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Abstract. This paper is concerned with the existence and continuous depen-

dence of mild solutions to stochastic differential equations with non–instantaneous

impulses driven by fractional Brownian motions. Our approach is based on a
Banach fixed point theorem and Krasnoselski-Schaefer type fixed point theo-

rem.

1. Introduction. Stochastic differential equations have many applications in sci-
ence and engineering, and for this reason, these equations have been receiving much
attention over the last decades (see, e.g., [4, 8, 10, 34, 15, 19, 30, 29, 1] and ref-
erences therein). Also, in recent years, stochastic differential equations driven by
fractional Brownian motions (fBm) have attracted much attention and there are
only a few papers published in this field (see, e.g. [9, 11, 12]). Boudaoui et al. [6]
discussed the existence of mild solutions to stochastic impulsive evolution equations
with time delays, driven by fBm with Hurst index H > 1

2 .
On the other hand, impulsive effects exist in several evolution processes in which

states are changed abruptly at certain moments of time, related to fields such
as economics, bioengineering, chemical technology, medicine and biology etc (see
[20, 33, 13, 27, 28]). Boudaoui et al. [8] obtained several new sufficient conditions
to ensure the local and global existence and attractivity of mild solutions for sto-
chastic neutral functional differential equations with instantaneous impulses, driven
by fractional Brownian motions.
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Recently, Hernández and O’Regan [18] initially study on Cauchy problems for a
new type of first order evolution equations with non–instantaneous impulses. For
example, impulses start abruptly at the instant tk and their action continue on a
finite time interval (tk, sk]. This type of problem motivates to study certain dy-
namical changes of evolution processes in pharmacotheraphy [26, 14, 32]. As a
motivation, we can mention a simple situation concerning the hemodynamical be-
havior of a person who has a decompensation of the glucose level (either high or low
level). Then, this person can be prescribed some intravenous insulin to compensate
the level. Since the introduction of the drug in the bloodstream and its absorp-
tion are gradually continuous processes, we can interpret the above situation as an
impulsive action which remains active for a period of time, so a non-instantaneous
impulse is taking place.

Hence, it is important to take into account the effect of impulses in the investi-
gation of stochastic delay differential equations driven by fBm.

In this paper, our main objective is to establish sufficient conditions ensuring
existence and continuous dependence of mild solutions to the following first order
stochastic impulsive differential equation:

dy(t) = [Ay(t) + f(t, yt)]dt+ g(t, yt)BHQ (t), t ∈ Jk = (sk, tk+1], k = 0, · · · ,m, (1)

y(t) = hk(t, yt) t ∈ (tk, sk], k = 1, · · · ,m, (2)
y(t) = φ(t) ∈ DF0 , for a.e. t ∈ J0 = (−∞, 0], (3)

in a real separable Hilbert space H with inner product (·, ·) and norm ‖ · ‖, where
A : D(A) ⊂ H −→ H is the infinitesimal generator of a strongly continuous
semigroup of bounded linear operators {S(t), t ≥ 0} satisfying ‖S(t)‖2 ≤ M ,
BHQ is a fractional Brownian motion on a real and separable Hilbert space K,
with Hurst parameter H ∈ (1/2, 1), and with respect to a complete probability
space (Ω,F ,Ft, P ) furnished with a family of right continuous and increasing σ-
algebras {Ft, t ∈ J = [0, T ]} satisfying Ft ⊂ F . The impulse times tk satisfy
0 = t0 = s0 < t1 ≤ s1 < t2 < · · · < tm ≤ sm < tm+1 = T.

As for yt we mean the segment solution which is defined in the usual way, that
is, if y(·, ·) : (−∞, T ] × Ω → H, then for any t ≥ 0, yt(·, ·) : (−∞, 0] × Ω → H is
given by:

yt(θ, ω) = y(t+ θ, ω), for θ ∈ (−∞, 0], ω ∈ Ω,
Before describing the properties fulfilled by the operators f, g, σ and hk, we need to
introduce some notation and describe some spaces.

In this work, we will use an axiomatic definition of the phase space DF0 intro-
duced by Hale and Kato [17].

Definition 1.1. DF0 is a linear space of family of F0-measurable functions from
(−∞, 0] into H endowed with a norm ‖ · ‖DF0

, which satisfies the following axioms:
(A-1): If y : (−∞, T ] −→ H, T > 0 is such that y0 ∈ DF0 , then for every
t ∈ [0, T ) the following conditions hold

(i): yt ∈ DF0

(ii): ‖y(t)‖ ≤ L‖yt‖DF0

(iii): ‖yt‖DF0
≤ K(t) sup{‖y(s)‖ : 0 ≤ s ≤ t}+N(t)‖y0‖DF0

,
where L > 0 is a constant; K,N : [0,∞) −→ [0,∞), K is continuous, N
is locally bounded and K,N are independent of y(·).

(A-2): For the function y(·) in (A-1), yt is a DF0 -valued function for t ∈ [0, T ).
(A-3): The space DF0 is complete.
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Denote
K̃ = sup{K(t) : t ∈ J} and Ñ = sup{N(t) : t ∈ J}.

Now, for a given T > 0, we define

DFT
=
{
y : (−∞, T ]× Ω→ H, y|Jk

∈ C((tk, tk+1],H), for all ω ∈ Ω, for k = 0, . . .m,
y0 ∈ DF0 , and there exist y(t−k ) and y(t+k )
with y(tk) = y(t−k ), k = 1, · · · ,m, and sup

t∈[0,T ]

E(‖y(t)‖2) <∞
}
,

endowed with the norm

‖y‖DFT
= ‖φ‖DF0

+ sup
0≤s≤T

(E‖y(s)‖2)
1
2 ,

where Jk = (tk, tk+1], k = 0, 1, · · · ,m, and J0 = (−∞, 0].
Then we will consider our initial data φ ∈ DF0 .
Assume that BHQ is a K-valued fractional Brownian motion with increment co-

variance given by a non-negative trace class operator Q (see next section for more
details), and let us denote by L(K,H) the space of all bounded, continuous and
linear operators from K into H.

Then we assume that hk ∈ C((tk, sk]×DF0 ,H) for all k = 1, · · · ,m, f : J×DF0 →
H and σ : J ×DF0 → L0

Q(K,H) Here, L0
Q(K,H) denotes the space of all Q-Hilbert-

Schmidt operators from K into H, which will be also defined in the next section.
The plan of this paper is as follows. In Section 2 we introduce notations, defi-

nitions, and preliminary facts which are useful throughout the paper. In Section 3
we state and prove our main results by using the Banach fixed point theorem and
Krasnoselskii-Schaefer type fixed point theorem [3]. The continuous dependence of
mild solutions to problem (1)-(3) is investigated in Section 4. Finally, in Section 5,
an example is exhibited to illustrate the applicability of our results.

2. Preliminaries. In this section we introduce notations, definitions, and prelim-
inary facts which will be used throughout this paper. In particular, we consider a
fractional Brownian motion as well as the Wiener integral with respect to it. We
also establish some important and helpful results for our analysis. Needless to say
that we could omit this whole section and refer to other works already published for
these preliminaries (see, e.g. [6] and the references therein), but we aim at making
this paper as much self contained as possible and this is why we decided to include
this material in this section.

Recall that (Ω,F ,Ft, P ) is a complete probability space furnished with a family
of right continuous increasing σ-algebras {Ft, t ∈ J} satisfying Ft ⊂ F .

Definition 2.1. Given H ∈ (0, 1), a continuous centered Gaussian process βH =
{βH(t), t ∈ R}, with the covariance function

RH(t, s) = E[βH(t)βH(s)] =
1
2

(|t|2H + |s|2H − |t− s|2H), t, s ∈ R

is called a two−sided one−dimensional fractional Brownian motion, and H is the
Hurst parameter.

Now we aim at introducing the Wiener integral with respect to the one-dimensional
βH .
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Let T > 0 and denote by Λ the linear space of R−valued step functions on [0, T ],
that is, ψ ∈ Λ if

ψ(t) =
n−1∑
i=1

xi1[si,si−1)(t),

where t ∈ [0, T ], xi ∈ R and 0 = s1 < s2 < · · · < sn = T. For ψ ∈ Λ we define its
Wiener integral with respect to βH as∫ T

0

ψ(σ)dβH(σ) =
n−1∑
i=1

xi(βH(si+1)− βH(si)).

Let H be the Hilbert space defined as the closure of Λ with respect to the scalar
product

〈1[0,t], 1[0,s]〉H = RH(t, s).
Then, the mapping

ψ =
n−1∑
i=1

xi1[si,si+1) 7→
∫ T

0

ψ(σ)dβH(σ)

is an isometry between Λ and the linear space span {βH(t), t ∈ [0, T ]}, which can
be extended to an isometry between H and the first Wiener chaos of the fractional
Brownian motion spanL

2(Ω){βH(t), t ∈ [0, T ]} (see [31]). The image of an element
ψ ∈ H by this isometry is called the Wiener integral of ψ with respect to βH . Our
next goal is to give an explicit expression of this integral. To this end, consider the
kernel

KH(t, s) = cHs
1/2−H

∫ t

s

(u− s)H−3/2uH−1/2du,

where cH =
(

H(2H−1)

B(2−2H,H− 1
2 )

)1/2

, with B(·, ·) denoting the Beta function, and t ≤ s.
It is not difficult to see that

∂KH

∂t
(t, s) = cH

( t
s

) 1
2−H

(t− s)H− 3
2 .

Consider the linear operator K∗H : Λ −→ L2([0, T ]) given by

(K∗HΦ)(s) =
∫ t

s

Φ(t)
∂KH

∂t
(t, s)dt.

Then
(K∗H1[0,t])(s) = KH(t, s)1[0,t](s),

and K∗H is an isometry between Λ and L2([0, T ]) that can be extended to Λ (see
[2]). Considering W = {W (t), t ∈ [0, T ]} defined by

W (t) = βH((K∗H)−11[0,t]),

it turns out that W is a Wiener process and βH has the following Wiener integral
representation:

βH(t) =
∫ t

0

KH(t, s)dW (s).

In addition, for any Φ ∈ Λ,∫ T

0

Φ(s)βH(s)dW (s) =
∫ T

0

(K∗HΦ)(t)dW (t)
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if and only if K∗HΦ ∈ L2([0, T ]).

Also denoting

L2
H([0, T ]) = {Φ ∈ Λ,K∗HΦ ∈ L2([0, T ])},

since H > 1/2, we have
L1/H([0, T ]) ⊂ L2

H([0, T ]), (4)
see [23]. Moreover, the following useful result holds:

Lemma 2.2. [24]. For Φ ∈ L1/H([0, T ]),

H(2H − 1)
∫ T

0

∫ T

0

|Φ(r)‖Φ(u)‖r − u|2H−2drdu ≤ cH‖Φ‖2L1/H([0,T ]).

Next we are interested in considering a fractional Brownian motion with values
in a Hilbert space and giving the definition of the corresponding stochastic integral.

Let Q ∈ L(K,H) be a non-negative self−adjoint operator. Denote by L0
Q(K,H)

the space of all ξ ∈ L(K,H) such that ξQ
1
2 is a Hilbert-Schmidt operator. The

norm is given by
|ξ|2L0

Q(K,H) = tr(ξQξ∗).

Then ξ is called a Q-Hilbert-Schmidt operator from K to H.
Let {βHn (t)}n∈N be a sequence of two-sided one-dimensional standard fractional

Brownian motions mutually independent on (Ω,F , P ). When one considers the fol-
lowing series

∞∑
n=1

βHn (t)en, t ≥ 0,

where {en}n∈N is a complete orthonormal basis in K, this series does not necessarily
converge in the space K. Thus we consider a K−valued stochastic process BHQ (t)
given formally by the following series:

BHQ (t) =
∞∑
n=1

βHn (t)Q
1
2 en, t ≥ 0,

which is well-defined as a K-valued Q-cylindrical fractional Brownian motion.
Let ϕ : [0, T ] 7→ L0

Q(K,H) such that
∞∑
n=1

‖K∗H(ϕQ
1
2 en)‖L1/H([0,T ];H) <∞ (5)

Definition 2.3. Let ϕ : [0, T ] −→ L0
Q(K,H) satisfy (5). Then, its stochastic

integral with respect to the fractional Brownian motion BHQ is defined, for t ≥ 0, as
follows∫ t

0

ϕ(s)dBHQ (s) :=
∞∑
n=1

∫ t

0

ϕ(s)Q1/2endβ
H
n (s) =

∞∑
n=1

∫ t

0

(K∗H(ϕQ1/2en))(s)dW (s).

Notice that if
∞∑
n=1

‖ϕQ1/2en‖L1/H([0,T ];H) <∞, (6)

then in particular (5) holds, which follows immediately from (4).
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Lemma 2.4. [11] if ϕ : [0, T ] −→ L0
Q(K,H) satisfies∫ T

0

‖ϕ(s)‖2L0
Q(K,H)ds <∞,

then the series in (6) is well defined as a H-valued random variable and we have

E

∥∥∥∥∫ t

0

ϕ(s)dBHQ (s)
∥∥∥∥2

≤ 2Ht2H−1

∫ t

0

‖ϕ(s)‖2L0
Q(K,H)ds.

Definition 2.5. The map f : J ×DF0 → H is said to be L2-Carathéodory if
(i): t 7→ f(t, v) is measurable for each v ∈ DF0 ;
(ii): v 7→ f(t, v) is continuous for almost all t ∈ J ;
(iii): for each q > 0, there exists αq ∈ L1(J,R+) such that

E‖f(t, v)‖2 ≤ αq(t), for all ‖v‖2DF0
≤ q and for a.e. t ∈ J.

Definition 2.6. The map g : J ×DF0 → L0
Q(K,H) is said to be L2-Carathéodory

if
(i): t 7→ g(t, v) is measurable for each v ∈ DF0 ;
(ii): v 7→ g(t, v) is continuous for almost all t ∈ J ;
(iii): for each q > 0, there exists α1q ∈ L1(J,R+) such that

E‖g(t, v)‖2L0
Q(K,H) ≤ α1q(t), for all ‖v‖2DF0

≤ q and for a.e. t ∈ J.

The following result is known as Gronwal-Bihari Theorem.

Lemma 2.7. [5] Let u, g : J → R be positive real continuous functions. Assume
there exist c > 0 and a continuous nondecreasing function h : R → (0,+∞) such
that

u(t) ≤ c+
∫ t

a

g(s)h(u(s)) ds, ∀ t ∈ J.

Then

u(t) ≤ H−1

(∫ t

a

g(s) ds
)
, ∀ t ∈ J

provided ∫ +∞

c

dy

h(y)
>

∫ b

a

g(s) ds.

Here H−1 refers to the inverse of the function H(u) =
∫ u
c

dy
h(y) for u ≥ c.

One of the key tools in our approach is the following form of Burton-Kirk’s fixed
point theorem

Theorem 2.8 (Burton-Kirk’s fixed point theorem [3]). Let E be a Banach space,
and G1, G2 : E → E be two operators satisfying:

1. G1 is a contraction, and
2. G2 is completely continuous

Then, either the operator equation y = G1(y) + G2(y) possesses a solution, or the

set Ξ =
{
y ∈ E : λG1( yλ ) + λG2(y) = y, for some λ ∈ (0, 1)

}
is unbounded.
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3. Existence of mild solution. In this section, we first establish the existence of
mill solutions to stochastic differential equations with non-instantaneous impulses
driven by fractional Brownian motions (1)-(3). More precisely, we will formulate
and prove sufficient conditions for the existence of solutions to (1)-(3) with infinite
delay. In order to establish the results, we will need to impose some of the following
conditions.
• (H1) There exist constants Lf > 0, such that

E‖f(t, φ1)− f(t, φ2)‖2 ≤ Lf‖φ1 − φ2‖2DF0

for all φ1, φ2 ∈ DF0 ,t ∈ (sk, tk+1] and k = 0, . . . ,m.
• (H2) There exist constants Lg > 0 such that

E‖g(t, φ1)− g(t, φ2)‖2L0
Q(K,H) ≤ Lg‖φ1 − φ2‖2DF0

for all φ1, φ2 ∈ DF0 , t ∈ (sk, tk+1] and k = 0, . . . ,m.
• (H3) There exist constants Lhk

> 0, for all φ1, φ2 ∈ DF0 , t ∈ (tk, sk] and
k = 1, . . . ,m such that

E‖hk(t, φ1)− hk(t, φ2)‖2 ≤ Lhk
‖φ1 − φ2‖2DF0

and
hk ∈ C((tk, sk]×DF0 ,H), for all k = 1, · · · ,m.

• (H4) f and g are a L2-Caratheodory map and for every t ∈ [0, T ] the function
t→ f(t, yt) and t→ g(t, yt), yt ∈ DF0 are mesurable

• (H5) For the initial value φ ∈ DF0 , there exists a continuous nondecreasing
functions ψ,ψ1 : [0,∞)→ [0,∞) and p, p1 ∈ L1(J,R+) such that

E‖f(t, y)‖2 ≤ p(t)ψ(‖y‖2DF0
)

and
E‖g(t, y)‖2L0

Q(K,H) ≤ p1(t)ψ1(‖y‖2DF0
)

for a.e. t ∈ J and y ∈ DF0 with

K1

∫ tk+1

sk

p(s)ds+K2

∫ tk+1

sk

p1(s)ds <
∫ ∞
K0

ds

ψ(s) + ψ1(s)
k = 0, · · · ,m,

where

K0 = 4K̃2ME|φ̂(0)|2 + 4Ñ2‖φ̂‖2DF0
, K1 = 8K̃2Mt1, K2 = 16K̃2MHt2H−1

1 ,

for t ∈ [0, t1], and

K0 =
4K̃2ME|φ̂(0)|2 + 4Ñ2‖φ̂‖2DF0

1− 12K̃2MLh
,K1 =

12K̃2M(tk+1 − sk)

1− 12K̃2MLh
,

for t ∈ [sk, tk+1], k = 1, · · · ,m.

K2 =
24K̃2MHt2H−1

1

1− 12K̃2MLh
, for t ∈ [sk, tk+1], k = 1, · · · ,m.

• (H6) Operator A : D(A) ⊂ H → H is the infinitesimal generator of a strongly
continuous semigroup of bounded linear operators {S(t)}, t ∈ J which is
compact for t > 0 in H.

Now, we present the definition of mild solutions to our problem.
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Definition 3.1. Given φ ∈ DF0 , aH−valued stochastic process {y(t), t ∈ (−∞, T ]}
is called a mild solution of the problem (1)-(3) if y(t) is measurable and Ft-adapted,
for each t > 0, y(t) = φ(t) on (−∞, 0], for each t > 0, y(t) = hk(t, yt) for all
t ∈ (tk, sk] and each k = 1, · · · ,m, and

y(t) = S(t)φ(0) +
∫ t

0

S(t− s)f(s, ys)ds+
∫ t

0

g(s, ys)dBHQ d(s) for all t ∈ [0, t1]

and

y(t) = S(t− sk)hk(sk, ysk
) +

∫ t

sk

S(t− s)f(s, ys)ds+
∫ t

sk

g(s, ys)dBHQ d(s)

for all t ∈ [sk, tk+1] and every k = 1, · · · ,m.

For our main consideration of Problem (1)-(3), a Banach fixed point is used
to investigate the existence and uniqueness of solutions for impulsive stochastic
differential equations.

Theorem 3.2. Assume conditions (H1)-(H3) are satisfied and

L0 = max{µ1, µ2, µ3} < 1,

where µ1 = 4MK̃2(t21Lf + 2Ht2H1 lg), µ2 = 2K̃2Lhk
and µ3 = 6MK̃2(Lhk

+
Lf (tk+1 − sk)2 + 2H(tk+1 − sk)2HLg). Then, for every initial function φ ∈ DF0

there exists a unique associated mild solution y ∈ DFT
of the problem (1)-(3).

Remark 1. It is worth mentioning that the assumption L0 < 1 in Theorem 3.2
implies some kind of smallness of the functions f, g and hk in comparison with the
periods of time when the impulses are active or viceversa.

Proof. We first transform problem (1)-(3) into a fixed point one. Consider operator
Φ : DFT

→ DFT
defined by

Φ(y)(t) =



φ(t), t ∈ (−∞, 0],

S(t)φ(0) +
∫ t

0

S(t− s)f(s, ys)ds+
∫ t

0

S(t− s)g(s, ys)dBHQ (s), if t ∈ [0, t1],

hk(t, yt), if t ∈ (tk, sk],

S(t− sk)hk(sk, ysk
) +

∫ t

sk

S(t− s)f(s, ys)ds

+
∫ t

sk

S(t− s)g(s, ys)dBHQ (s), if t ∈ [sk, tk+1], k = 1, 2, · · · ,m.

For φ ∈ DF0 , we define φ̂ by

φ̂(t) =
{

φ(t), t ∈ (−∞, 0],
S(t)φ(0), t ∈ [0, T ];

then φ̂ ∈ DFT
.

Let y(t) = z(t) + φ̂(t),−∞ < t ≤ T . It is evident that z satisfies z0 = 0, for all
t ∈ (−∞, 0],

z(t) =
∫ t

0

S(t− s)f(s, zs + φ̂s)ds+
∫ t

0

S(t− s)g(s, zs + φ̂s)dBHQ (s), t ∈ [0, t1],
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z(t) = hk(t, zt + φ̂t), t ∈ (tk, sk]
and

z(t) = S(t− sk)hk(sk, zsk
+ φ̂sk

) +
∫ t

sk

S(t− s)f(s, zs + φ̂s)ds

+
∫ t

sk

S(t− s)g(s, zs + φ̂s)dBHQ (s), if t ∈ [sk, tk+1], k = 1, 2, · · · ,m.

Set D′FT
= {z ∈ DFT

, such that z0 = 0 ∈ DF0} and for any z ∈ DF0 we have

‖z‖FT
= ‖z0‖DF0

+ sup
t∈J

(E‖z(t)‖2)
1
2 = sup

t∈J
(E‖z(t)‖2)

1
2 ,

then (D′FT
, ‖ · ‖FT

) is a Banach space.
Let the operator Φ̂ : D′FT

→ D′FT
defined by

Φ̂(z) =



0, if t ∈ (−∞, 0],∫ t

0

S(t− s)f(s, zs + φ̂s)ds+
∫ t

0

S(t− s)g(s, zs + φ̂s)dBHQ (s), t ∈ [0, t1],

hk(t, zt + φ̂t), t ∈ (tk, sk],

S(t− tk)hk(sk, zsk
+ φ̂sk

) +
∫ t

sk

S(t− s)f(s, zs + φ̂s)ds

+
∫ t

sk

S(t− s)g(s, zs + φ̂s)dBHQ (s), if t ∈ [sk, tk+1].

From the assumption it is easy to see that Φ̂ is well defined. Now we only need
to show that Φ̂ is a contraction mapping.
Case 1: For u, v ∈ D′FT

and for t ∈ [0, t1], we have

E‖Φ̂(u)(t)− Φ̂(v)(t)‖2

≤ 2E
∥∥∥∥∫ t

0

S(t− s)(f(s, us + φ̂s)− f(s, vs + φ̂s))ds
∥∥∥∥2

+2E
∥∥∥∥∫ t

0

S(t− s)(g(s, us + φ̂s)− g(s, vs + φ̂s))dBHQ (s)
∥∥∥∥2

≤ 2M(t21Lf + 2Ht2H1 Lg)‖u− v‖2DF0

≤ 2M(t21Lf + 2Ht2H1 Lg)×
[
2K̃2 sup

0≤s≤T
E‖u(s)− v(s)‖2

+2Ñ‖u0‖2DF0
+ 2Ñ‖v0‖2DF0

]
,

≤ 4MK̃2(t21Lf + 2Ht2H1 Lg) sup
0≤s≤t1

E‖u(s)− v(s)‖2

Since ‖u0‖2DF0
= 0, ‖v0‖2DF0

= 0. Taking the supremum over t, we obtain

‖Φ̂(u)− Φ̂(v)‖2D′FT

≤ 4MK̃2(t21Lf + 2Ht2H1 Lg)‖v − u‖2D′FT

,

Case 2: For u, v ∈ D′FT
and for t ∈ (tk, sk], k = 1, 2, · · · ,m, we have

E‖Φ̂(u)(t)− Φ̂(v)(t)‖2 ≤ E
∥∥∥hk(t, ut + φ̂t)− hk(t, vt + φ̂t)

∥∥∥2

≤ Lhk
‖u− v‖2DF0

≤ 2K̃2Lhk
‖u− v‖D′FT
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Case 3: For u, v ∈ D′FT
and for t ∈ (sk, tk+1], k = 1, 2, · · · ,m, we have

E‖Φ̂(u)(t)− Φ̂(v)(t)‖2

≤ 3E‖S(t− tk)(h(sk, usk
+ φ̂sk

)− h(sk, vsk
+ φ̂sk

))‖2

+3E
∥∥∥∥∫ t

sk

S(t− s)(f(s, us + φ̂s)− f(s, vs + φ̂s))ds
∥∥∥∥2

+3E
∥∥∥∥∫ t

0

S(t− s)(g(s, us + φ̂s))− g(s, vs + φ̂s)))dBHQ (s)
∥∥∥∥2

≤ 3MLhk
‖u− v‖2DF0

+ 3MLf (tk+1 − sk)2‖x− y‖2DF0

+6H(tk+1 − sk)2HLg)‖x− y‖2DF0

≤ 6MK̃2(Lhk
+ Lf (tk+1 − sk)2 + 2H(tk+1 − sk)2HLg)‖x− y‖2D′FT

.

From above, we obtain

‖Φ̂u− Φ̂v‖2D′FT

≤ L0‖u− v‖2D′FT

,

which implies that Φ̂ is a contraction and therefore has a unique fixed point
z ∈ D′FT

. Since y(t) = z(t) + φ̂(t), t ∈ (−∞, T ], then y is a fixed point of the
operator Φ which is a mild solution of the problem (1)-(3). This completes the
proof.

The second result is established using a Krasnoselskii-Schaefer type fixed point
theorem. As we can easily see, we will weaken the assumption L0 < 1 in Theorem
3.2, but at the same time we need to impose some Carathéodory and Nagumo type
of assumptions as well as an additional smallness hypothesis. The counterpart is
that we can prove existence of at least one bounded solution for any initial value
satisfying appropriate assumptions.

Theorem 3.3. Assume that hk(t, 0) = 0, t ≥ 0, k ∈ N∗, and hypotheses (H3)−(H6)
hold. If L1 = max{2K̃2Lhk

, 2MK̃2Lhk
} < 1 then, problem (1)-(3) possesses at least

one mild solution on (−∞, T ].

Proof. As in the proof of Theorem 3.2, we first transform our problem (1)-(3) into
the same fixed point formulation, and keep the same notation for the operators Φ, Φ̂
and the spaces DFT

and D′FT
.

Now we split our operator Φ̂ into two parts in the following way:

Φ̂1(z) =


0, if t ∈ (−∞, t1],

hk(t, zt + φ̂t), t ∈ (tk, sk], k = 1, . . . ,m,

S(t− sk)hk(sk, zsk
+ φ̂sk

), if t ∈ [sk, tk+1], k = 1, . . . ,m,

and

Φ̂2(z)(t) =



0, if t ∈ (−∞, 0],
0, t ∈ (tk, sk], k = 1, . . . ,m,∫ t

sk

S(t− s)f(s, zs + φ̂s)ds

+
∫ t

sk

S(t− s)g(s, zs + φ̂s)dBHQ (s), if t ∈ [sk, tk+1], k = 0, . . . ,m



STOCHASTIC DELAY EVOLUTION EQUATIONS WITH IMPULSES 11

To use Theorem 2.8 we will verify that Φ̂1 is a contraction while Φ̂2 is a completely
continuous operator. For the sake of convenience, we split the proof into several
steps.

Step 1 : Φ̂1 is a contraction.

Case 1: For u, v ∈ D′FT
and for t ∈ (tk, sk], k = 1, 2, · · · ,m, we have

E‖(Φ̂1u)(t)− (Φ̂1v)(t)‖2 ≤ E
∥∥∥hk(t, ut + φ̂t)− hk(t, vt + φ̂t)

∥∥∥2

≤ 2K̃2Lhk
‖u− v‖2D′FT

Case 2: For u, v ∈ D′FT
and for t ∈ [sk, tk+1], k = 1, 2, · · · ,m, we have

E‖(Φ̂1u)(t)− (Φ̂1v)(t)‖2 ≤ E‖S(t− sk)[h(sk, usk
+ φ̂sk

)− h(sk, vsk
+ φ̂sk

)]‖2
≤ 2MK̃2Lhk

‖u− v‖2D′FT

Taking the supremum over t, we obtain

‖Φ̂1(u)− Φ̂1(v)‖2D′FT

≤ L1‖u− v‖2D′FT

.

Thus Φ̂1 is a contraction.

Next, we aim to prove that the operator Φ̂2 is completely continuous.
Step 2 : Φ̂2 is continuous .

Let zn be a sequence such that zn → z in D′FT
. Then, for t ∈ (sk, tk+1],

k = 0, 1, · · · ,m, and thanks to (H4) ,
we have by the dominated convergence theorem

E‖(Φ̂2z
n)(t)− Φ̂2(z)(t)‖2

≤ 2E
∥∥∥∥∫ t

sk

S(t− s)[f(s, zns + φ̂s)− f(s, zs + φ̂s)]ds
∥∥∥∥2

+2E
∥∥∥∥∫ t

sk

S(t− s)[g(s, zns + φ̂s)− g(s, zs + φ̂s)]dBHQ (s)
∥∥∥∥2

≤ 2M(tk+1 − sk)
∫ t

sk

E‖f(s, zns + φ̂s)− f(s, zs + φ̂s)‖2ds

+4MH(tk+1 − sk)2H−1

∫ t

sk

E‖g(s, zns + φ̂s)− g(s, zs + φ̂s)‖2L0
Q(K,H)ds→ 0.

as n→ +∞. Thus Φ̂2 is continuous on D′FT
.

Step 3. Φ̂2 maps bounded sets into bounded sets in D′FT
.

Let us first define Bq =
{
z ∈ D′FT

, ‖z‖2D′FT

≤ q,
}

where q > 0 is a given

number.
The set Bq is clearly a bounded closed convex set in D′FT

. We then have

‖zt + φ̂t‖2DF0
≤ 2(‖zt‖2DF0

+ ‖φ̂t‖2DF0
)

≤ 4(Ñ2‖φ‖2DF0
+ K̃2(q +ME‖φ(0)‖2))

= q′.
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Now, to prove that Φ̂2 maps bounded sets into bounded sets in D′FT
, it is enough

to show that for any q > 0, there exists a positive constant l such that for each
z ∈ Bq = {z ∈ D′FT

: ‖z‖2D′FT

≤ q}, one has ||Φ̂2(z)||2D′FT

≤ l.

Let z ∈ Bq, then for each t ∈ [sk, tk+1], k = 0, 1, · · · ,m, we have

E‖(Φ̂2z)(t)‖2

= E

∥∥∥∥∫ tk+1

sk

S(t− s)f(s, zs + φ̂s)ds+
∫ tk+1

sk

S(t− s)g(s, zs + φ̂s)dBHQ (s)
∥∥∥∥2

≤ 2ME

∥∥∥∥∫ tk+1

sk

f(s, zs + φ̂s)ds
∥∥∥∥2

+ 2ME

∥∥∥∥∫ tk+1

sk

g(s, zs + φ̂s)dBHQ (s)
∥∥∥∥2

≤ 2M(tk+1 − sk)
∫ tk+1

sk

p(s)ψ(‖zs + φ̂s‖2DF0
)ds

≤ 4MH(tk+1 − sk)2H−1

∫ tk+1

sk

p1(s)ψ1(‖zs + φ̂s‖2DF0
)ds

≤ 2M(tk+1 − sk)ψ(q
′
)‖p‖L1 + 4MH(tk+1 − sk)2H−1ψ1(q

′
)‖p1‖L1

= l,

where

l = max
0≤k≤m

{
2M(tk+1 − sk)ψ(q

′
)‖p‖L1 + 4MH(tk+1 − sk)2H−1ψ1(q

′
)‖p1‖L1

}
,

and therefore

‖Φ̂2(z)‖2D′FT

≤ l.

Step 4 : The map Φ̂2 is equicontinuous .
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Let τ1, τ2 ∈ (sk, tk+1], k = 0, · · · ,m, τ1 < τ2 and z ∈ Bq, we have

E‖(Φ̂2z)(τ2)− (Φ̂2z)(τ1)‖2

≤ 6(tk+1 − sk)
∫ τ1−ε

sk

‖S(τ2 − s)− S(τ1 − s)‖2E‖f(s, zs + φ̂s)‖2ds

+6(tk+1 − sk)
∫ τ1

τ1−ε
‖S(τ2 − s)− S(τ1 − s)‖2E‖f(s, zs + φ̂s)‖2ds

+6(tk+1 − sk)
∫ τ2

τ1

‖S(τ2 − s)‖2E‖f(s, zs + φ̂s)‖2ds

+12H(tk+1 − sk)2H−1×

×
∫ τ1−ε

sk

‖S(τ2 − s)− S(τ1 − s)‖2E‖g(s, zs + φ̂s)‖2L0
Q(K,H)ds

+12H(tk+1 − sk)2H−1×

×
∫ τ1

τ1−ε
‖S(τ2 − s)− S(τ1 − s)‖2E‖g(s, zs + φ̂s)‖2L0

Q(K,H)ds

+12H(tk+1 − sk)2H−1

∫ τ2

τ1

‖S(τ2 − s)‖2E‖g(s, zs + φ̂s)‖2L0
Q(K,H)ds

≤ 6(tk+1 − sk)
∫ τ1−ε

sk

‖S(τ2 − s)− S(τ1 − s)‖2αq′ (s)ds

+6(tk+1 − sk)
∫ τ1

τ1−ε
‖S(τ2 − s)− S(τ1 − s)‖2αq′ (s)ds

+6M(tk+1 − sk)
∫ τ2

τ1

αq′ (s)ds

+12H(tk+1 − sk)2H−1

∫ τ1−ε

sk

‖S(τ2 − s)− S(τ1 − s)‖2α1q′ (s)ds

+12H(tk+1 − sk)2H−1

∫ τ1

τ1−ε
‖S(τ2 − s)− S(τ1 − s)‖2α1q′ (s)ds

+12MH(tk+1 − sk)2H−1

∫ τ2

τ1

α1q′ (s)ds.

The right-hand side tends to zero as τ2 − τ1 → 0, and ε sufficiently small, since the
compactness of S(t) for t > 0 implies the continuity in the uniform operator topology
[25]. This proves the equicontinuity. Here, we consider the case 0 < τ1 < τ2 ≤ T ,
since the cases τ1 < τ2 ≤ 0 or τ1 ≤ 0 ≤ τ2 ≤ T are easier to handle.

Step 5. (Φ̂2Bq)(t) is precompact in H
As a consequence of Steps 3 to 4, together with the Arzelá-Ascoli theorem, it

suffices to show that Φ̂2 maps Bq into a precompact set in H.
Let sk < t < tk+1 be fixed and let ε be a real number satisfying sk < ε < t. For

z ∈ Bq we define

(Φ̂2εz)(t) = S(ε)
∫ t−ε

sk

S(t−s−ε)f(s, zs+φ̂s)ds+S(ε)
∫ t−ε

sk

S(t−s−ε)g(s, zs+φ̂s)dBHQ (s).

Since S(t) is a compact operator, the set

Yε(t) = {Φ̂2ε(z)(t) : z ∈ Bq}

is precompact in H for every ε, sk < ε < t. Moreover, for every z ∈ Bq we have
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E‖(Φ̂2z)(t)− (Φ̂2εz)(t)‖2

≤ 4(tk+1 − sk)
∫ t

t−ε
‖S(t− s)‖2E‖f(s, zs + φ̂s)‖2ds

+8H(tk+1 − sk)2H−1

∫ t

t−ε
‖S(t− s)‖2E‖g(s, zs + φ̂s)‖2L0

Q(K,H)ds

≤ 4M(tk+1 − sk)
∫ t

t−ε
αq′ (s)ds

+8MH(tk+1 − sk)2H−1

∫ t

t−ε
α1q′ (s)ds.

Thus, there are precompact sets arbitrarily close to the set Yε(t)={Φ̂2ε(z)(t) : z ∈
Bq}. Hence the set Y (t) = {Φ̂2(z)(t) : z ∈ Bq} is precompact in H, and therefore,
the operator Φ̂2 is completely continuous .

Step 6 : A priori bounds.
Now it remains to show that the set

Ξ = {z ∈ D
′

FT
: z = λΦ̂2(z) + λΦ̂1

( z
λ

)
, for some 0 < λ < 1}

is bounded.

Case 1: For each t ∈ [0, t1]

z(t) =
∫ t

0

S(t− s)f(s, zs + φ̂s)ds+
∫ t

0

S(t− s)g(s, zs + φ̂s)dBHQ (s).

This implies, for each t ∈ [0, t1],

E‖z(t)‖2 ≤2Mt1

∫ t

0

p(s)ψ(‖zs + φ̂s‖2DF0
)ds

+ 4MHt2H−1
1

∫ t

0

p1(s)ψ1(‖zs + φ̂s‖2DF0
)ds.

(7)

But

‖zt + φ̂t‖2DF0
≤ 2(‖zt‖2DF0

+ ‖φ̂t‖2DF0
)

≤ 4K̃2 sup
s∈[0,t1]

E‖z(s)‖2 + 4K̃2ME‖φ̂(0)‖2 + 4Ñ2‖φ‖2DF0
.

If we set w(t) the right hand side of the above inequality we have that

‖zt + φ̂t‖2DF0
≤ w(t),

and therefore (7) becomes

E‖z(t)‖2 ≤2Mt1

∫ t

0

p(s)ψ(w(s))ds+ 4MHt2H−1
1

∫ t

0

p1(s)ψ1(w)ds,

(8)
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Using (8) in the definition of w, we have that

w(t) ≤ 4K̃2

(
2Mt1

∫ t

0

p(s)ψ(w(s))ds+ 4MHt2H−1
1

∫ t

0

p1(s)ψ1(w)ds
)

+4K̃2ME‖φ̂(0)‖2 + 4Ñ2‖φ̂‖2DF0
.

(9)

Thus, we obtain

w(t) ≤ K0 +K1

∫ t

0

p(s)ψ(w(s))ds+K2

∫ t

0

p1(s)ψ1(w(s))ds. (10)

where K0 = 4K̃2ME‖φ̂(0)‖2 + 4Ñ2‖φ̂‖2DF0
, K1 = 8K̃2Mt1, and

K2 = 16K̃2MHt2H−1
1 .

Let us denote the right-hand side of the inequality (10) by v(t). Then we
have

v(0) = K0, w(t) ≤ v(t), t ∈ [0, t1],
and

v′(t) = K1p(t)ψ(w(t)) +K2p1(t)ψ1(w(t)), t ∈ [0, t1].
Using the increasing character of ψ and ψ1 we obtain

v′(t) ≤ K1p(t)ψ(v(t)) +K2p1(t)ψ1(v(t)), for a.e. t ∈ [0, t1].

This implies, for each t ∈ J, we have∫ v(t)

v(0)

ds

ψ(s) + ψ1(s)
≤ K1

∫ t1

0

p(s)ds+K2

∫ t1

0

p1(s)ds <
∫ ∞
K0

ds

ψ(s) + ψ1(s)
.

By Lemma 2.7,

v(t) ≤ Γ−1
0

(∫ t1

0

(K1p(t) +K2p1(t))dt
)
, t ∈ [0, t1]

where

Γ0(x) =
∫ x

K0

du

ψ(u) + ψ1(u)
.

Hence, there exists Mt0 > 0 such that

‖zt + φ̂t‖2DF0
< Mt0 .

From equation (8)

E‖z(t)‖2 ≤ 2Mt1

∫ t1

0

p(s)ψ(Mt0)ds+ 4MHt2H−1
1

∫ t1

0

p1(s)ψ1(Mt0)ds. (11)

Thus
‖z‖2D

F′
T

≤ Lt0 .

Cas 2: For each t ∈ (tk, sk], k = 1, · · · ,m

z(t) = hk(t, zt + φ̂t)

This implies, for each t ∈ (tk, sk],

E‖z(t)‖2 ≤ Lhk
‖zt + φ̂t‖2DF0

(12)

If

‖zt + φ̂t‖2DF0
≤ w(t),
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and therefore (12) becomes

E|z(t)|2 ≤Lhk
w(t).

(13)

Using (13) in the definition of w(t), we have that

w(t) ≤ 4K̃2Lhk
w(t) + 4K̃2ME|φ̂(0)|2 + 4Ñ2‖φ̂‖2DF0

. (14)

Thus, we obtain

w(t) ≤
4K̃2ME|φ̂(0)|2 + 4Ñ2‖φ̂‖2DF0

1− 4K̃2Lhk

= Mtk . (15)

This implies there is a constant Mtk > 0 such that

w(t) ≤Mtk , t ∈ (sk, tk].

So
‖zt + φ̂t‖DF0

≤Mtk , t ∈ (sk, tk].
From equation (13) we obtain that

E|z(t)|2 ≤ Lhk
Mtk (16)

Thus
‖z‖2D

F′
T

≤ Ltk .

Cas 3: For each t ∈ [sk, tk+1], k = 1 · · · ,m

z(t) = S(t− sk)hk(sk, zsk
+ φ̂sk

) +
∫ t

0

S(t− s)f(s, zs + φ̂s)ds

+
∫ t

0

S(t− s)g(s, zs + φ̂s)dBHQ (s).

This implies, for each t ∈ J ,

E‖z(t)‖2 ≤3MLhk
‖zsk

+ φ̂sk
‖2DF0

+ 3M(tk+1 − sk)
∫ t

0

p(s)ψ(‖zs + φ̂s‖2DF0
)ds

+ 6MH(tk+1 − sk)2H−1

∫ t

0

p1(s)ψ1(‖zs + φ̂s‖2DF0
)ds. (17)

But

‖zt + φ̂t‖2DF0
≤ 2(‖zt‖2DF0

+ ‖φ̂t‖2DF0
)

≤ 4K̃2 sup
s∈[0,T ]

E|z(s)|2 + 4K̃2ME|φ̂(0)|2 + 4Ñ2‖φ‖2DF0
.

If we set w(t) the right hand side of the above inequality we have that

‖zt + φ̂t‖2DF0
≤ w(t),

and therefore (17) becomes

E‖z(t)‖2 ≤3MLhk
w(t) + 3M(tk+1 − sk)

∫ t

sk

p(s)ψ(w(s))ds
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+ 6MH(tk+1 − sk)2H−1

∫ t

sk

p1(s)ψ1(w)ds.

(18)

Using (18) in the definition of w, we have that

w(t) ≤ 4K̃2

(
3MLhk

w(t) + 3M(tk+1 − sk)
∫ t

sk

p(s)ψ(w(s))ds

+ 4MH(tk+1 − sk)2H−1
∫ t
sk
p1(s)ψ1(w)ds

)
+ 4K̃2ME|φ̂(0)|2

+4Ñ2‖φ̂‖2DF0
.

(19)

Thus, we obtain

w(t) ≤ K̄0 + K̄1

∫ t

sk

p(s)ψ(w(s))ds+ K̄2

∫ t

sk

p1(s)ψ1(w(s))ds. (20)

where

K̄0 =
4K̃2ME|φ̂(0)|2 + 4Ñ2‖φ̂‖2DF0

1− 12K̃2MLhk

, K̄1 =
12K̃2M(tk+1 − sk)

1− 12K̃2MLhk

,

K̄2 =
24K̃2MHt2H−1

1

1− 12K̃2MLhk

.

Let us denote by v(t) the right-hand side of inequality (20). Then we have

v(0) = K̄0, w(t) ≤ v(t), t ∈ [sk, tk+1], k = 1, · · · ,m
and

v′(t) = K̄1p(t)ψ(w(t)) + K̄2p1(t)ψ1(w(t)), t ∈ [sk, tk+1].

Using the increasing character of ψ and ψ1 we obtain

v′(t) ≤ K̄1p(t)ψ(v(t)) + K̄2p1(t)ψ1(v(t)), for a.e. t ∈ [sk, tk+1].

This implies, for each t ∈ J, we have∫ v(t)

v(0)

ds

ψ(s) + ψ1(s)
≤ K̄1

∫ tk+1

sk

p(s)ds+ K̄2

∫ tk+1

sk

p1(s)ds <
∫ ∞
K̄0

ds

ψ(s) + ψ1(s)
.

By Lemma 2.7, we have

v(t) ≤ Γ−1
1

(∫ tk+1

sk

(K1p(t) +K2p1(t))dt
)
, t ∈ [sk, tk+1]

where

Γ1(x) =
∫ x

K̄0

d(u)
ψ(u) + ψ1(u)

.

Hence, there exists Mtk+1 > 0 such that

‖zt + φ̂t‖2DF0
< Mtk+1 .

From equation (18) we obtain that

E‖z(t)‖2 ≤3MLhk
Mtk+1 + 3M(tk+1 − sk)

∫ tk+1

sk

p(s)ψ(Mtk+1)ds
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+ 6MH(tk+1 − sk)2H−1

∫ tk+1

sk

p1(s)ψ1(Mtk+1)ds. (21)

Thus, there exists Ltk+1 > 0 such that

‖z‖2D
F′

T

≤ Ltk+1 .

This implies that the set Ξ is bounded.
As a consequence of Theorem 2.8 we deduce that Φ̂ has a fixed point, since

y(t) = z(t) + φ̂(t), t ∈ (−∞, T ]. Then y is a fixed point of the operator Ψ which is
a mild solution of the problem (1)-(3).

4. Continuous dependence of mild solutions. In this section we will prove
that continuous dependence of mild solutions with respect to the initial data.

Theorem 4.1. Suppose that assumptions (H1)−(H3) are fulfilled and the following
inequalities hold as well:

L2 = max{8MK̃2(t21Lf +Ht2H1 Lg), 4Lhk
K̃2, 12MK̃2(Lhk

+ t21Lf +Ht2H1 Lg)} < 1.

Then for each φ, φ∗ ∈ DF0 and y(t) = z(t) + φ̂(t), y∗(t) = z∗(t) + φ̂∗(t) the corre-
sponding mild solutions of the system (1)-(3), the following inequalities hold:

‖z − z∗‖2D′FT

≤ 8Mα2(M + 1)(t21Lf +Ht2H1 Lg)

1− 8MK̃2(t21Lf +Ht2H1 Lg)
‖φ̂− φ̂∗‖2DF0

, t ∈ [0, t1],

‖z − z∗‖2D′FT

≤ 4Lhk
α2(M + 1)

1− 4Lhk
K̃2

‖φ̂− φ̂∗‖2DF0
, t ∈ (tk, sk], k = 1, 2, · · · ,m

and

‖z − z∗‖2D′FT

≤ 12Mα2(M + 1)(lhk
+ t21Lf +Ht2H1 Lg)

1− 12MK̃2(Lhk
+ t21Lf +Ht2H1 Lg)

‖φ̂− φ̂∗‖2DF0
,

for t ∈ (sk, tk+1], k = 1, 2, · · · ,m.

Proof. Estimating for t ∈ [0, t1], we have

E‖z(t)− z∗(t)‖2 ≤ 2E
∥∥∥∥∫ t

0

S(t− s)[f(s, zs + φ̂s)− f(s, z∗s + φ̂s)]ds
∥∥∥∥2

+2E
∥∥∥∥∫ t

0

S(t− s)[g(s, zs + φ̂s)− g(s, z∗s + φ̂∗s)]dB
H
Q (s)

∥∥∥∥2

.

But

‖zt + φ̂t‖2DF0
≤ 2(‖zt‖2DF0

+ ‖φ̂t‖2DF0
)

≤ 4K̃2 sup
s∈[0,T ]

E‖z(s)‖2 + 4K̃2ME‖φ̂(0)‖2 + 4Ñ2‖φ‖2DF0

≤ 4K̃2 sup
s∈[0,T ]

E‖z(s)‖2 + 4α2(M + 1)‖φ‖2DF0
,

where α2 = max{K̃2, Ñ2}.

E‖z(t)− z∗(t)‖2 ≤ 2Mt21Lf (4K̃2‖z − z∗‖2D′FT

+ 4α2(M + 1)‖φ̂− φ̂∗‖2DF0
)

+2MHt2H1 Lg(4K̃2‖z − z∗‖2D′FT

+ 4α2(M + 1)‖φ̂− φ̂∗‖2DF0
)
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which implies that

‖z − z∗‖2D′FT

≤ 8Mα2(M + 1)(t21Lf +Ht2H1 Lg)

1− 8MK̃2(t21Lf +Ht2H1 Lg)
‖φ̂− φ̂∗‖2DF0

.

For t ∈ (tk, sk], k = 1, 2, · · · ,m, we have

E‖z(t)− z∗(t)‖2 ≤ E
∥∥∥hk(t, zt + φ̂t)− hk(t, z∗t + φ̂∗t )

∥∥∥2

≤ Lhk
(4K̃2‖z − z∗‖2D′FT

+ 4α2(M + 1)‖φ̂− φ̂∗‖2DF0
)

which implies that

‖z − z∗‖2D′FT

≤ 4Lhk
α2(M + 1)

1− 4Lhk
K̃2

‖φ̂− φ̂∗‖2DF0
.

In a similar way, when t ∈ [sk, tk+1], we have

E‖z(t)− z∗(t)‖2 ≤ 3E‖S(t− sk)[h(sk, zsk
+ φ̂sk

)− h(sk, z∗sk
+ φ̂∗sk

)]‖2

+3E
∥∥∥∥∫ t

sk

S(t− s)[f(s, zs + φ̂s)− f(s, z∗s + φ̂∗s)]ds
∥∥∥∥2

+3E
∥∥∥∥∫ t

sk

S(t− s)[g(s, zs + φ̂s)− g(s, z∗s + φ̂∗s)]dB
H
Q (s)

∥∥∥∥2

≤ 3MLhk
(4K̃2‖z − z∗‖2D′FT

+ 4α2(M + 1)‖φ̂− φ̂∗‖2DF0
)

+3Mt21Lf (4K̃2‖z − z∗‖2D′FT

+ 4α2(M + 1)‖φ̂− φ̂∗‖2DF0
)

+3MHt2H1 Lg(4K̃2‖z − z∗‖2D′FT

+ 4α2(M + 1)‖φ̂− φ̂∗‖2DF0
),

which implies that

‖z − z∗‖2D′FT

≤ 12Mα2(M + 1)(lhk
+ t21Lf +Ht2H1 Lg)

1− 12MK̃2(Lhk
+ t21Lf +Ht2H1 Lg)

‖φ̂− φ̂∗‖2DF0
.

5. An example. Consider the following stochastic partial differential equation
with delays and impulsive effects



∂
∂tu(t, ξ) = ∂2

∂ξ2u(t, ξ) + F (t, ut(., ξ))

+σ(t, ut(., ξ))
dBH

Q

dt , (t, ξ) ∈
m⋃
i=0

[si, ti+1]× [0, π],

u(t, ξ) = Hk(t, ut(., ξ)), k = 1, · · · ,m,
ut(., 0) = ut(., π) = 0, t ∈ [0,
u(t, ξ) = φ(t, ξ),−∞ ≤ t ≤ 0, 0 ≤ ξ ≤ π,

(22)

where BHQ denotes a fractional Brownian motion, the impulse times tk satisfy 0 =
t0 = s0 < t1 ≤ s1 < t2 < · · · < tm ≤ sm < tm+1 = T. As for ut we mean the segment
solution which is defined in the usual way, that is, if u(·, ·, ·) : (−∞, T ]××[0, π]×Ω→
H, then for any t ≥ 0, ut(·., ·, ·) : (−∞, 0]× [0, π]× Ω→ H is given by:

ut(θ, ξ, ω) = u(t+ θ, ξ, ω), for θ ∈ (−∞, 0], ω ∈ Ω,

F,G : [0, T ]×DF0 → R are continuous functions.



20 A. BOUDAOUI, T. CARABALLO AND A. OUAHAB

Let
y(t)(ξ) = u(t, ξ, .) t ∈ J, ξ ∈ [0, π],

hk(t, φ)(ξ) = Hk(t, φ(θ, ξ)), θ ∈ (−∞, 0], ξ ∈ [0, π], k = 1, · · · ,m,

f(t, φ)(ξ) = F (t, φ(θ, ξ)), θ ∈ (−∞, 0], ξ ∈ [0, π],

φ(θ)(ξ) = φ(θ, ξ), θ ∈ (−∞, 0], ξ ∈ [0, π],

Take K = H = L2([0, π]). We define the operator A by Au = u
′′
, with domain

D(A) = {u ∈ H, u′′ ∈ H and u(0) = u(π) = 0}.

Take K = H = L2([0, π]). We define the operator A by Au = ∂2

∂ξ2u. with domain

D(A) = {u ∈ H, ∂u∂ξ ,
∂2u
∂ξ2 ∈ H and u(0) = u(π) = 0}.

Then, it is well known that

Az = −
∞∑
n=1

n2〈z, en〉en, z ∈ H,

and A is the infinitesimal generator of a strongly continuous semigroup of bounded
linear operators {S(t)}t≥0 on H, which is given by

S(t)u =
∞∑
n=1

e−n
2t〈u, en〉en, u ∈ H, and en(u) = (2/π)1/2 sin(nu), n = 1, 2, · · · ,

is the orthogonal set of eigenvectors of A. It is well known that {S(t)}, t ∈ J , is
compact, and there exists a constant M ≥ 1 such that ‖S(t)‖2 ≤M .

In order to define the operator Q : K −→ K, we choose a sequence {σn}n≥1 ⊂ R+,
set Qen = σnen, and assume that

tr(Q) =
∞∑
n=1

√
σn <∞.

Define the process BHQ (s) by

BHQ =
∞∑
n=1

√
σnγ

H
n (t)en,

where H ∈ (1/2, 1), and {γHn }n∈N is a sequence of two-sided one-dimensional frac-
tional Brownian motions mutually independent.

In the case of t ∈ (−∞, T ]. Assume now that

(i): For all k = 0, 1 · · · ,m, the function f : [sk, tk+1] × DF0 −→ H defined by
f(t, u)(·) = F (t, u(·)) is continuous and we impose suitable conditions on F
to verify assumption (H1). For example we take

F (t, φ) = t+
φ

1 + ‖φ‖DF0

, t ∈ [0, T ], φ ∈ DF0 .

(ii): For all k = 0, 1 · · · ,m, the function g : [sk, tk+1] × DF0 −→ L0
Q(K,H)

defined by g(t, u)(.) = G(t, u(.)) is continuous and it is easy to impose suitable
conditions on G to make assumption (H2) hold. We take

G(t, φ) = t2 + sinφ, t ∈ [0, T ], φ ∈ DF0 .
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(iii): For all k = 1, 2 · · · ,m, the function hk : (tk, sk] × DF0 −→ H defined
by hk(t, u)(.) = Hk(t, u(.)) is continuous and it is easy to impose suitable
conditions on Hk to make assumption (H3) hold.

Hk(t, φ)) = Kkφ, ξ ∈ Ω, k = 1, · · · ,m, t ∈ [0, T ], φ ∈ DF0 ,

where Kk ∈ R, k = 1, . . . ,m.
Thus the problem (22) can be written in the abstract form
dy(t) = A[y(t) + f(t, yt)]dt+ g(t, yt)BHQ (t), t ∈ Jk = (sk, tk+1], k = 0, · · · ,m ,
y(t) = hk(t, yt) t ∈ (tk, sk], k = 1, · · · ,m,
y(t) = φ(t), for a.e. t ∈ (−∞, 0].

Thanks to these assumptions, it is straightforward to check that (H1)-(H3) hold and
thus assumptions in Theorem 3.2 are fulfilled, ensuring that system (22) possesses
a mild solution on (−∞, T ].
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