Correspondence and Independence of Numerical
Evaluations of Algorithmic Information Measures*

Fernando Soler-Toscano', Hector Zenil?! Jean-Paul Delahaye®
and Nicolas Gauvrit?
I Grupo de Légica, Lenguaje e Informacién, Universidad de Sevilla, Spain.
2 Department of Computer Science, University of Sheffield, UK.
3 Laboratoire d’Informatique Fondamentale de Lille, France.
4 LDAR, Université de Paris VII, Paris, France.

Abstract

We show that real-value approximations of Kolmogorov-Chaitin
(K,) using the algorithmic Coding theorem as calculated from
the output frequency of a large set of small deterministic Turing
machines with up to 5 states (and 2 symbols), is in agreement with
the number of instructions used by the Turing machines producing s,
which is consistent with strict integer-value program-size complexity.
Nevertheless, K, proves to be a finer-grained measure and a potential
alternative approach to lossless compression algorithms for small
entities, where compression fails. We also show that neither K,,
nor the number of instructions used shows any correlation with
Bennett’s Logical Depth LD(s) other than what’s predicted by the
theory. The agreement between theory and numerical calculations
shows that despite the undecidability of these theoretical measures,
approximations are stable and meaningful, even for small programs
and for short strings. We also announce a first Beta version of an
Online Algorithmic Complexity Calculator (OACC), based on a
combination of theoretical concepts, as a numerical implementation of
the Coding Theorem Method.
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1 Introduction

Kolmogorov complexity (also known as Kolmogorov-Chaitin or program-
size complexity) is recognized as a fundamental concept, but it is also often
thought of as having little or no applicability because it is not possible to pro-
vide stable numerical approximations for finite—particularly short—strings
by using the traditional approach, namely lossless compression algorithms.
We advance a method that can overcome this limitation, and which, though
itself limited in ways both theoretical and numerical, nonetheless offers a
means of providing sensible values for the complexity of short strings, com-
plementing the traditional lossless compression method that works well for
long strings. This is done at the cost of massive numerical calculations and
through the application of the Coding theorem from algorithmic probability
theory that relates the frequency of production of a string to its Kolmogorov
complexity.

Bennett’s logical depth, on the other hand, is a measure of the complex-
ity of strings that, unlike Kolmogorov complexity, measures the organized
information content of a string. In [23] an application inspired by the no-
tion of logical depth was reported in the context of the problem of image
classification. However, the results in this paper represent the first attempt
to provide direct numerical approximations of logical depth.

The independence of the two measures— Kolmogorov complexity and
logical depth— which has been established theoretically, is also numerically
tested and confirmed in this paper. Our work is in agreement with what
the theory predicts, even for short strings—despite the limitations of our ap-
proach. Our attempt to apply these concepts to practical problems (detailed
in a series of articles (see e.g. [13, 23])) is novel, and they are indeed proving
to have interesting applications where evaluations of the complexity of finite
short strings are needed [22].

In Sections 2, 3, 4 and 5, we introduce the measures, tools and formal-
ism used for the method described in Section 6. In Section 7, we report the
numerical results of the evaluation and analysis of the comparisons among
the various measures, particularly the connection between number of in-
structions, integer valued program-size complexity, Kolmogorov complexity
approximated by means of the Coding Theorem method, and logical depth.



2 Kolmogorov-Chaitin complexity

When researchers have chosen to apply the theory of algorithmic information
(AIT), it has proven to be of great value despite initial reservations [7]. It has
been successfully applied, for example, to DNA false positive repeat sequence
detection in genetic sequence analysis [18], in distance measures and clas-
sification methods [8], and in numerous other applications [17]. This effort
has, however, been hamstrung by the limitations of compression algorithms—
currently the only method used to approximate the Kolmogorov complexity
of a string—given that this measure is not computable.

Central to AIT is the basic definition of plain algorithmic (Kolmogorov-
Chaitin or program-size) complexity [15, 6]:

Ky (s) = min{|p[, U(p) = s} (1)

Where U is a universal Turing machine and p the program that, running
on U, produces s. Traditionally, the way to approach the algorithmic com-
plexity of a string has been by using lossless compression algorithms. The
result of a lossless compression algorithm applied to s is an upper bound
of the Kolmogorov complexity of s. Short strings, however, are difficult to
compress in practice, and the theory does not provide a satisfactory solution
to the problem of the instability of the measure for short strings.

The invariance theorem, however, guarantees that complexity values will
only diverge by a constant ¢ (e.g. the length of a compiler or a translation
program).

Invariance Theorem ([4, 17]): If U; and Uy are two universal Turing
machines, and Ky, (s) and Kp,(s) the algorithmic complexity of s for U
and U, respectively, there exists a constant ¢ such that:

(K (s) = Kup(s)] < ¢ (2)

Hence the longer the string, the less important ¢ is (i.e. the choice of
programming language or universal Turing machine). However, in practice
c can be arbitrarily large, thus having a very great impact on the stability
of Kolmogorov complexity approximations for short strings.

3 Bennett’s Logical Depth

A measure of the structural complexity (i.e. richness of structure and organi-
zation) of a string can be arrived at by combining the notions of algorithmic



information and time complexity. According to the concept of logical depth
[1, 2], the complexity of a string is best defined by the time that an unfolding
process takes to reproduce the string from its shortest description. While
Kolmogorov complexity is related to compression length, Bennett’s logical
depth is related to decompression time.

A typical example that illustrates the concept of logical depth, un-
derscoring its potential as a measure of complexity, is a sequence of fair
coin tosses. Such a sequence would have a high information content
(Kolmogorov complexity) because the outcomes are random, but it would
have no structure because it is easily generated. The string 1111...1111
would be equally shallow as measured by logical depth. Its compressed
version, while very small, requires little time to decompress into the original
string. In contrast, the binary expansion of the mathematical constant 7 is
not shallow, because though highly compressible and hence having a low
Kolmogorov complexity, it requires non-negligible computational time to
produce arbitrary numbers of digits from its shortest program (or indeed
from any short program computing the digits of 7). A detailed explanation
pointing out the convenience of the concept of logical depth as a measure of
organized complexity as compared to plain algorithmic complexity, which
is what is usually used, is provided in [10]. For finite strings, one of Ben-
nett’s formal approaches to the logical depth of a string is defined as follows:

Let s be a string and d a significance parameter. A string’s depth at
significance d is given by

LDy(s) = min{t(p) : (|p| — [p*| < d) and (U(p) = s)} (3)

with |p*| the length of the shortest program for s, (therefore K(s)). In
other words, LDy(s) is the least time ¢ required to compute s from a d-
incompressible program p on a universal Turing machine U.

Each of the three linked definitions of logical depth provided in [1] comes
closer to a definition in which near-shortest programs are taken into consid-
eration. In this experimental approach we make no such distinction among
significance parameters, so we will denote the logical depth of a string s
simply by LD(s).

Like K (s), LD(s) as a function of s is uncomputable. A novel feature
of this research is that we provide exact numerical approximations for both
measures— K (s) and LD(s)— for specific short s, allowing a direct compar-
ison. This was achieved by running a large set of random Turing machines
and finding the smallest and fastest machines generating each output string.



Hence these approximations are deeply related to another important mea-
sure of algorithmic information theory.

4 Solomonoff-Levin Algorithmic Probability

The algorithmic probability (also known as Levin’s semi-measure) of a string
s, is a measure that describes the expected probability of a random program
p running on a universal (prefix-free ') Turing machine U producing s. For-
mally [20, 16, 6],

m(s) = Sy py=s1/2" (4)

i.e. the sum over all the programs for which U with p outputs s and halts.

Levin’s semi-measure m(s) defines a distribution known as the Univer-
sal Distribution [14]. It is important to notice that the value of m(s) is
dominated by the length of the smallest program p (when the denomina-
tor of m reaches its largest value). The length of the smallest program p
that produces the string s is K(s). The semi-measure m(s) is therefore
also uncomputable, because for every s, m(s) requires the calculation of
2-K() involving K, which is itself uncomputable. An extension of m(s)
to non-binary alphabets is natural. More formally, ma(s) can be associated
with the original definition for binary strings. However, one may want to
extend ma(s) to mg(s), in which case for every k, the function s — my(s)
is semi-computable (for the same reason that s — ma(s) is uncomputable).

An alternative [13] to the traditional use of compression algorithms to
approximate K can be derived from a fundamental theorem that establishes
the exact connection between m(s) and K (s).

Coding Theorem (Levin [16]):
| —logy m(s) — K(s)| <¢ ()

This theorem posits that if a string has many long descriptions it also has
a short one. It elegantly connects frequency to complexity, more specifically
the frequency (or probability) of occurrence of a string with its algorithmic
(Kolmogorov) complexity. The Coding theorem implies that [9, 4] one can
calculate the Kolmogorov complexity of a string from its frequency [12, 11,
21, 13], simply rewriting the formula as:

The group of valid programs forms a prefix-free set, that is, no element is a prefix of
any other, a property necessary to keep 0 < m(s) < 1. For details see [4]).



K,(s) = —logym(s) + O(1) (6)

Where we will use K,, to indicate that K has been approximated by
means of m through the Coding theorem. An important property of m
as a semi-measure is that it dominates any other effective semi-measure p,
because there is a constant c, such that for all s, m(s) > ¢,u(s). For this
reason m(s) is often called a Universal Distribution [14].

5 Deterministic Turing machines

The ability of a universal Turing machine to simulate any algorithmic pro-
cess” has motivated and justified the use of universal Turing machines as the
language framework within which definitions and properties of mathematical
objects are given and studied.

However, it is important to describe the formalism of a Turing machine,
because exact values of algorithmic probability for short strings will be
approximated under this model, both for K(s)- through m(s) (denoted
by Kp,), and for K(s)-in terms of the number of instructions used by the
smallest Turing machine producing s.

Consider a Turing machine 7" with alphabet ¥ = {0,1} symbols,
{1,2,...,n} states and an additional halting state denoted by 0 (as de-
fined by Rado in his original Busy Beaver paper [19]). At the outset the
Turing machine is in its initial state 1.

The machine runs on a 2-way unbounded tape. Its behavior is deter-
mined by the transition function dr. So, at each step:

1. the machine’s current “state” (instruction) s; and
2. the tape symbol the machine’s head is scanning &

define the transition 7 (s, k) = (s', k', d) with

1. a unique symbol k' to write (the machine can overwrite a 1 on a 0, a
Oonal,alonal,anda0on a0);

2. adirection d to move in: —1 (left), 1 (right) or O (none, when halting);
and

3. a state s’ to transition into (which may be the same as the one it was
in).

2Under Church’s hypothesis.



The machine halts if and when it reaches the special halt state 0. There
are (4n + 2)?" Turing machines with n states and 2 symbols according to
the formalism described above, as there are 2n entries in the transition
table and any of them may have 4n + 2 possible instructions: there are 2
halting instructions (writing ‘0’ and ‘1’) and 4n non-halting instructions (2
movements, 2 possible symbols to write and n states). The output string
is taken from the number of contiguous cells on the tape the head of the
halting n-state machine has gone through. A Turing machine is considered
to produce an output string only if it halts. The output is what the machine
has written on the tape.

6 The Coding Theorem Method

In order to arrive at an approximation of m(s), a method based on the Cod-
ing theorem was advanced in [13]. It is captured in the following function.
Let T be a Turing machine in (n,m) with empty input. Then:

_ H{T € (n,m): T produces s}|
Din,m)(s) = H{T € (n,m) : T halts }| (M)

Where |E| denotes the number of elements of E. Let m be fixed. It
has been proved [21, 13] that the function n — D(n,m) is non-computable
(due to the denominator). However, D(n,m) for fixed and small values n
and m is computable for values of the Busy Beaver problem [19] that are
known. For n = 4, for example, the Busy Beaver function S tells us that
S(4,2) = 107 [3], so given a Turing machine with 4 states running on a
blank tape that hasn’t halted after 107 steps, we know it will never stop.

More generally, for every string s (with alphabet {0,1,...,m — 1}) one
can compute a sequence D(n,m)(s,t) which converges to D(n, m)(s) when
t — oo. For D(n,m)(s,t) we compute for t steps all m-Turing machines
with n states (there is a finite number of them) and compute the quotient
for D(n,m)(s) for machines that halted before ¢ steps. Since D(n,m)(s,t)
converges for every s to D(n,m)(s) (m fixed, n fixed, s fixed), the value of
D(n,m)(t) converges for fixed m and n. In this specific sense D(n,m) is
approachable, even if D(n,m)(s,t) as a function of increasing time ¢ may
increase when a machine produces s, or decrease when a machine halts
without producing s. By the invariance theorem (Eq. 2) and the Coding
theorem (Eq. 6), D(n,m)(s) is guaranteed to converge to m(s).

Exact values of D(n,m)(s,t) were previously calculated [21, 13] for
m = 2 symbols and n = 1,...,4 states for which the Busy Beaver val-




ues are known. That is, a total of 36, 10000, 7529536 and 11019960 576
Turing machines respectively. The distributions were very stable and are
proving to be capable of delivering applications that are also in agreement
with results from lossless compression algorithms [22] for boundary cases
(where both methods can be applied), hence validating the utility of both
methods (compression being largely validated by its plethora of applications
and by the fact that it achieves an approximation of K, see e.g. [17]). The
chief advantage of the Coding Theorem method, however, is that it is capa-
ble of dealing with short entities (unlike compression algorithms, which are
designed for large entities).

There are 26 559922791 424 Turing machines with 5 states and 2 sym-
bols, and the values of Busy Beaver functions for these machines are un-
known. In what follows we describe how we proceeded. Calculating D(5, 2)
is an improvement on our previous numerical evaluations and provides a
larger data set to work with, allowing us to draw more significant statistical
conclusions vis-a-vis the relation between these calculations and strict inte-
ger value program-size complexity, as well as to make a direct comparison
to Bennett’s logical depth.

6.1 Reduction techniques

We did not run all the Turing machines with 5 states to produce D(5,2),
because one can take advantage of symmetries and anticipate some of the
behavior of the Turing machines directly from their transition tables with-
out actually running them (this is impossible generally due to the halting
problem, but some reductions are possible). If (n,m) is the set of Turing
machines with n states and m symbols, as defined above, we reduce it to:

Red(n,m) ={T € (n,m) | 07(1,0) = (s,k,1),s ¢ {0,1},k € {0,--- ,m—1}}

where dp is the transition function of T. So Red(n,m) is a subset of (n,m),
with machines with the transition corresponding to initial state 1 and symbol
0 (this is the initial transition in a ‘0’-filled blank tape) moving to the right
and changing to a state different from the initial and halting ones.

For machines with two symbols,

[Red(n,2)| = 2(n — 1)(4n + 2)!

as there are 2(n — 1) different initial transitions (the machine can write ‘0’
or ‘1’ and move to one of the n — 1 states in {2,...,n}), and for the other
2n — 1 transitions there are 4n + 2 possibilities, as in (n,m).



After running Red(n,2) on a ‘0’-filled tape, the procedure for completing
the output strings so that they reach the frequency they have in (n,m) is:

e For every T € Red(n,2),

— If T halts and produces the output string s, add one occurrence
of rev(s), the reverse of s.

— If T" does not halt, count another non-halting machine.

These two completions add the output (or number of non-halting ma-
chines) of 2(n — 1)(4n + 2)?"~! new machines, one for each machine
in Red(n,2). These new machines are left-right symmetric to the ma-
chines in Red(n,2). Formally, this is the set

{T"| T € Red(n,2), o7/(s,k) = (s, K,—d)iff
or(s,k) = (s,k',d), for all s and k)}

When the original machine halts, its symmetric counterpart halts too
and produces the reversed strings, and if the original machine does not
halt, neither does the symmetric machine. This way we consider the
output of all machines with the initial transition moving to the left
and to a state not in {0,1}.

e Include (4n + 2)?"~! occurrences of string “1”. This corresponds to
the machines writing ‘1’ and halting at the initial transition. There
is just one possible initial transition for these machines (move to the
halting state, write ‘1’ and remain in the initial cell). The other 2n—1
transitions can have any of the 4n + 2 possible instructions.

e Include (4n + 2)?"~! occurrences of string “0”. This is justified as
above, for machines writing ‘0’ and halting at the initial transition.

e Include 4(4n + 2)?"~! additional non-halting machines, corresponding
to machines remaining in the initial state in the initial transition (these
machines never halt, as they remain forever in the initial state). There
are 4 initial transitions of this kind, as the machine can write 2 different
symbols and move in 2 possible directions.

If we sum |Red(n,2)| and the machines considered above, having completed
them in the manner described, we get the output corresponding to the (4n+
2)2" machines in (n,2).

Moreover, we need the output of those machines starting with a ‘0’-filled
tape and with a ‘1’-filled tape. But we do not run any machine twice, as



for every machine T' € (n,2) producing the binary string s starting with a
‘1’-filled tape, there is also a 0-1 symmetric machine 7" € (n,2) (where the
role of 1 (of 0) in the transition table of T" is the role of 0 (of 1) in the
transition table of T') that when starting with a ‘0’-filled tape produces the
complement to one of s, that is, the result of replacing all Os in s with 1s
and all 1s with 0s. So we add the complement to every one of the strings
found and count the non-halting machines twice to obtain the output of all
machines in (n,2) starting both with a ‘0’-filled tape and with a ‘1’-filled
tape.

To construct D(5,2), we ran the 9658153 742 machines in Red(5,2),
which is 4/11 of (5, 2)|. The output strings found in Red(5, 2), together with
their frequencies, were completed prior to constructing D(5, 2), following the
procedure explained above.

6.2 Detecting non-halting machines

It is useful to avoid running machines that we can easily determine will not
stop. These machines will consume the runtime without yielding an out-
put. As we have shown above, we can avoid generating many non-halting
machines. In other cases, we can detect them at runtime, by setting ap-
propriate filters. The theoretical limit of the filters is the halting problem,
which means that they cannot be exhaustive. But a practical limit is im-
posed by the difficulty of checking some filters, which takes up more time
than the runtime that is saved.

We have employed some filters that have proven useful. Briefly, these
are:

e Machines without transitions to the halting state. While
the transition table is being filled, the simulator checks to ascertain
whether there is some transition to the halting state. If not, it avoids
running it.

e Escapees. These are machines that at some stage begin running
forever in the same direction. As they are always reading new blank
symbols, as soon as the number ¢ of non-previously visited positions is
greater than the number n of states, we know that they will not stop,
because the machines have necessarily entered an infinite loop. Given
that ¢ > n, while visiting the last ¢ new cells, some of the n states
have been repeated, and will repeat forever, as the machine’s behavior
is deterministic.

10



e Cycles of period two. These cycles are easy to detect. They are
produced when in steps ¢ and t+2 the tape is identical and the machine
is in the same state and the same position. When this is the case, the
cycle will be repeated infinitely.

These filters were implemented in our C++ simulator, which also uses
the reduced enumeration of Section 6.1. To test them we calculated D(4,2)
with the simulator and compared the output to the list that was computed
in [13], arriving at exactly the same results, and thereby validating our
reduction techniques.

Running (4,2) without reducing the enumeration or detecting non-
halting machines took 952 minutes. Running the reduced enumeration with
non-halting detectors took 226 minutes.

6.3 Setting the runtime

The Busy Beaver for Turing machines with 4 states is known to be 107 steps
[3], that is, any Turing machine with 2 symbols and 4 states running longer
than 107 steps will never halt. However, the exact number is not known for
Turing machines with 2 symbols and 5 states, although it is believed to be
47176 870, as there is a candidate machine that runs for this length of time
and halts and no machine with a greater runtime has yet been found.

So we decided to let the machines with 5 states run for 4.6 times the
Busy Beaver value for 4-state Turing machines (for 107 steps), knowing that
this would constitute a sample significant enough to capture the behavior
of Turing machines with 5 states. The chosen runtime was rounded to 500
steps, which was used to construct the output frequency distribution for
D(5,2).

Not all 5-state Turing machines have been used to build D(5,2), since
only the output of machines that halted at or before 500 steps was taken
into consideration. As an experiment to ascertain how many machines we
were leaving out, we ran 1.23 x 10'° random Turing machines for up to 5000
steps. Among these, only 50 machines halted after 500 steps and before
5000 (that is, a fraction less than 1.75164 x 10~%, because in the reduced
enumeration we don’t include those machines that halt in one step or that
we know won’t halt before we generate them, so it’s a smaller fraction),
with the remaining 1496 491 379 machines not halting at 5000 steps. As far
as these are concerned—and given that the Busy Beaver values for 5 states
are unknown—we do not know after how many steps they would eventually
halt, if they ever do. According to the following analysis, our election of a

11



runtime of 500 steps therefore provides a good estimation of D(5,2).

The frequency of runtimes of (halting) Turing machines has theoretically
been proven to drop exponentially [5], and our experiments are closer to
the theoretically predicted behavior. To estimate the fraction of halting
machines that were missed because Turing machines with 5 states were
stopped after 500 steps, we hypothesize that the number of steps S a random
halting machine needs before halting is an exponential random variable,
defined by Yk > 1, P(S = k) o e~**. We do not have direct access to an
evaluation of P(S = k), since we only have data for those machines for which
S < 5000. But we may compute an approximation of P(S = k|S < 5000),
1 < k <5000, which is proportional to the desired distribution.

A non-linear regression using ordinary least-squares gives the approxi-
mation P(S = k|S < 5000) = ae™** with o = 1.12 and A\ = 0.793. The
residual sum-of-squares is 3.392 x 1073; the number of iterations with start-
ing values &« = 0.4 and A = 0.25 is nine. The model’s A is the same A
appearing in the general law P(S = k), and may be used to estimate the
number of machines we lose by using a 500 step cut-off point for running
time: P(k > 500) ~ e ~ 6 x 107173, This estimate is far below
the point where it could seriously impair our results: the less probable
(non-impossible) string according to D(5,2) has an observed probability
of 1.13 x 107°.

Although this is only an estimate, it suggests that missed machines are
few enough to be considered negligible.

7 Comparison of K,, with the number of instruc-
tions used and Logical Depth

We now study the relation of K, to the minimal number of instructions used
by a Turing machine producing a given string, and to Bennett’s concept of
logical depth. As expected, K,, shows a correlation with the number of
instructions used but not with logical depth.

7.1 Relating K,, to the number of instructions used

First, we are interested in the relation of K,,(s) to the minimal number of
instructions that a Turing machine producing a string s uses. Machines in
D(5,2) have a transition table with 10 entries, corresponding to the different
pairs (n,m), with s one of the five states and m either “0” or “1”. These
are the 10 instructions that the machine can use. But for a fixed input

12



not all instructions are necessarily used. Then, for a blank tape, not all
machines that halt use the same number of instructions. The simplest cases
are machines halting in just one step, that is, machines whose transition
for (init_state, blank_symbol) goes to the halting state, producing a string
“0” or “1”. So the simplest strings produced in D(5,2) are computed by
machines using just one instruction. We expected a correlation between the
K -complexity of the strings and the number of instructions used. As we
show, the following experiment confirmed this.

We used a sample of 2836 x 10 random machines in the reduced enumer-
ation for D(5,2), that is, 29% the total number of machines. The output of
the sample returns the strings produced by halting machines together with
the number of instructions used, the runtime and the instructions for the
Turing machine (see Fig. 1). In order to save space, we only saved the small-
est number of instructions found for each string produced, and the smallest
runtime corresponding to that particular number of instructions.

101

I I I I I I I I
3 4 5 6 7 8 9 10

Figure 1: Distribution chart of K, values according to the minimum number
of instructions required. Each “drop-like” distribution is the set of strings
that are minimally produced with the same number of instructions (hori-
zontal axis). The more instructions needed to produce the strings, the more
complex they are (vertical axis in K, units).

After doing the appropriate symmetry completions we have 99 584 dif-
ferent strings, which is to say almost all the 99 608 strings found in D(5,2).
The number of instructions used goes from 1 to 10. When 1 instruction is
used only “0” and “1” are generated, with a K,, value of 2.51428. With
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2 instructions, all 2-bit strings are generated, with a K, value of 3.32744.
For 3 or more instructions, Fig. 1 shows the distribution of values of K.
Table 1 shows the mean K, values for the different numbers of instructions
used.

Used inst. | Mean K,, | Mean Length

1 2.51428 1
2 3.32744 2
3 5.44828 3
4 8.22809 4
5 11.4584 5
6 15.3018 6.17949
7 20.1167 7.76515
8 26.0095 9.99738
9 31.4463 12.6341
10 37.5827 17.3038

Table 1: Mean K, and string length for different numbers of instructions
used.

This accords with our expectations. Machines using a low number of
instructions can be repeated many times by permuting the order of states.
So the probability of producing their strings is greater, which means low K,
values.

We can also look at the relation between the number of instructions used
and the length of the strings produced. For 1 < ¢ < 5, all strings of length
i are produced by machines using ¢ instructions. For a greater number of
instructions used, Fig. 2 shows the distribution of string lengths. Table 1
shows the mean length for each number of instructions used.

The correlation rg,, v = 0.83 is a good indicator for quantifying the ap-
parent relation between K, and the number N of instructions used, proving
a strong positive link. However, since the length L of outputs is linked with
both variables, the partial correlation rg,, ., = 0.81 is a better index. This
value indicates a strong relation between K,, and N, even while controlling
for L.

7.2 Logical Depth and K,,

As explained above, we have also found that the machines which generate
each string using the minimum number of instructions also have the mini-
mum runtime. These runtimes are related to Bennett’s logical depth (LD),

14



|
7 s 7 s 5 10

Figure 2: Minimum number of instructions required to produce a string
(horizontal axis) and distribution of string lengths (vertical axis).

as they are the shortest runtimes of the smallest Turing machines producing
each string in D(5,2).

I L L L L I L L L L I L L L L I L L L L I
100 200 300 400 500

Figure 3: LD and K, (min, mean and max values). The horizontal axis
shows the minimum runtime required to produce strings in D(5,2) (divided
into intervals of 25 steps) and the vertical axis the minimum, mean and
maximum K, values in the interval.
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Figure 4: LD and K,, (distribution). The vertical axis shows the distribu-
tion of K, for each runtime interval (horizontal axis). There is no correlation
between LD and K,, other than the expected one, viz. that both measures
identify simple objects as objects of low complexity.
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We have partitioned the runtime space from 1 to 500 (our runtime
bound) into 20 groups of equal length (25 steps). In order to explore the
relation of K, to Bennett’s LD we are interested in the values of K, for the
strings in each group. Fig. 3 shows the minimum, mean and maximum K,
values for each of the runtime groups. The same information is in Table 1.
The distribution of K,, values for the different groups is shown in Fig. 4.
For each interval, the maximum runtime is shown on the horizontal axis.

Runtime | Min K,, | Mean K,, | Max K,,

1-25 | 2.51428 25.6049 34.3638
26-50 | 21.0749 34.5849 39.0642
51-75 | 25.6104 37.0796 39.0642

76-100 | 26.8569 37.8125 39.0642
101-125 | 30.3777 38.1337 39.0642
126-150 | 32.5096 38.2150 39.0642
151-175 | 32.6048 38.3208 39.0642
176-200 | 32.3093 38.2850 39.0642
201-225 | 34.1573 38.4213 39.0642
226-250 | 33.9767 38.3846 39.0642
251-275 | 33.3093 38.4249 39.0642
276-300 | 33.3363 38.2785 39.0642
301-325 | 36.7423 38.5963 39.0642
326-350 | 32.8943 38.2962 39.0642
351-375 | 32.8163 38.3742 39.0642
376-400 | 36.0642 38.6081 39.0642
401-425 | 33.2062 38.4035 39.0642
426-450 | 33.1100 38.5543 39.0642
451-475 | 37.0642 38.7741 39.0642
476-500 | 36.0642 38.6147 39.0642

Table 2: Extreme and mean K, values for different runtime intervals.

We now provide some examples of the discordance between K, and LD.
“0011110001011” is a string with high K,, and low LD. Fig. 5 shows the
transition table of the smallest machine found producing this string. The
runtime is low—just 29 steps (of the 99584 different strings found in our
sample, only 3360 are produced in fewer steps), but it uses 10 instructions
and produces a string with complexity 39.0642. It is the greatest complexity
we have calculated for K,,. Fig. 6 shows the execution of the machine.

On the other hand, “(10)2°1” is a string with high LD but a low K,
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Sates: & (1), *(2), «(3), »(4), = (5, e(halting)

Figure 5: Transitions of a sample machine producing “0011110001011”.

Figure 6: Execution of the machine producing “0011110001011”. With a
low runtime, this sample machine produces a string with high complexity.
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value. Fig. 7 shows the transition table of the machine found producing this
string, and Fig. 8 depicts the execution. The machine uses 9 instructions and
runs for 441 steps (only 710 strings out of the 99584 strings in our sample
require more time) but its K, value is 33.11. This is a low complexity if
we consider that in K, there are 99 608 strings and that 90842 are more
complex than this one.

-0 5 0.8 & B-.5 -6

States: 4 (1), *(2), «(3), p(4), = (5), e(halting)

Figure 7: Transition table of a sample machine producing “(10)2°1”.

Figure 8: Execution of the sample machine producing “(10)?°1”. With a
high runtime, it produces a string with low complexity.

We may rate the overall strength of the relation between K,, and LD by
the correlation rg,, 1p = 0.41, corresponding to a medium positive link. As
we previously mentioned, however, the fact that the length L of the strings
is linked with both variables may bias our interpretation. A more relevant
measure is thus rx,, rp.. = —0.06, a slight negative but with no significant
value between K,,, and LD once L is controlled.
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8 Concluding remarks

The results in this paper are important because these measures can be better
studied and understood under a specific but widely known general formal-
ism. What we have found is very interesting because it is what one would
wish in the best case scenario, stable and reasonable distributions rather
than chaotic and unstable ones. The results also suggest that these mea-
sures can be applied even if numerically approximated using a specific model
of computation.

For example, as we expected, the Kolmogorov-Chaitin complexity eval-
uated by means of Levin’s Coding Theorem from the output distribution
of small Turing machines correlates with the number of instructions used
but not with logical depth. Logical depth also yields a measure that is
different from the measure obtained by considering algorithmic complex-
ity (K) alone, and this investigation proves that all these three measures
(Kolmogorov-Chaitin Complexity, Solomonoff-Levin Algorithmic Probabil-
ity and Bennett’s Logic Depth) are consistent with theoretical expectations.
K as a measure of program-size complexity is traditionally expected to be
an integer (the length of a program in bits), but when evaluated through
algorithmic probability using the Coding theorem it retrieves non-integer
values (still bits). These results confirm the utility of non-integer values in
the approximation of the algorithmic complexity of short strings, as they
provide finer values with which one can tell apart small differences among
short strings—which also means one can avoid the longer calculations that
would be necessary in order to tell apart the complexity of very small objects
if only integer values were allowed. Thus it also constitutes a complementary
and alternative method to compression algorithms.

An On-line Algorithmic Complezity Calculator (or OACC) is now avail-
able at http://www.complexitycalculator.com. It represents a long-term
project to develop an encompassing universal tool implementing some of the
measures and techniques described in this paper. It is expected to be ex-
panded in the future as it currently only implements numerical approxima-
tions of Kolmogorov complexity and Levin’s semi-measure for short binary
strings. More measures, more data and better approximations will be grad-
ually incorporated in the future, covering a wider range of objects, such as
longer binary strings, non-binary strings and multidimensional arrays (such
as images).
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