points are dense in B̂, the function f is identically

zero.
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If β is a homeomorphism of a Cantor set X, the space of infinitesimals of

H1(X, β) is the set of elements of H1(X, β) annihilated by all β-invariants

functionals on C(X,R). Theorem 5 can then be rephrased by saying that

the group H1(B̂, α) has no infinitesimals, and this is of course related to the

fact that uniform probability measures on periodic orbits of B̂ are exactly

the ergodic probability measures of the full shift (see Theorem 2.3 in [25]).

7 Distinguishing C∗L up to isomorphism

In this section we write LF = F oZ (rather than L) to emphasize the depen-

dency on F .

It follows from our K -theory computations (Theorem 3) that the C∗-

algebras C∗(LF ) cannot be distinguished byK-theory. This raises the natural

question of distinguishing them up to ∗-isomorphism. Our results, although

partial, give however a satisfactory answer when F is abelian.

As we observed already, C∗B = ⊗k∈NCF is an AF-algebra. Its Bratteli

diagram is a rooted tree, obtained by repeating at each vertex the diagram

of the inclusion C ⊂ CF :
• C

C Md2(C) · · · Mdr(C)
• • •�
�
�
�
��HHH

HHH
HHHH

drd2d1 = 1

Here the bottom vertices are indexed by F̂ = {π1 = 1F , π2, ..., πr} and

the number of edges between the top vertex and the bottom vertex πi ∈ F̂
is the dimension di = dimπi.

So the Bratteli diagram of C∗B only depends on the group ring CF , and

then, if F1, F2 are finite groups with isomorphic group rings, then C∗LF1 '
C∗LF2 . The question now is if the converse will be also true, i.e. if the

C∗-algebra of LF determines the group ring of F . We will prove that the

answer is affirmative when one of the groups F1, F2 is abelian (recall that,

for abelian groups: CF1 ' CF2 if and only if |F1| = |F2|).

Lemma 4. The following are equivalent:

1. F is abelian;

2. C∗LF is residually finite-dimensional.
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Proof. (1)⇒ (2) Assume that F is abelian. Then LF is residually finite (the

quotient maps onto the finite groups F oCn (n ≥ 2) do separate points), and

the C∗-algebra of an amenable, residually finite group, is residually finite-

dimensional (see Theorem 4.3 in [5]).

(2) ⇒ (1) If C∗LF is residually finite-dimensional, then LF is maxi-

mally almost periodic (i.e. finite-dimensional unitary representations sep-

arate points); but LF is also finitely generated. By Selberg’s lemma (finitely

generated linear groups are residually finite), we deduce that LF is residually

finite. Now a result of Gruenberg (Theorem 3.2 in [15]) implies that F is

abelian.

Let A be a C∗-algebra. We denote by Aab the abelianization of A, i.e.

the greatest abelian C∗-quotient of A; this is the quotient of A by the closed

2-sided ideal generated by commutators in A. If A = C∗G for some discrete

group G, then (C∗G)ab = C∗(Gab) (where Gab is the abelianization of G):

this follows easily from the universal property of C∗G.

Lemma 5. Set n = |F ab|. Then (C∗(LF ))ab ' Cn ⊗ C(S1).

Proof. By the previous observation we have

(C∗(LF ))ab = C∗(LabF ) = C∗(F ab × Z) ' Cn ⊗ C(S1).

Theorem 6. Let F1, F2 be finite groups, with F1 abelian. The following are

equivalent:

1. C∗(LF1) ' C∗(LF2);

2. F2 is abelian and |F1| = |F2|.

Proof. (2)⇒ (1). If F2 is abelian of the same order as F1, then CF1 ' CF2

and hence C∗(LF1) ' C∗(LF2) by a previous observation.

(1) ⇒ (2). Assume C∗(LF1) ' C∗(LF2). By Lemma 4, F2 is abelian, as

C∗(LF1) is residually finite-dimensional. By Lemma 5, the order of F ab is

recovered from C∗(LF ), so in our case |F1| = |(F2)
ab| = |F2|.

The stable rank of a C∗-algebra A is a number sr(A) ∈ {∞, 1, 2, 3, ...}
that was introduced by Rieffel [29]. An important feature is that, for A

unital, sr(A) = 1 if and only if the invertible group GL(A) is dense in A. We

extend a result of Poon ([26], Corollary 2.6) from F abelian to F arbitrary

finite group.
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Proposition 8. In the previous notation, sr(C∗(LF )) = 2.

Proof. Write C∗(LF ) = C∗B oα Z. By Theorem 7.1 in [29]: sr(C∗(LF )) ≤
sr(C∗B) + 1. Now sr(C∗B) = 1 as C∗B is an AF-algebra ([29], Proposition

3.5). So

sr(C∗(LF )) ≤ 2

and we are left to prove that sr(C∗(LF )) > 1.

We will make use of a result of Poon (Lemma 2.2 in [26]): if I is a

closed 2-sided ideal in a C∗-algebra A, we have sr(A) = 1 if and only if

sr(I) = sr(A/I) = 1 and moreover the map K1(A) → K1(A/I) is onto. So

it is enough to find a quotient of C∗(LF ) such that the map K1(C
∗(LF ))→

K1(C
∗(LF )/I) is not onto.

Let π be a non-trivial irreducible representation of F , say of dimension

d ≥ 1. Choose some unit vector ξ in the Hilbert space Hπ. We then have an

isometric embedding of finite-dimensional Hilbert spaces:

n⊗
k=−n

Hπ →
n+1⊗

k=−n−1

Hπ : x 7→ ξ ⊗ x⊗ ξ.

The inductive limit of this system of Hilbert spaces is a Hilbert space
⊗

k∈Z(Hπ, ξ).

We also have unitary representation
⊗n

k=−n π ofBn = ⊕nk=−nF on
⊗n

k=−nHπ,

that we embed as a sub-representation of
⊗n+1

k=−n−1 π by S 7→ IdHπ ⊗ S ⊗
IdHπ . Passing to the inductive limit, we get a unitary representation ρ =:⊗

k∈Z(π, ξ) of B on
⊗

k∈Z(Hπ, ξ), that is irreducible by Section III.3.1.2 in

[7].

Set σ = ρ⊕ 1B. At the C∗-level, σ induces a short exact sequence

0→ kerσ → C∗B → ρ(C∗B)⊕ C→ 0

which is α-equivariant. Taking crossed products by Z, we get a short exact

sequence

0→ (kerσ) oα Z→ C∗(LF )→ (ρ(C∗B) oα Z)⊕ C∗(Z)→ 0.

The proof will completed by showing that the induced map K1(C
∗(LF )) →

K1(ρ(C∗B) oα Z) ⊕ K1(C
∗(Z)) is not onto. Since K1(C

∗(LF )) = Z =

K1(C
∗Z), it is enough to see that K1(ρ(C∗B) oα Z) 6= 0. If d = 1, then

ρ(C∗B) = C and ρ(C∗B) oα Z = C∗(Z), so the result is easy. If d ≥ 2,
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then ρ(C∗B) = ⊗k∈ZMd(C), i.e. ρ(C∗B) is the UHF algebra Md∞(C). We

then consider the connecting map ∂ : K1(ρ(C∗B) oα Z) → K0(ρ(C∗B)) in

the Pimsner-Voiculescu exact sequence. Let [u] ∈ K1(ρ(C∗B) oα Z) be the

unitary implementing the shift. By Lemma 2 in [27], we have ∂[u] = −[1]

and [1] 6= 0 as Md∞(C) carries a unital trace. (Slightly more work gives

K1(ρ(C∗B) oα Z) = Z[1
d
].) This completes the proof.

The real rank of a C∗-algebra A was introduced by Brown and Pedersen

[10]; it is a number RR(A) ∈ {∞, 0, 1, 2, . . .}. A unital C∗-algebra satisfies

RR(A) = 0 if and only if invertible self-adjoint elements are dense among

self-adjoint elements in A. The condition RR(A) = 0 is clearly inherited by

quotients, so a C∗-algebra with RR(A) = 0 cannot map onto C(S1). This

already shows RR(C∗(LF )) > 0. On the other hand, for any C∗-algebra A,

we have RR(A) ≤ 2sr(A) − 1 (Proposition 1.2 in [10]). From Proposition

8 we deduce: RR(C∗(LF )) ∈ {1, 2, 3}. We therefore finish this paper by

pointing to an interesting problem.

Question: what is the exact value of RR(C∗(LF ))?
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