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We show that numerical approximations of Kolmogorov complexity (K) of graphs and networks
capture some group-theoretic and topological properties of empirical networks, ranging from
metabolic to social networks, and of small synthetic networks that we have produced. That K and
the size of the group of automorphisms of a graph are correlated opens up interesting connections
to problems in computational geometry, and thus connects several measures and concepts from
complexity science. We derive these results via two different Kolmogorov complexity approximation
methods applied to the adjacency matrices of the graphs and networks. The methods used are the
traditional lossless compression approach to Kolmogorov complexity, and a normalised version of a
Block Decomposition Method (BDM) based on algorithmic probability theory.
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I. INTRODUCTION

Graphs are an important tool for mathematically
analysing many systems, from interactions of chemical
agents, to ecological networks, to representing data ob-
jects in computer science [1, 2]. An interesting perspec-
tive regarding such graphs is to investigate the complex-
ity [3, 4] or information content of a graph [5]. While
Shannon information theory [5–7] and counting symme-
tries [8, 9] have been applied to measure information
content/complexity of graphs, little has been done, by
contrast, to demonstrate the utility of Kolmogorov com-
plexity as a numerical tool for graph and real-world net-
work investigations. Some theoretical connections be-
tween graphs and algorithmic randomness have been ex-
plored (e.g. [10]), but these are mostly related to formal
properties of random graphs.

Here we computationally study some of these numeri-
cal and real-world directions and show how Kolmogorov
complexity can capture group-theoretic and topological
properties of abstract and empirical graphs and networks.
We do this by introducing a measure of graph complexity
based on approximating the Kolmogorov complexity of
the adjacency matrix representation of a graph, which we
achieve by applying our recently developed Block Decom-
position Method (below) [11]. A theoretical advantage of
using Kolmogorov complexity K is that the measure K is
designed to capture all structure (i.e. non-randomness)
in an object, such as a graph. In contrast, only looking
at symmetries, for example, can miss structure and po-
tential simplicity in a graph. For example, Fig. 1 shows
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a graph with no symmetries, despite being far from ran-
dom, and indeed is intuitively simple.

This paper is structured as follows: The next two
Sections give background definitions and theorems; then
in Section IV we consider the question of whether ap-
proximations of Kolmogorov complexity can characterise
group-theoretic and topological properties of graphs and
networks, more specifically, we study the number of au-
tomorphisms of a graph and introduce a normalised mea-
sure of graph complexity; following this in Section V we
apply our measure to real-world networks; and finally
we study in Section VI algorithmic information-theoretic
similarities of networks with similar topologies created
using different mechanisms (e.g. random versus prefer-
ential attachment).

II. PRELIMINARIES

A. Graph notation

A graph g = (V,E) consists of a set of vertices V
(also called nodes) and a set of edges E. Two vertices,
i and j, form an edge of the graph if (i, j) ∈ E. Let
the binary adjacency matrix of g be denoted by Adj(A).
A graph can be represented by its adjacency matrix.
Assuming that the vertices are indices from 1 to n,
that is, that V = {1, 2, . . . , n}, then the adjacency
matrix of g is an n × n matrix, with entries ai,j = 1
if (i, j) ∈ E and 0 otherwise. The distance D(g)
of a graph g is the maximum distance between any
2 nodes of g. The size V (g) of a graph g is the ver-
tex count of g; similarly E(g) denotes the edge count of g.
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Definition 1. Two graphs g and h are isomorphic
if and only if there exists a permutation λ such that
λ(g) = h. (That is, g and h are topologically equivalent).

FIG. 1. An example of a graph which has no symmetries
(i.e. automorphism group size of 1, cf. Def. 2), despite being
intuitively simple, i.e. just a string of nodes with a single side
node.

The general problem of graph isomorphism appears,
for example, in chemistry [12, 13] and biology [14, 15].

Definition 2. An automorphism of a graph g is a
permutation λ of the vertex set V , such that the pair
of vertices (i, j) forms an edge if and only if the pair
(λ(i), λ(j)) also forms an edge.

The set of all automorphisms of an object forms a
group, called the automorphism group. Intuitively, the
size of the automorphism group A(g) provides a direct
measure of the abundance of symmetries in a graph
or network. Every graph has a trivial symmetry (the
identity) that maps each vertex to itself.

A clustering coefficient is a measure of the degree to
which nodes in a graph tend to cluster together (for
example, friends in social networks [16]).

Definition 3.

C(vi) =
2 |E(Ni)|
ni(ni − 1)

where E(Ni) denotes the set of edges with both nodes in
Ni, and C(vi) is the local clustering coefficient of node
vi.

III. APPROXIMATING KOLMOGOROV
COMPLEXITY

A. Background Results

Before describing our graph complexity measure, we
provide some pertinent definitions and results from the
theory of algorithmic randomness.

The Kolmogorov complexity of a string s is the length
of the shortest program p that outputs the string s,
when run on a universal Turing machine U . Formally
[17, 18],

Definition 4.

KU (s) = min{|p|, U(p) = s} (1)

By the invariance theorem [19], KU only depends on
U up to a constant c, so as is conventional, the subscript
U of K is dropped. A technical inconvenience of K as a
function taking s to the length of the shortest program
that produces s, is that K is semi-computable. Lossless
compression algorithms are, however, traditionally used
to approximate K given that compressibility is a suffi-
cient test of low Kolmogorov complexity.

The concept of algorithmic probability (also known as
Levin’s semi-measure) yields a method to approximate
Kolmogorov complexity. The algorithmic probability of
a string s is a measure that describes the probability
that a random program p produces the string s when
run on a universal (prefix-free [20]) Turing machine U .
Formally [18, 21, 22],

Definition 5.

m(s) =
∑

p:U(p)=s

1/2|p| (2)

The probability semi-measure m(s) is related to
Kolmogorov complexity K(s) in that m(s) is at least
the maximum term in the summation of programs
(m(s) ≥ 2−K(s)), given that the shortest program carries
the greatest weight in the sum. The algorithmic Coding
Theorem [23, 24] further establishes the connection
between m(s) and K(s).

Theorem 1. ([22]):

| − log2m(s)−K(s)| < c (3)

where c is some fixed constant, independent of s. The
theorem implies [23] (pp. 190-191) and [25, 26] that one
can estimate the Kolmogorov complexity of a string from
the frequency of production from running random pro-
grams by simply rewriting Eq. (3) as:

K(s) = − log2m(s) +O(1) (4)

The advantage of calculating m(s) as an approxima-
tion of K by application of the Coding Theorem is that
m(s) retrieves finer-grained values than compression al-
gorithms, which are unable to compress and therefore
distinguish complexity variations for small objects. Ap-
plications of m(s) have been explored in [25, 27–31],
and include applications to image classification [11] and
to the evolution of space-time diagrams of cellular au-
tomata [32]. Error estimations of approximations of m(s)
have also been reported before in [11], showing that esti-
mations of the constant involved in the invariance theo-
rem remain small when taking larger samples of Turing
machines from whichm(s) is calculated. Moreover, in the
same paper [11], it is shown that values betweenm(s) and
lossless compression algorithms, for experiments where
both methods overlap, remain close to each other. Here
Fig. 5 provides an indication of the error estimation as



3

compared to the estimation error of the lossless com-
pression algorithm used (Deflate), by comparing the Kol-
mogorov complexity of dual graphs estimated using both
m(s) and lossless compression.

B. The Coding Theorem Method

In [28] a technique was advanced for approximating
m(s) (hence K) by means of a function that considers
all Turing machines of increasing size (by number of
states). Let (n, k) denote the set of Turing machines
with n states and k symbols using the Busy Beaver
formalism [33] and let T be a Turing machine in (n, k)
with empty input. Then:

Definition 6.

D(n, k)(s) =
|{T ∈ (n, k) : T produces s}|
|{T ∈ (n, k) : T halts }|

(5)

For small values n and k, D(n, k) is computable for
values of the Busy Beaver problem that are known. The
Busy Beaver problem is the problem of finding the n-
state, k-symbol (or colour) Turing machine which writes
a maximum number of non-blank symbols on the tape
before halting and starting from an empty tape, as orig-
inally proposed by Rado [33]. Or alternatively, finding
the Turing machine that performs a maximum number
of steps when started on an initially blank tape before
halting. For n = 4 and k = 2, for example, the Busy
Beaver machine has maximum runtime S(n) = 107 [34],
from which one can deduce that if a Turing machine with
4 states and 2 symbols running on a blank tape hasn’t
halted after 107 steps then it will never stop. This is
how D was initially calculated with the help of the Busy
Beaver. However, the Busy Beaver problem is only com-
putable for small n, k values. Nevertheless, one can con-
tinue approximating D for a greater number of states
(and colours) proceeding by sampling as described in [30],
with an informed runtime after studying the behaviour
of the runtime distribution of the Busy Beavers.

The Coding Theorem Method [28, 30] is rooted in the
relation provided by algorithmic probability between fre-
quency of production of a string from a random program
and its Kolmogorov complexity (Eq. (3)). Essentially it
uses the fact that the more frequent a string is, the lower
Kolmogorov complexity it has; and strings of lower fre-
quency have higher Kolmogorov complexity.

C. Applying the Block Decomposition Method to
graphs

As an extension of the Coding Theorem Method [28,
30] of approximating bit string complexity (above), a
method to approximate the Kolmogorov complexity of
d-dimensional objects was advanced in [11]. The method
is called the Block Decomposition Method (BDM) and it

consists of decomposing larger objects into smaller pieces
for which complexity values have been estimated, then re-
constructing an approximation of the Kolmogorov com-
plexity of the larger object by adding the complexity of
the individual pieces according to rules of information
theory.

By taking the adjacency matrix of a graph as the rep-
resentation of the graph, we can use the BDM to estimate
K for graphs. Given the 2-dimensional nature of adja-
cency matrices we can use a variation of a Turing machine
that runs on a 2-dimensional tape in order to estimate
upper bounds of K of the adjacency matrix of a graph. A
popular example of a 2-dimensional tape Turing machine
is Langton’s ant [35]. Another way to see this approach
is to take the BDM as a form of deploying all possible 2-
dimensional deterministic Turing machines of a small size
in order to reconstruct the adjacency matrix of a graph
from scratch (or smaller pieces that fully reconstruct it).
Then as with the Coding Theorem Method (above), the
Kolmogorov complexity of the adjacency matrix of the
graph can be estimated via the frequency that it is pro-
duced from running random programs on the (prefix-free)
2-dimensional Turing machine.

Having outlined the theory, here we will use Eq. (5)
with n = 5 and k = 2 to approximate K. The choice
of this n and k is because 2-dimensional Turing machine
with n = 4 states and empty input produce all square
arrays (or matrices) of size 3 by 3 but not all of size 4 by
4. The larger the arrays, the better approximations of K
for large objects decomposed in square arrays, and n = 5
was a Turing machine size that we were able to run with
current technology on a medium-size supercomputer (∼
30 cpus) for about a month. Details are provided in [30].
One can continue calculating further and approximations
will improve accordingly.

Let D(5, 2) be the frequency distribution constructed
from running 2-dimensional machines (hence producing
arrays rather than strings) according to Eq. (5). Then,
for an array s,

Definition 7.

Km(s) = − log2(D(5, 2)(s)) (6)

where Km(s) is an approximation to K by means of the
Coding Theorem. Km(s) will then be used to estimate
the complexity of graphs as follows: Formally, we will
say that a graph g has complexity:

Definition 8.

K logm(g) =
∑

(ru,nu)∈Adj(g)d×d

log2(nu) +Km(ru) (7)

where Adj(g)d×d represents the set with elements
(ru, nu), obtained when decomposing the adjacency ma-
trix of g into non-overlapping squares of size d by d. In
each (ru, nu) pair, ru is one such square and nu its mul-
tiplicity (number of occurrences). From now on both
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Km and K logm will denote the same Eq. (7) given that
Eq. (6) will no longer be used.

In [11] a set of 2-dimensional Turing machines was ex-
ecuted to produce all square arrays of size d = 4. This
is why BDM is needed in order to decompose objects
of larger size into objects for which its Kolmogorov com-
plexity has been estimated. Using squares of size 4 is like
looking for local regularities that give an approximation
of the Kolmogorov complexity of the larger object. Be-
cause we will take d = 4 from this point on we will denote
by Km (sometimes also by K logm, but m should not be
taken as the base of the log, which is 2 in the definition
of K logm). The reader should simply bear in mind that
Km and K logm are approximations of Kolmogorov com-
plexity using the Block Decomposition Method (BDM).

D. Complexity and graph vertex order

FIG. 2. Wheel-18 graph.

FIG. 3. Wheel-18 graph with the nodes in five different or-
ders. Despite each adjacency matrix corresponding to the
same topology (i.e. the Wheel-18 graphs), the different node
orders affect the estimated complexity.

As a final note on our method of approximating K,
the order of the graph nodes in the adjacency matrix is
relevant for the complexity retrieved by BDM. This is es-
pecially important in highly symmetrical graphs. Fig. 3
shows five different adjacency matrices for the wheel
graph of 18 nodes (Fig. 2), with the nodes ordered in
different ways. The extreme left matrix of Fig. 3 repre-
sents the nodes in consecutive order, with the central one
at the right. The other four matrices sort the nodes in
random order. As we can see in this very regular graph,
the lowest complexity corresponds to the organized ma-
trix.

Hence, when studying the complexity of graphs, for
several applications we will be interested not only in the
Km value of a particular adjacency matrix, but in sev-
eral randomisations of the vertex order. Notice that it
is just the adjacency matrix representation that changes;
topologically the graph is the same in all permutations of
the nodes. In estimating complexity, it is reasonable to
consider that the complexity of a graph corresponds to
the lowest Km value of all permutations of the adjacency
matrix, as the shortest program generating the simplest
adjacency matrix is the shortest program generating the
graph. Hence when estimating Km we find a large num-
ber of programs producing the array from which a mini-
mum complexity value is calculated by means of the fre-
quency of the programs producing the array.

E. Normalising BDM

We now also introduce a normalised version of the
BDM. The chief advantage of a normalised measure is
that it enables a comparison among objects of different
sizes without allowing the size to dominate the measure.
This will be useful to compare graphs and networks of
different sizes. First, for a square array of size n× n, we
define:

MinBDM(n)d×d = bn/dc+ min
x∈Md({0,1})

Km(x)

Where Md({0, 1}) is the set of binary matrices of size
d × d. For any n, MinBDM(n)d×d returns the mini-
mum value of Eq. (7) for square matrices of size n, so it
is the minimum BDM value for graphs with n nodes. It
corresponds to an adjacency matrix composed by repeti-
tions of the least complex d × d square. It is the empty
(or complete) graph, because 0d,d and 1d,d are the least
complex squares (the most compressible) of size d.

Secondly, for the maximum complexity, Eq. ((7)) re-
turns the highest value when the result of dividing the
adjacency matrix into d × d squares contains the high-
est possible number of different squares (to increase the
sum of the right terms in Eq. (7)) and the repetitions
(if necessary) are homogeneously distributed along those
squares (to increase the sum of the left terms in Eq. (7)),
which should be the most complex ones in Md({0, 1}).
For n, d ∈ N, we define a function

fn,d : Md({0, 1}) 7−→ N

that verifies: ∑
r∈Md({0,1})

fn,d(r) = bn/dc2 (8)

max
r∈Md({0,1})

fn,d(r) ≤ 1 + min
r∈Md({0,1})

fn,d(r) (9)

Km(ri) > Km(rj) ⇒ fn,d(ri) ≥ fn,d(rj) (10)

The value fn,d(r) indicates the number of occurrences
of r ∈Md({0, 1}) in the decomposition into d×d squares
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of the most complex square array of size n×n. Condition
Eq. (8) establishes that the total number of component
squares is bn/dc2. Condition Eq. (9) reduces the square
repetitions as much as possible, to increase the number
of differently composed squares as far as possible and
distribute them homogeneously. Finally, Eq. (10) ensures
that the most complex squares are the best represented.
Then, we define:

MaxBDM(n)d×d =
∑

r ∈Md({0, 1}),
fn,d(r) > 0

log2(fn,d(r)) +Km(r)

Finally, the normalised BDM value of a graph g is:

Definition 9. Given graph g with n nodes, NBDM(g)d
is defined as

Km(g)−MinBDM(n)d×d
MaxBDM(n)d×d −MinBDM(n)d×d

(11)

This way we take the complexity of a graph g to have
a normalised value which is not dependent on the size
V (g) of the graph but rather on the relative complex-
ity of g with respect to other graphs of the same size.
The use of MinBDM(n)d×d in the normalisation is rele-
vant. Note that the growth of MinBDM(n)d×d is linear
with n, and the growth of MaxBDM(n)d×d exponential.
This makes that for complex graphs, the result of nor-
malising using just Km(g)/MaxBDM(n)d×d would be
similar to NBDM(g)d. But it would not work for sim-
ple graphs, as when the complexity of g is close to the
minimum, the value of Km(g)/MaxBDM(n)d×d drops
exponentially with n. For example, the normalised com-
plexity of an empty graph would drop exponentially in
its size. To avoid it, Eq. (11) considers not only the max-
imum but also the minimum.

Notice the heuristic character of fn,d. It is designed
to ensure a quick computation of MaxBDM(n)d×d,
and the distribution of complexities of squares of size
d ∈ {3, 4} in D(5, 2) ensures that MaxBDM(n)d×d is
actually the maximum complexity of a square matrix
of size n, but for other distributions it could work in
a different way. For example, condition (9) assumes
that the complexities of the elements in Md({0, 1}) are
similar. This is the case for d ∈ {3, 4} in D(5, 2), but it
may not be true for other distributions. But at any rate
it offers a way of comparing the complexities of different
graphs independent of their size.

Having defined our complexity measure and its nor-
malised version, we verify it by showing that it behaves
in accordance with theory when analysing edge density
and dual graphs.

F. Complexity and edge density

There has been a protracted discussion in the literature
as to whether the complexity of a structure increases with
its connectivity, beginning with a disconnected graph
with no edges, or whether instead it reaches a maxi-
mum before returning to zero for complete graphs [3].
In [36], for example, Gell-Mann asks about the algo-
rithmic complexity (description length) of small graphs
with eight vertices each and an increasing number of
edges E(g) = 0 to E(g) = V (g)(V (g) − 1)/2 (com-
plete graph). Gell-Mann reasonably argues that these
two extreme cases should have roughly equal complexity.
Graphs with 0.5 edge density should fall in between and
the other cases are more difficult to tell apart. Here we
provide an answer to the general question of the relation
between description complexity and edge count, an an-
swer which is in agreement with Gell-Mann while being
at odds with several other tailor made measures of com-
plexity [3], [37], [38] and [39]. We have created a number
of random graphs, all with 50 nodes but different num-
bers of edges, ranging from 1 to

(
50
2

)
= 1225, in intervals

of 1225/20 edges. For each interval, we created 20 ran-
dom graphs and generated 100 random permutations of
each (see Fig. 4). All the graphs (Fig. 4) in the same
interval correspond to aligned points. There are always
20 aligned points, but in most cases they overlap. Points
represent the minimum (Top) and standard deviations
(Bottom) of the complexity of the 100 permutations of
each group.

In fact, that the most complex binary strings (hence
binary adjacency matrices) will have roughly equal ze-
ros and ones is a standard result from Kolmogorov com-
plexity theory. This can be shown straightforwardly
by the following relation of K to Shannon entropy: If
x = x1, . . . , xl is a bit string, then [23],

K(x) ≤ lH0

(
1

l

l∑
i=1

xi

)
+O(log2(l)) (12)

where

H0(p) = −p log2(p)− (1− p) log2(1− p) (13)

is the Shannon entropy (in bits) of the string x. This then
implies that if the number of edges diverges from roughly
half of the maximum possible, then p must diverge from
0.5, and so the entropy H0 decreases, implying that x
cannot be algorithmically random. Hence, the most com-
plex strings must have roughly equal zeros and ones, or in
graph terms, they must have roughly half the number of
possible edges. Additionally, Eq. (12) predicts that Fig.
4 (Top) should look roughly like the graph of H0(p) vs p,
which it does: peaking at the centre, with gradual decay
to zero at p = 0, 1. Also, note the clear symmetry of the
plots in Fig. 4. This is because the value of Km is the
same for any given graph and its complement. Complex-
ity is minimal for empty or complete graphs (the most
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homogeneous matrices, all 0 or all 1), and so the stan-
dard deviation is also minimal. These observations show
that our measure is behaving as expected from theory.

FIG. 4. Estimated (normalised) Kolmogorov complexity for
increasing number of edges for random graphs of 50 nodes
each. The minimum complexity (Top) and standard deviation
(Bottom) is shown for 100 random permutations of 20 graphs
in each group.

G. Graph duality

The dual graph of a planar graph g is a graph that
has a vertex corresponding to each face of g, and an
edge joining two neighbouring faces for each edge in g.
If g′ is a dual graph of g, then A(g′) = A(g), making
the calculation of the Kolmogorov complexity of graphs
and their dual graphs interesting because of the correla-
tion between Kolmogorov complexity and A(g′), which
should be the same for A(g). One should also expect the
estimated complexity values of graphs to be the same as
those of their dual graphs, because the description length
of the dual graph generating program is O(1).

Note that unlike the t-statistic, the value of the D
statistic (and hence the P value) is not affected by scale
changes like using log. The KS-test is a robust test that
cares only about the relative distribution of the data.

We numerically approximated the Kolmogorov com-
plexity of dual graphs using both lossless compression
and the BDM applied to the adjacency matrices of 113
regular graphs with non-identical dual graphs found in
Mathematica’s built-in repository GraphData[]. The val-
ues (see Figs. 5) were normalised by a multiple of the
size of the adjacency matrices c|Adj(A)|. Graphs (g) and
their dual graphs (g′) were found to have estimated Kol-
mogorov complexity values that are close to each other.
The Spearman coefficient r between Km(g) and Km(g′)
NBDM estimations amounts to r = 0.96. Values ap-
proximated by lossless compression were calculated with
Deflate (a standard compression algorithm) implemented
in Mathematica’s Compress[] function. Notice that the
BDM (and therefore the NBDM) accumulates errors for
larger graphs if the complementary algorithm (CTM) is
not run for a greater number of Turing machines. A
more accurate analysis of divergence rates and accumu-
lated errors should be investigated. Robustness of algo-
rithmic probability approximations for different (Turing-
universal) computational formalisms (e.g. deterministic
cellular automata, Post tag systems, etc.) was investi-
gated in [29], where frequency distributions were calcu-
lated and their ranking order correlation also quantified
with the Spearman coefficient.

These results show that Kolmogorov complexity ap-
plied to adjacency matrices of graphs as a measure of
complexity behaves as expected, agreeing both with the-
ory and intuition. Having verified that our measure be-
haves as expected, we can now apply our measure to
analysing automorphism in graphs.

IV. GRAPH AUTOMORPHISMS AND
KOLMOGOROV COMPLEXITY

Intuition tells us that a graph with more symmetries
can be more compactly described and should therefore
have a lower Kolmogorov complexity. For example, if an
object is symmetrical a single symbol can be used for each
repetition, in addition to an additive constant of infor-
mation describing the type of transformation (e.g. rota-
tion, reversion, translation). Specifically, any collection
of graph nodes within the same orbit of a group trans-
formation will require only the bonds of one node to be
specified, with the other nodes then using the same infor-
mation to specify their bonds. Hence, the number of bits
required to specify the graph would be signifcantly low-
ered, reducing the graph Kolmogorov complexity. Con-
sequently, as the size of its automorphism group A(g) of
a graph g measures the extent of symmetries in g, one
would expect to find Kolmogorov complexity to be re-
lated to A(g).

We test this reasoning on connected regular graphs of
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FIG. 5. Log scatter-plots of graphs ranked by Kolmogorov
complexity approximated by two different methods. Top:
Dual graphs not ranked by the BDM method closely follow
the distribution of their respective duals as one would expect
from a complexity measure given that an O(1) program can
build a graph from its dual and vice-versa. Bottom: Loss-
less compression in agreement with BDM and the expected
complexity of dual graphs.

size V (g) = 20 nodes; Fig. 6 shows that A(g) and Km(g)
are indeed negatively related, as expected.

It is interesting that there are several graphs of low
Km and also low A(g) (see Fig. 7)—that is, there are
several graphs which have few symmetries but yet also
low complexity (this is analogous to Fig. 1). Hence our
measure is picking up structure in the graphs which are
not detectable by symmetry search.

We plotted analogous plots to Fig. 6 (i.e. connected
regular graphs) for different number of nodes, using V (g)
between 22 and 36 (see Appendix Fig. 14 and Fig. 15).
The results were qualitatively the same, with graphs of
larger K estimations having smaller A(g) values, and the
results also agreed with those using lossless compression

FIG. 6. Plot of graph automorphism group size A(g) (y-axis)
of all connected regular graphs of size V (g) = 20 available
in Mathematica’s GraphData[] versus Kolmogorov complexity
(x-axis) estimated by BDM. As theoretically expected, the
larger automorphism group size A(g) the smaller Kolmogorov
complexity estimations.

(Deflate) instead of BDM.
Notice that the measure Km does not quantitatively

agree with the theoretical K, as the theoretical K has an
upper bound of ∼200 bits, which would be arrived at by
specifying Adj(g) literally and in full, i.e. using the fact
that

K(g) ≤
(
V (g)

2

)
+ 2 log2

(
V (g)

2

)
+O(1) (14)

On the other hand, BDM retrieves values up to ∼800.
Nonetheless, BDM values (just like compression results)
are consistent upper bounds. BDM can provide better
approximations but it requires the calculation of a larger
sample of random programs [30] with square matrices of
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FIG. 7. The three graphs found in the boundaries of Fig. 6.
From left to right: The graph at the top left, with low Km

and large automorphism group size is the complete graph for
V (g) = 20. Bottom left with low Km but small automorphism
group size is the (4,5)-lattice. Bottom right, with high Km

and small automorphism group size: the (20,46)-noncayley
transitive graph.

larger size d, compared to the current d = 4 that the ex-
periments here introduced used. But in order for BDM
to scale up and provide better Km approximations to
the theoretical (and ultimately uncomputable) K, the
full method to consider is both Coding Theorem Method
(CTM) + BDM. CTM is, however, computationally very
expensive, while BDM is computationally very cheap, so
there is a trade-off in the application of the algorithm.
BDM alone is limited by the data generated by CTM, and
the range of application of BDM will be limited in this
respect, specially for increasingly larger objects (where
lossless compression can take over and behave better than
for small objects, hence CTM + BDM and lossless com-
pression are complementary tools). The chief advantage
of the CTM + BDM approach, is that CTM needs to run
only once and BDM can be then efficiently applied and
used many times on all sorts and types of data.

V. APPLYING BDM TO REAL-WORLD
NATURAL AND SOCIAL NETWORKS

We now move on to applying the normalised version
of the BDM (NBDM) to real world networks of dif-
ferent sizes. The 88 real-world networks range from
metabolic to social networks and have between 200 and
1000 nodes, and were extracted from the function Exam-
pleData[“NetworkGraph”] in Wolfram Mathematica v.9.
A subset of 20 of the specific real-world network examples
used in this experiment are in Table I (Appendix). Fig. 8
shows complexity plotted against automorphism group
size for these networks. We find that the same quali-
tative relationship between K and A(g) as reported in
Fig. 6 and Fig. 14 for synthetic networks (see Appendix)
are obtained for these larger real-world networks. This
provides further evidence that approximations of Kol-
mogorov complexity identify group-theoretic properties
(as well as topological properties, as will be shown in
Section VI) of graphs and networks. The automorphism
group sizes A(g) were calculated using the software Saucy

3.0 (http://vlsicad.eecs.umich.edu/BK/SAUCY/, ac-
cessed in September 2013), the most scalable symmetry-
finding tool available today [40]. Saucy only deals with
undirected graphs hence only directed versions of the
real-world sample of networks was used to calculate the
automorphism group size A(g) of each with Saucy. We
made directed graphs into undirected graphs by setting
an edge between two nodes i and j if in the original di-
rected graph there was a directed edge from i to j, j to
i, or both. Clearly undirected graphs are simpler than
directed graphs, in general. In the case of labelled nodes,
it is easy to see that the Kolmogorov complexity of a
random undirected graph is typically half of a directed
labelled graph, as the binary adjacency matrix for undi-
rected graphs is symmetric. For unlabelled graphs, it is
not so straightforward, due to complications of isomor-
phism (recall that there are typically many adjacency
graphs representing a given unlabelled graph). Nonethe-
less directed graphs typically require more bits to specify
their links, and are hence more complex. Exploring di-
rected graphs will be left for future work.

FIG. 8. Real-world networks also display the same corre-
lation between Kolmogorov complexity and automorphism
group size A(g). Networks with more symmetries have lower
estimated Kolmogorov complexity. Automorphisms count is
normalised by network size.

VI. THE ALGORITHMIC RANDOMNESS OF
SYNTHETIC COMPLEX NETWORKS

An objective and universal measure of complexity
should take into account symmetries as a simplifying fac-
tor when it comes to description size. Here we explore
how K can characterise topological properties of complex
networks.

The study of complex networks is currently an active
area of research [2]. The field has been driven largely

http://vlsicad.eecs.umich.edu/BK/SAUCY/
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by observations that many real-world networks (e.g. in-
ternet links or metabolic networks) have properties very
different from both regular and random graphs; the lat-
ter having been extensively studied in foundational work
by Paul Erdös and Alfréd Rényi. Specifically, two topo-
logical properties of many complex networks that have
been a focus of interest are (a) a scale-free (or power
law) distribution in node degree distributions, and (b)
the “small-world” property where graphs have high clus-
tering and the average graph distance D grows no faster
than the log of the number of nodes: D ∼ log(V (g)).

Observations of these properties have motivated the
development of many models to explain these features.
Of these, The Barabási-Albert model [41] reproduces
complex network features using a preferential attachment
mechanism, and the Watts-Strogatz model [42] also pro-
vides a mechanism for constructing small-world networks
with a rewiring algorithm (which involves starting from a
regular network and randomly rewiring); see for example
Fig. 9.

A. Network connectedness and complexity

We have theoretically substantiated and experimen-
tally demonstrated how network size, both in terms of the
number of nodes and the density of edges for a fixed num-
ber of nodes, can impact Kolmogorov complexity values
(above). However, Fig. 10 demonstrates that node and
edge count do not exclusively dominate K, as the graphs
in the plot all have exactly the same graph size and edge
density. The plot considers Watts–Strogatz graphs of
size V (g) = 1000 with rewiring probability ranging from
p = 0 (a regular graph) to p = 1 (a random graph).
The plot shows that the graph complexity increases with
p, thus illustrating a change not subject to graph size
or edge density, which are both the same for all cases.
Rather, the increasing complexity must be due to other
topological properties such as connectedness, link distri-
bution and graph diameter.

FIG. 9. Example of a Watts–Strogatz rewiring algorithm for
n = 100-vertex graphs and rewiring probability p = 0, .01
and 0.1 starting from a 2n-regular graph. The larger p the
closer to a random graph (rewiring p = 1).

FIG. 10. Kolmogorov complexity of the Watts-Strogatz model
as a function of the rewiring probability on a 1000-node net-
work starting from a regular ring lattice. Both the number
of nodes and the number of links are kept constant, while p
varies; Kolmogorov complexity increases with p.

B. Topological characterization of artificial
complex networks

Random networks and Barabási-Albert networks not
only have exactly the same vertex count V (g) in the ex-
periment the results of which are summarised in Fig. 12
and 13, but also the same number of edges on aver-
age. The Km difference can only therefore be attributed
to other topological properties related to each network
model. Observing that K can be affected by topologi-
cal features such as clustering coefficient (as shown in 11
for Watts-Strogatz networks), we proceeded to examine
other network models. As shown in Figs. 12 and 13, Km

approximated by the BDM assigns low Kolmogorov com-
plexity to regular graphs and Watts-Strogatz networks
and higher complexity to Barabási-Albert networks, with
random networks displaying the greatest Kolmogorov
complexity as expected. Indeed, that random graphs are
the most algorithmically complex is clear from a theo-
retical point of view: nearly all long binary strings are
algorithmically random, and so nearly all random unla-
belled graphs are algorithmically random [19].

Barabási-Albert networks are often referred to as scale
free, because the node distribution follows a power law.
However for small graphs such as those we analyse, it
is questionable whether the global scaling is meaning-
ful. An advantage of the method is, however, that it
still differentiates between different network models de-
spite their small size. The theory of algorithmic infor-
mation formally characterizes any object in terms of the
properties specified in its description from which the ob-
ject can be fully recovered. It is therefore vis-à-vis small
objects that the theory presents its greatest challenges,
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FIG. 11. The Watts-Strogatz model starts from a ring lattice,
hence highly compressible, then with rewiring probability p
(x-axis) the global clustering coefficient drops fast (Top) in
this 15× 103-node W-S network while approaching a random
graph (p = 1) slowing down at points p ∼ 0.2 and 0.5 (red
dots in plots) where compression ratios (Bottom) also display
slight slope variations.

given that the invariance theorem (see [19]) does not tell
us anything about the rate of convergence in values.

We also considered regular graphs for this compari-
son including Haars, circulants, noncayley transitives,
snarks, cubics, books, lattices and suns among other
types of regular networks. The average NBDM complex-
ity value of the regular graph group remained very low
(and the distribution mostly uniform with a slight peak
at around 0.5). The group of complex networks peak at
different Km values, with Watts-Strogatz networks rank-
ing low for p = 0.01 when the small world effect is pro-
duced, and then moves towards high Kolmogorov com-
plexity when rewiring probability p increases. Barabási-
Albert networks peak at NBDM value equal to 0.75 and
random graphs (Erdös-Rényi ) ranked the highest at an
estimated Kolmogorov complexity value close to 0.9.

FIG. 12. Distribution of 292 regular, Watts-Strogatz,
Barabási-Albert and Erdös-Rényi networks with V (g) = 30
(73 networks each) with W-S rewiring probability p = 0.05.
The number 73 comes from the number of regular graphs of
size V (g) = 30 in the used repository (Mathematica’s Graph-
Data[]).

FIG. 13. Distribution of 792 regular, Watts-Strogatz,
Barabási-Albert and Erdös-Rényi networks with V (g) = 20
(198 networks each) with W-S rewiring probability from
p = 0.05 in Fig. 12 to p = 0.5 as an experiment introducing
randomness to witness the shift of the W-S networks towards
higher complexity values of random graphs. For combinato-
rial reasons, there are more regular networks of size 30 than
20, hence this time the number 198 comes from the number
of regular graphs found in the (Mathematica’s GraphData[]).
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VII. CONCLUDING REMARKS

Our investigation connected disparate seminal subjects
in graph theory and complexity science. We have shown
computationally that Kolmogorov complexity approxi-
mations capture important group-theoretic and topologi-
cal properties of graphs and networks, properties related
to symmetry, density and connectedness, to mention a
few and the most important. For example, we found that
graphs with a large number of non-trivial automorphism
groups tend to have smaller Kolmogorov complexity val-
ues. This was verified both for small artificial graphs and
larger (but still rather small) empirical networks ranging
from biological to social networks.

We have also shown that graphs with differing al-
gorithmic randomness distinguish models of networks,
two of which are complex networks with different edge
generation mechanisms. A number of connections be-
tween graph and network properties to complexity that
other papers have claimed or have tried to connect be-
fore with hand-tailored measures were obtained naturally
with Kolmogorov complexity.

In future work, it may be interesting to take one class
of networks of a fixed size and analyse what aspects of

the topology change K, and what physical interpreta-
tions and implications may be associated to low and high
complexities. Additionally, due to the small graphs we
have analysed, it would be interesting to explore how ap-
proximations to K behave for increasing network size for
each model, and also with larger samples of graphs. Fi-
nally, extending these results to directed graphs would
be another possible direction to explore. The findings
suggest that analysing natural complex systems via Kol-
mogorov complexity may open new interesting avenues
of research.

Supplemental material, including all the
source code in Mathematica v.9 can be down-
loaded (and read with the free Mathematica
player) at http://complexitycalculator.org/
graphcomplexitysuplementalmaterialv1.zip.
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APPENDIX

This Appendix contains some additional figures to the main text.

FIG. 14. Plots of number of graph automorphisms normalised by maximum number of edges of g, A(g)/V (g)! (y-axis) versus
(normalised) Kolmogorov complexity (x-axis) estimated by NBDM for connected regular graphs found in Mathematica (Graph-
Data[]) with size V (g) = 20 to 36 nodes (only vertex sizes for which at least 20 graphs were found in the dataset were plotted).
The decay can be seen, though the relationship is noisy.

FIG. 15. Plots of number of graph automorphisms normalised by maximum number of edges of g, A(g)/V (g)! (y-axis) versus
Kolmogorov complexity (x-axis) estimated by lossless compressed length (Deflate) of connected regular graphs in Mathematica’s
GraphData[] with size V (g) = 20 to 36 nodes (only vertex sizes for which at least 20 graphs were found in the dataset were
plotted).
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Normalised

Network description (g) V (g) Km(g) (BDM) A(g)/V (g)

Metabolic Network of Actinobacillus

Actinomycetemcomitans 993 0.00336 4.42 × 1074

Metabolic Network Neisseria Meningitidis 981 0.00344 2.86 × 1076

Perl Module Authors Network 840 0.00350 4.63 × 10470

Metabolic Network Campylobacter Jejuni 946 0.00370 6.97 × 1074

Metabolic Network Emericella Nidulans 916 0.00378 3.43 × 1068

Pyrococcus Horikoshii Network 953 0.00382 4.22 × 1070

Pyrococcus Furiosus Network 931 0.00384 3.37 × 1068

Metabolic Network Thermotoga Maritima 830 0.00477 2.05 × 1064

Mycoplasma Genitalium Network 878 0.00480 6.75 × 1092

Treponema Pallidum Network 899 0.00499 2.71 × 1084

Chlamydia Trachomatis Network 822 0.00511 1.73 × 1075

Metabolic Network Pyrococcus Furiosus 751 0.00511 2.86 × 1050

Rickettsia Prowazekii Network 817 0.00523 1.39 × 1076

Arabidopsis Thaliana Network 768 0.00535 1.93 × 1060

Oryza Sativa Network 744 0.00569 3.45 × 1057

Chlamydia Pneumoniae Network 744 0.00635 2.00 × 1070

Metabolic Network Oryza Sativa 665 0.00640 9.49 × 1047

Metabolic Network Rickettsia Prowazekii 456 0.01080 1.10 × 1034

Metabolic Network Mycoplasma Pneumoniae 411 0.01280 1.85 × 1028

Metabolic Network Borrelia Burgdorferi 409 0.01460 2.10 × 1036

TABLE I. Random sample of 20 real-world networks [43, 44] from the 88 included in the study (and plotted in Fig. 8), sorted
from smallest to largest estimated Kolmogorov complexity values (NBDM). While the (negative) correlation between Km

and V (g) is almost perfect (Pearson coefficient -0.95) the (negative) correlation between Km and A(g) is significant (Pearson
coefficient -0.178) after normalisation by V (g) for the 88 elements. The full descriptions and sources of the networks are available
as supplemental material at http://www.complexitycalculator.com/graphcomplexitysuplementalmaterialv1.zip.

The correlation of Km and V (g) is explained by the theory. K (not Km but the true uncomputable value K) is
strongly positively correlated to V (g) because larger networks can always potentially reach higher complexity values
compared to small networks.

http://www.complexitycalculator.com/graphcomplexitysuplementalmaterialv1.zip
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FIG. 16. Random (Erdös–Rényi) graphs (denoted by r) versus complex networks (Watts-Strogatz and Barabási-Albert) (de-
noted by w and b) sorted by Kolmogorov complexity (smallest to largest Km log) as approximated by the BDM.
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