
ORIGINAL RESEARCH
published: 28 June 2017

doi: 10.3389/fnins.2017.00350

Frontiers in Neuroscience | www.frontiersin.org 1 June 2017 | Volume 11 | Article 350

Edited by:

Emre O. Neftci,

University of California, Irvine,

United States

Reviewed by:

Hesham Mostafa,

University of California, San Diego,

United States

Thomas Nowotny,

University of Sussex, United Kingdom

*Correspondence:

Bernabé Linares-Barranco

bernabe@imse-cnm.csic.es

†
These authors have contributed

equally to this work.

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 24 March 2017

Accepted: 06 June 2017

Published: 28 June 2017

Citation:

Stromatias E, Soto M,

Serrano-Gotarredona T and

Linares-Barranco B (2017) An

Event-Driven Classifier for Spiking

Neural Networks Fed with Synthetic or

Dynamic Vision Sensor Data.

Front. Neurosci. 11:350.

doi: 10.3389/fnins.2017.00350

An Event-Driven Classifier for Spiking
Neural Networks Fed with Synthetic
or Dynamic Vision Sensor Data
Evangelos Stromatias †, Miguel Soto †, Teresa Serrano-Gotarredona and

Bernabé Linares-Barranco*

Instituto de Microelectrónica de Sevilla (CNM), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de

Sevilla, Sevilla, Spain

This paper introduces a novel methodology for training an event-driven classifier within

a Spiking Neural Network (SNN) System capable of yielding good classification results

when using both synthetic input data and real data captured from Dynamic Vision Sensor

(DVS) chips. The proposed supervised method uses the spiking activity provided by an

arbitrary topology of prior SNN layers to build histograms and train the classifier in the

frame domain using the stochastic gradient descent algorithm. In addition, this approach

can cope with leaky integrate-and-fire neuron models within the SNN, a desirable feature

for real-world SNN applications, where neural activation must fade away after some

time in the absence of inputs. Consequently, this way of building histograms captures

the dynamics of spikes immediately before the classifier. We tested our method on

the MNIST data set using different synthetic encodings and real DVS sensory data

sets such as N-MNIST, MNIST-DVS, and Poker-DVS using the same network topology

and feature maps. We demonstrate the effectiveness of our approach by achieving

the highest classification accuracy reported on the N-MNIST (97.77%) and Poker-DVS

(100%) real DVS data sets to date with a spiking convolutional network. Moreover, by

using the proposed method we were able to retrain the output layer of a previously

reported spiking neural network and increase its performance by 2%, suggesting that

the proposed classifier can be used as the output layer in works where features are

extracted using unsupervised spike-based learningmethods. In addition, we also analyze

SNN performance figures such as total event activity and network latencies, which

are relevant for eventual hardware implementations. In summary, the paper aggregates

unsupervised-trained SNNs with a supervised-trained SNN classifier, combining and

applying them to heterogeneous sets of benchmarks, both synthetic and from real DVS

chips.

Keywords: spiking neural networks, supervised learning, event driven processing, DVS sensors, convolutional

neural networks, fully connected neural networks, neuromorphic

1. INTRODUCTION

Deep learning and deep artificial neural networks (LeCun et al., 2015; Schmidhuber, 2015) currently
hold the state-of-the-art performance in virtually any machine learning benchmark ranging from
computer vision, speech recognition, natural language processing, audio recognition to name a
few and in several cases they have surpassed human recognition rates (Schmidhuber, 2012; He
et al., 2015). For these reasons they have been termed as one of the breakthrough technologies of

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
https://doi.org/10.3389/fnins.2017.00350
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2017.00350&domain=pdf&date_stamp=2017-06-28
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:bernabe@imse-cnm.csic.es
https://doi.org/10.3389/fnins.2017.00350
http://journal.frontiersin.org/article/10.3389/fnins.2017.00350/abstract
http://loop.frontiersin.org/people/173788/overview
http://loop.frontiersin.org/people/286002/overview
http://loop.frontiersin.org/people/14450/overview
http://loop.frontiersin.org/people/12772/overview

Stromatias et al. An Event-Driven Classifier for SNNs

our decade (MIT Technology Review, 2013), and have attracted a
lot of attention from both academia and industry. Deep learning
enables hierarchical feature extraction; with each additional layer
the network learns to extract more abstract features, while it
has been proven that by increasing the number of layers the
classification performance improves (Hinton and Salakhutdinov,
2006). The vast number of operations these state-of-the-art deep
neural networks require prohibits their execution on platforms
with limited processing and energy resources. Currently, their
execution is offloaded to remote computer clusters. However, this
introduces additional communication overhead, which increases
the overall system latency. For some applications, fast responses
and low-energy consumption are crucial features as for example
in mobile platforms, robotic, and critical systems.

Spiking Neural Networks (SNNs) (Gerstner and Kistler, 2002)
have recently proven to be an interesting alternative to simulate
large-scale neural networks (Izhikevich and Edelman, 2008;
Ananthanarayanan et al., 2009; Eliasmith et al., 2012). SNNs are
inherently asynchronous; similarly to biology, spiking neurons
communicate through stereotypical events often referred to
as spikes. Each spiking neuron updates its internal state
upon receiving an incoming spike and generates an output
whenever its membrane voltage crosses a threshold value. Recent
advances in neuromorphic engineering (Mead, 1990) enable
the emulation of SNNs directly on neuromorphic hardware
in real-time (millisecond updates) or accelerated-time, with
much higher efficiency in terms of power and speed compared
to conventional computing platforms, despite the massive
communication infrastructure overhead required. For example,
the current state-of-the-art neuromorphic platform TrueNorth
(Merolla et al., 2014) is capable of simulating a million spiking
neurons in real-time while consuming 63 mW. The equivalent
network executed on a high-performance computing platform
was 100–200× slower than real-time and consumed 100,000 to
300,000×more energy per synaptic event1 (Merolla et al., 2014).
TrueNorth is capable of delivering 46 billion synaptic operations
per second per Watt (Sops/W) when executing at real-time and
70 billion Sops/W at 5× faster than real-time (200 µs updates).
An additional advantage of simulating SNN on neuromorphic
platforms is that their event-based nature makes them more
suitable to use with low-power, low-latency, high dynamic range
neuromorphic vision and auditory sensors (Lichtsteiner et al.,
2008; Liu et al., 2010; Lenero-Bardallo et al., 2011; Posch et al.,
2011, 2014; Serrano-Gotarredona and Linares-Barranco, 2013).

SNNs have been characterized as the 3rd generation of
artificial neural networks (ANNs) and while they are theoretically
computationally more powerful than conventional continuous
or rate-based ANN (Maass and Markram, 2004) they still lack
the success of their predecessors. A possible explanation for
this is the lack of sophisticated training algorithms like those
that have been developed for ANNs over the past decades.
Because the activation functions of spiking neurons are not
differentiable (due to the threshold condition), SNNs are not able
to directly use the popular training methods used in ANNs, such
as backpropagation, which require differentiable functions. To

1A synaptic event is defined as a spike hitting a single synapse.

address this, research groups currently focus on two different
paths: either employ biologically plausible unsupervised learning
rules, like spike-timing-dependent plasticity (STDP) (Dan and
Poo, 1992) to extract features from inputs (Masquelier and
Thorpe, 2007; Bichler et al., 2012; Neftci et al., 2014; Diehl
and Cook, 2015; Kheradpisheh et al., 2016) or they follow an
intermediate step: a neural network is trained off-line using
continuous/rate-based neuron models (ANNs) with state-of-the-
art supervised training algorithms (LeCun et al., 1998; Hinton
et al., 2006) and then map the trained network to a SNN
(Merolla et al., 2010; O’Connor et al., 2013; Pérez-Carrasco et al.,
2013; Diehl et al., 2015), ready to be executed efficiently on
a neuromorphic platform (Camuñas-Mesa et al., 2010; Arthur
et al., 2012; Furber et al., 2014; Merolla et al., 2014; Stromatias
et al., 2015a).

While the current state-of-the-art results in classification tasks
with SNNs come from the latter methodology (Diehl et al., 2015;
Rueckauer et al., 2016) there are a number of drawbacks that
are usually not addressed. One major issue is that these neural
networks are trained using synthetic data. This is, the input
spiking activity fed to the SNN is generated artificially from
frame images (like MNIST), where the gray level of an image
pixel is mathematically transformed into a stream of spikes using
some algorithmic method (like the popular Poisson distribution
encoding). This imposes practical issues when switching to
non-synthetic real input data captured with a physical spiking
silicon retina such as a neuromorphic dynamic vision sensor
(DVS) (Lichtsteiner et al., 2008; Posch et al., 2011; Serrano-
Gotarredona and Linares-Barranco, 2013). In this case, the time
distribution of spikes/events coming from these sensors are not
Poissonian and this results in the SNN performing very poorly
in terms of classification accuracy. Our personal experience is
that when mapping the full network from ANNs to SNNs the
loss in accuracy is low/reasonable if input data is generated
synthetically as Poisson spike distributions. However, accuracy
drops dramatically if input data to the same network is replaced
by real sensory data recorded from spiking silicon retinas (like
N-MNIST, MNIST-DVS, Poker-DVS) (Orchard et al., 2015a;
Serrano-Gotarredona and Linares-Barranco, 2015; Soto, 2017).
As a matter of fact, the reported high accuracy works on training
a full network in the frame-domain and mapping it to the SNN
domain always report results with synthetic data (Merolla et al.,
2010; O’Connor et al., 2013; Diehl et al., 2015)

On the other hand, work presented in recent years has
shown that it is possible to learn features efficiently with
SNNs using STDP (Masquelier and Thorpe, 2007; Bichler et al.,
2012; Diehl and Cook, 2015; Kheradpisheh et al., 2016) and
other unsupervised methods such as event-based Contrastive
Divergence (CD) (Neftci et al., 2014, 2016). An advantage of
leaning with STDP is that it inherently takes into consideration
the timing distribution of events coming from a DVS sensor
(Bichler et al., 2012; Roclin et al., 2013). However, after extracting
the SNN features many researchers use a method to convert the
asynchronous events of an SNN to frames for an ANN in order to
train a frame-based classifier such as a Support Vector Machine
(SVM) (Kheradpisheh et al., 2016) or Radial Basis Function
(RBF) classifier (Masquelier and Thorpe, 2007) and evaluate

Frontiers in Neuroscience | www.frontiersin.org 2 June 2017 | Volume 11 | Article 350

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stromatias et al. An Event-Driven Classifier for SNNs

how “good” the spike-domain learned features are. Often this
conversion is done by a population of leaky integrate-and-fire
(LIF) neurons with infinite threshold (Masquelier and Thorpe,
2007). The neurons integrate the inputs from the previous layers
and when a control signal arrives they export their internal states
and a frame is created. In a practical SNN system, for example
if fully deploying it as a compact hardware, it is highly desirable
that all stages, including the classifier, can be implemented in the
spiking domain.

Recent work has successfully explored direct training in the
spiking domain. For example, Lee et al. (2016) proposed a
backpropagation-like technique for directly training amulti-layer
SNN with fully-connected inter-layer connectivity. They used
real DVS recorded (N-MNIST) input sensory data (Orchard et al.,
2015a) and report the best accuracy reported to date with a FC
(fully-connected) topology and DVS data (98.66%). Neftci et al.
(2017) have recently proposed a simple event-driven random
backpropagation rule to rapidly learn deep representations,
although they only provide results for synthetic input data.

In this paper we present an alternative methodology for
training only an event-based classifier in a supervised manner.
This spike-based classifier can be used as the output layer in any
SNN that has already extracted features, for example using STDP
or another unsupervised method (Bichler et al., 2012; Roclin
et al., 2013; Neftci et al., 2014, 2016; Diehl and Cook, 2015;
Kheradpisheh et al., 2016), or to fine-tune an already trained SNN
(O’Connor et al., 2013). The method proposed here is based on
the idea of training in the frame domain and then testing with
events but instead of training a full ANN and then mapping it to
an SNN, it uses the spiking output activity of the (pre-classifier)
SNN to create a new frame-based dataset, which captures the
dynamics of the spikes. These SNN-sensitive frames are then used
to train a fully-connected classifier, using supervised learning
algorithms such as stochastic gradient descent (SGD) (Bottou,
2010) on the new dataset. After training, the frame-based ANN
classifier is mapped directly to a population of LIF neurons,
which is used as the output layer of the SNN. The advantages of
this method is that it is easy to implement by taking advantage of
popular supervised training algorithms, it yields good prediction
accuracy for both synthetic data and real DVS data, and it can
cope with neuron leakages with minimal loss in the classification
performance. To our knowledge, this technique of training the
classifier output layer of an SNN has never been reported before2.

This paper is structured as follows: Section 2 discusses the
datasets used for this work, which include both data recorded
from a DVS sensor and synthetically generated spike-trains from
static images. Section 2.2 introduces the SNN simulator used
for this work. Section 2.3 describes the topology of the neural
network used for all the experiments. Section 2.4 presents the
neuron and synapse model. Section 2.5 describes the proposed
method to train a classifier in a supervised manner using frames
and how to convert it back to an SNN. Section 3 presents
results and finally, Section 4 presents some discussions and the
conclusions.

2On the other hand, training the full network in the ANN domain and mapping it

to SNN is a well known method.

2. MATERIALS AND METHODS

2.1. Data Sets
For this work we used two types of data sets with different
encoding methods: MNIST handwritten digit data sets and poker
card deck data sets recorded with DVS cameras.

The original MNIST data set (LeCun et al., 1998) consists of
70,000 28 × 28 gray scale images of handwritten digits out of
which 60,000 digits are used for training and 10,000 for testing.
In this paper we use 4 variants of the MNIST data set. The
first two convert the original MNIST static images into artificial
spike-trains using each a different method (Liu et al., 2016),
(a) Poisson encoding and (b) intensity-to-latency encoding. The
other two utilize spikes recorded from a DVS sensor and are
known as (c) MNIST-DVS (Serrano-Gotarredona and Linares-
Barranco, 2015) and (d) N-MNIST (Neuromorphic MNIST)
(Orchard et al., 2015a).

The poker card data sets consist of either (e) browsing at very
high speed a poker card deck in front of a DVS sensor (Serrano-
Gotarredona and Linares-Barranco, 2015), or (f) showing printed
symbols on paper to a DVS (Soto, 2017). Next we briefly describe
the different data sets:

(a) MNIST Poisson Encoding. This is the most popular method
of converting static images into spike-trains and has been
used in several published works (O’Connor et al., 2013;
Diehl and Cook, 2015; Diehl et al., 2015; Rueckauer et al.,
2016; Stromatias et al., 2015b). Each pixel of an MNIST
digit is converted to a Poisson spike train with a firing rate
proportional to its intensity, while all pixels’ firing rates are
scaled such that the total number of spikes of the input
population is fixed for a given stimulus duration. This is
illustrated in Figure 1A, where maximum spikes per pixel
was set to 15, total spikes to 1,000, and stimulus duration to
255 µs.

(b) MNIST Intensity-to-Latency Encoding. In this method
only one spike per pixel is generated, based on its intensity
(Masquelier and Thorpe, 2007; Kheradpisheh et al., 2016).
Pixel intensity is transformed linearly into an event delay
with respect to a common reference instant (time “0”
in Figure 1). Pixels with higher intensity will produce an
earlier spike. The advantage of this method is that, since
it produces only one spike per pixel, it will theoretically
result in lower activity and faster response times than
Poisson encoding. Figure 1B shows an example of intensity-
to-latency encoding, where maximum intensity is encoded
with 0 delay spikes and zero intensity is encoded with 255 µs
delay spikes.

(c) MNIST-DVS data set. The MNIST-DVS data set is a version
of the original MNIST data set recorded with a DVS sensor
(Serrano-Gotarredona and Linares-Barranco, 2015). This
data set consists of a 128 × 128 input size set of 30,000 DVS
camera recordings. Each recording is obtained by displaying
a slowly moving symbol from the standard MNIST database
on an LCD monitor for about 2–3 s. Due to the size of the
recorded files, only 10,000 of the original 70,000 symbols
were recorded, but each symbol was displayed at three
different scales. For this work the 10,000 samples recorded

Frontiers in Neuroscience | www.frontiersin.org 3 June 2017 | Volume 11 | Article 350

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stromatias et al. An Event-Driven Classifier for SNNs

FIGURE 1 | 2-D histograms and raster plots for different encoding schemes and neuromorphic data sets. (A) Poisson 28 × 28 input size sample. (B) Latency 28 ×

28 input size sample. (C) MNIST-DVS 128 × 128 input size sample. (D) N-MNIST 34 × 34 input size sample. (E) Fast-Poker DVS 32 × 32 input size sample. (F)

Slow-Poker DVS 128 × 128 input size sample.

at higher scale (called “Scale 16” in Serrano-Gotarredona
and Linares-Barranco, 2015) were used. From these, 8,000
samples were used for training and the remaining 2,000

samples were used for testing. The MNIST-DVS data set
includes some Matlab scripts for optionally pre-processing
the recorded events. This pre-processing can eliminate the

Frontiers in Neuroscience | www.frontiersin.org 4 June 2017 | Volume 11 | Article 350

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stromatias et al. An Event-Driven Classifier for SNNs

75 Hz LCD screen refresh rate harmonic and/or stabilize the
moving digit. For this work we did not stabilize the digits,
as we were interested in moving samples. Also, we noticed
that removing or not the 75 Hz LCD screen refresh rate was
absolutely irrelevant for recognition performance (the results
were identical, whether or not this harmonic was removed).

(d) N-MNIST data set. The N-MNIST data set imitates
biological saccades for recording the complete MNIST data
set with a DVS sensor. A DVS sensor is mounted on a pan-
tilt unit pointing to a monitor where digits are displayed.
The DVS is then subject to 3 sequential 100 ms saccades at
3 different angles (horizontal, +60◦, and −60◦). Therefore,
each sample corresponds to 3 saccades with a total duration
of about 300 ms.

(e) Fast-Poker-DVS data set. The Fast-Poker-DVS data set was
created by browsing poker card decks in front of a DVS
camera (Serrano-Gotarredona and Linares-Barranco, 2015).
Each card crossed the field of view in about 10–30 ms.
The poker pips were tracked and isolated to a 32 × 32
pixel window. The data set contains a total of 131 symbols.
Another variant of this data set with 40 cards has also been
used for comparison with previous works (Pérez-Carrasco
et al., 2013).

(f) Slow-Poker-DVS data set. In this data set (Soto, 2017)
recordings were made while a human was holding a poker
symbol in front of a DVS moving it at “human speed”
(Soto, 2017). The purpose of this data set was for setting
up interactive demos. This data set consists of four different
DVS sensor recordings of around 3 min duration each.
Each recording corresponds to a poker card symbol (club,
diamond, heart or spade). To create a training and testing
data set, the recordings were split into 100ms time slots. This
resulted into a total of 6,751 samples, 5,402 (80%) of which
were used for training and 1,349 (20%) for testing.

2.2. Spiking Neural Network Simulator
For this work we used the Modular Event-Driven Growing
Asynchronous Simulator (MegaSim)3 as our main simulation
platform. MegaSim is a tool designed for simulating Address-
Event-Representation (AER) (Mahowald, 1994) multi-module
hardware systems behaviorally, with strong emphasis on
hardware performance parameters of the modules (processing
delays, handshaking and communication delays, parameter
variations, noise, etc.).

In MegaSim the user defines a netlist of modules
interconnected through AER links (also called “nodes”).
Modules process events coming in on their input AER nodes
and generate output events on their output AER nodes. The
netlist also contains at least one “source node,” which provides a
list of time-stamped events (from a DVS recording, or created
artificially). Modules in MegaSim can have an arbitrary number
of input/output ports and can either be populations of neurons,
an algorithm described in standard C programming language
or combinations of both. At start-up only the events in the
source nodes are available, which are tagged as “unprocessed.”

3https://bitbucket.org/bernabelinares/megasim

MegaSim looks at all nodes, picks the earliest un-processed
event, tags it as “processed,” calls the modules that receive it, and
performs the corresponding processing within each module. If
a module generates events at one or more of its output ports,
they are written on those nodes with a timestamp equal to the
actual time or equal to some future time in case the module is
modeled as having some processing delay, while tagging them
as “unprocessed.” Every time an event is added to the list of
unprocessed events of a node, all the unprocessed events are
re-sorted according to their timestamps.

AER events are represented using 3 timing values and n event
parameters. Event parameters are typically 3 and are in the form
of X, Y, and polarity. However, these parameters can be any
signed integer and the user decides how a module interprets and
processes them. The 3 timing parameters include: pre-request
(pre-Rqst) which represents the time an event is created inside
a module, request (Rqst) which is the time when this event is
actually put on the node, and acknowledge (Ack) which is the
time when the acknowledgment signal is communicated. When
an event has been queued in a link or node, it is tagged as
“unprocessed” by setting Rqst and Ack to -1. Once Rqst and
Ack have both a positive number, it means they are tagged as
“processed.”

The simulation finishes by either setting a maximum
simulation time, or when there are nomore “unprocessed” events.
When the simulation finishes there will be a list of timestamped
processed events for each node in the network. Activity of nodes
can then be visualized with a dynamic event viewer like jAER
(Delbruck, 2013).

2.3. Network Architecture
2.3.1. Convolutional Neural Network
The goal of this work focuses on training and using an
efficient event-driven classifier. A classifier requires a previous
feature extraction sub-system. For this work we used a Spiking
Convolutional Neural Network to extract features before training
the classifier. Convolutional Neural Networks (ConvNets)
(LeCun et al., 1998) are multi-layer feed-forward neural networks
that are composed of alternating layers of convolution and spatial
sub-sampling, with non-linearities between subsequent layers.
Each convolutional layer is structured into a number of “Feature
Maps,” each detecting a specific feature. ConvNets introduce
three basic ideas: local receptive fields, shared weights, and
pooling.

Neurons in a convolutional layer are connected only to a sub-
region of the layer before it (local receptive field), instead of to
all presynaptic neurons as in a fully-connected network. Inside
a Feature Map, the connectivity pattern and synaptic weights of
the local receptive field is the same for all neurons. Consequently,
synaptic weights are shared by all neurons in the same Feature
Map, and all neurons will therefore detect the same features
but at different locations within the Feature Map. Some of the
advantages of the shared weights per Feature Map is that they
greatly reduce the number of learning parameters, which also
reduces the memory requirements, and also results in speed-ups
during the training process when compared to fully-connected
neural networks (LeCun et al., 1998).

Frontiers in Neuroscience | www.frontiersin.org 5 June 2017 | Volume 11 | Article 350

https://bitbucket.org/bernabelinares/megasim
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stromatias et al. An Event-Driven Classifier for SNNs

FIGURE 2 | The topology of the event-driven Convnet used for this work. Where n is the size of the input layer, k is the size of the kernel.

FIGURE 3 | The pre-computed 7 × 7 gabor kernels used for the first convolutional layer.

A pooling layer is added periodically in-between successive
convolutional layers. Pooling acts as a non-linear down-
sampling that reduces the spatial size of the representation, the
computations for the upper layers and finally provides a form
of translation invariance. For this work we used subampling as
a pooling layer.

Figure 2 shows the Spiking Neural Network (SNN) topology
we have used for all our experiments. The input field size (n×n)
varies depending on the data set from 28 × 28 to 128 × 128.
Inputs are fed to a one-layer ConvNet, consisting of 18 Feature
Maps (C1) of size (n− k+ 1)×(n− k+ 1) each with a receptive
field of size k×k (also called “convolutional kernel”), followed by
a subsampling pooling layer (S1).

The output of this 1-layer ConvNet consists therefore

of 18×((n− k+ 1)/2)×((n− k+ 1)/2) neurons, which are

rearranged into a one-dimensional vector by a module named

“Flatten.” The outputs of this Flatten module provide the inputs

to our fully connected spiking classifier. For example, for an
input image of 28 × 28 and a convolutional kernel size of 7 ×

7 the output of this 1-layer ConvNet consists of 2,178 neurons.
The 2,178 outputs of this module are fully connected to all the
classifier output neurons (one for each class).

The 1-layer feature extraction ConvNet was always
programmed with 18 Gabor Filter kernels. An example of
the Gabor Filter kernels with size 7 × 7 is shown in Figure 3.
These kernels were generated using the following equations

g(x, y, λ, θ ,ψ , σ , γ) = exp(
−x

′2 + γ 2 + y
′2

σ 2
y

)×

cos(2φ
x
′

λ
+ ψ)

(1)

x
′

=x cos θ + ysinθ ,

y
′

=− x sin θ + ycosθ
′

(2)

where λ is the wavelength of the sinusoidal factor, θ is the
orientation of the normal to the parallel stripes of a Gabor
function in degrees, ψ is the phase offset, σ represents the width
of the Gaussian, and γ is the spatial aspect ratio. For the 18 kernels
we used 9 orientations and 2 phases. The parameters used to
generate the 2D Gabor kernels are shown in Table 1.

Frontiers in Neuroscience | www.frontiersin.org 6 June 2017 | Volume 11 | Article 350

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stromatias et al. An Event-Driven Classifier for SNNs

TABLE 1 | The parameters used to generate the 18 2D Gabor kernels.

Parameters Values

θ [0, 20, 40, 60, 80, 100, 120, 140, 160]◦

σ 4

λ 8

ψ [0.0, 1.7]

γ 0.5

2.3.2. Fully Connected Network
To demonstrate that the proposed methodology can be used to
fine-tune (optimize) the performance of an already trained SNN
we utilized the fully connected network from O’Connor et al.
(2013). This particular network consists of two hidden layers,
each with 500 neurons as seen in Figure 4, and was trained on the
MNIST dataset with the Contrastive Divergence (CD) algorithm
(Hinton et al., 2006) using Siegert neurons (Siegert, 1951), which
are a rate-based approximation of Integrate-and-fire neuron
models.

This network has been reported to achieve a classification
accuracy of 95.2% using the Siegert neurons (frame-based
ANN) and 94.09% with LIF neurons (O’Connor et al., 2013).
In addition, this SNN has been thoroughly investigated for
its robustness to input noise and bit resolution requirements
(Stromatias et al., 2015b) and has been implemented on various
hardware platforms (Neil and Liu, 2014; Stromatias et al., 2015a)
with success.

For this paper we are going to remove the fully connected
output layer and replace it with the SNN classifier trained using
the methodology described in the following sections.

2.4. Neuron Model
The neuron model used is purely event-driven. Neurons’ internal
states, also called membrane voltages, are updated in response
to an incoming event. The model uses linear leakage and delta-
dirac (instantaneous) synapses. This neuron model is described
in great detail by Pérez-Carrasco et al. (2013), while hardware
implementations of this model have been reported by Camunas-
Mesa et al. (2011, 2012) and Serrano-Gotarredona et al. (2015).
A typical time evolution of a neuron membrane voltage Vmi(t)
is shown in Figure 5. All neurons in a layer share the same
parameters MembReset (neuron resting level), THplus (positive
threshold), THminus (negative threshold), and leakage rates.
Leakage rates can be defined differently for Vmi(t) > MembReset
and Vmi(t) < MembReset. When there is no input spike,
membrane voltage Vmi(t) is subject to leakage only,

dVmi(t)

dt
= −

THplus −MembReset

TLplus
, if Vmi(t) > MembReset

dVmi(t)

dt
= +

MembReset − THminus

TLminus
, if Vmi(t) < MembReset

(3)

The event-driven simulatorMegaSim only updates the leakage
when a new input event is received. For this, each neuron
stores the time of its latest input event within its state variables.
After updating the leakage, the neuron state Vmi(t) is updated
instantaneously by adding/subtracting the synaptic weight of the
connection of the incoming spike. When a neuron reaches its
positive threshold THplus, it generates a positive output spike and
is reset toMembReset. If it reaches its negative threshold THminus,
it generates a negative output spike and is reset as well. This way,
output spikes are “signed.” The sign of a presynaptic spike is
combined with the sign of the synaptic weight to define the sign
of the update at the post-synaptic neuron. Therefore, the present
neuron model is a “signed” neuron model.

It is possible to degenerate this signedmodel into one that only
generates positive spikes (or only negative spikes). This can be
done, for example, by setting the negative threshold THminus to
a very high number (like the limit of numerical precision in the
simulator). In our experiments, the classifier (FC) always uses this
degenerated positively-signed neuron model. This way it behaves
like a LIF neuron with limited precision and linear leakage.
For the convolution layer (C1) neurons, we will use symmetric
thresholds (THminus = −THplus) and leakage rates (TLplus =

TLminus) but negative spikes are disabled (THminusInfo = 0,
see the Supplementary Material). Upon reaching the negative
threshold (THminus) the membrane resets to its resting state
(MembReset), but no negative event is communicated. We found
that this configuration produces slightly better results and keeps
the neuron model identical to previously published work of
software and hardware implementations (Camunas-Mesa et al.,
2011, 2012; Pérez-Carrasco et al., 2013; Serrano-Gotarredona
et al., 2015). In the Supplementary Materials we show the pseudo
codes of the neuron models of the convolutional layer and of the
classifier fully connected layer.

2.5. Methodology for Training an
Event-Driven Classifier
For this work both SNN architectures have already extracted
features. For the case of the ConvNet topology (Figure 2) this was
done by using a “sufficiently rich” set of pre-programmed feature
detection filters, as seen in Figure 3, for the C1 layer. For the case
of the fully connected network (Figure 4), the 2 hidden layers
were trained using the unsupervised methodology described in
O’Connor et al. (2013). The only weights that are here subject to
training are the weights of the fully-connected spiking classifier
(output layer).

However, here training is not performed in the spiking
domain. The method we used in this work consists of the
following steps:

1.- Provide the stimulus spike sequence of each sample to the
input of the SNN (layer 1), and build an analog vector
representation (a “frame”) for each sample by building a
normalized histogram of the counting events at the output of
the “Flatten” module for the ConvNet topology and output
of the second layer for the fully connected topology.

2.- Use these vectors (frames) to train a fully connected (non-
spiking) classifier using Stochastic Gradient Descent (SGD).

Frontiers in Neuroscience | www.frontiersin.org 7 June 2017 | Volume 11 | Article 350

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stromatias et al. An Event-Driven Classifier for SNNs

FIGURE 4 | The topology of the fully connected network as trained by O’Connor et al. (2013).

FIGURE 5 | The evolution and spike generation sequence for a spiking neuron with linear leakage and refractory period.

3.- Use a scaled version of the learned classifier weights for the
spiking classifier.

One parameter that in principle should affect both training and

testing is the leakage rate. Depending on the leakage rate value,

the normalized histograms may change slightly and therefore the

learned weights as well. Consequently, testing should be done

using the same leakage rate used for obtaining the normalized

histograms. As a matter of fact, many works reported in the

literature on Spiking Neural Networks do not use leakage (Diehl
et al., 2015; Rueckauer et al., 2016) or use leakages in the
order of seconds (O’Connor et al., 2013). However, if there
is no leakage, after providing the spikes representing an input
pattern, all neurons need to be reset to be ready for the next
input. In this case, input samples have to be provided sample

by sample (SBS) and the system needs to be reset between new
sample presentations. In a real scenario setup (for example, a
moving robot) the system does not know when a new sample
comes in, and should work rather in a continuous mode. This
is when leakage comes in, and neural activity fades away some
time after input pattern activation. In this situation there is
no need to reset neuron states and the system operates in a
continuous manner. Consequently, if there is non-zero leakage
we can present the input patterns one after the other, as long as
there is enough inter-sample time to allow the neuron states to
fade to their resting state. In this case, we can pass all symbols
as a unique input spiking sequence. We call this scenario “One
Pass” (OP). For the rest of the paper we will be distinguishing
between SBS (zero leakage) andOP (non-zero leakage) setups, for
both training (this is, obtaining the normalized histograms) and

Frontiers in Neuroscience | www.frontiersin.org 8 June 2017 | Volume 11 | Article 350

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stromatias et al. An Event-Driven Classifier for SNNs

testing. We noticed that, in general, SBS performs slightly better
than OP.

Next we describe in more detail each of the three steps
followed for the training procedure.

2.5.1. From Events to Frames
Using the spiking simulator MegaSim we collect the spike
sequences at the output of module “Flatten” in the ConvNet
topology and the second layer for the fully connected topology, in
order to create a normalized spike histogram for each sample. For
each of the neurons in layer “Flatten” (see Section 2.3), we count
the total number of spikes. The resulting histogram is normalized
with respect to the maximum value, resulting in an analog vector
with N components within the interval [0,1], N is the number
of outputs for the flatten layer. These resulting spike histograms
vary depending on the data set, the parameters of layer C1, and if
there is leakage or not.

2.5.2. Training
The normalized histograms of the spike-counts of the Flatten
layer (Figure 2) for each input sample are converted to an analog
vector (frame). This is repeated for both the training and testing
set in order to create a new data set that will be used to train the
classifier.

The classifier used for this work is Softmax regression
trained with mini-batch stochastic gradient descent (MSGD)
(Bottou, 2010) without biases. Outputs of the classifier Y =

(Y1, · · ·Yk, · · ·) represent the scores or probabilities for each class
K. The Softmax activation function results in the following class
K output prediction probability for a given input vector xi

Yk(xi,W) =
eWkxi

∑
j e

Wjxi
(4)

where W is the weight matrix, and xi is the input vector fed to
the classifier provided by layer Flatten. Vector Wk is the weight
matrix line representing class K. Note that the probabilities of all
classes add to one.

The cost function to be minimized by the MSGD algorithm is
the Negative Log-Likelihood Loss (NLL), which is described as:

C = −
1

D

|D|∑

i

|K|∑

j

Ii(j) log(Yj(Xi,W)) (5)

where D is the mini-batch, K is the set of classes, Ii(j) = 1 for
j = Li and 0 otherwise. Li is the target output (label) for sample i,
and Yj is the output of the Softmax unit j.

The purpose of the SGD is to minimize the cost function
NLL by updating the parameters of the model W ∈ ℜh×|K|,
where h is the size of the Flatten layer and K is the number of
classes. The MSGD updates the weight matrix after each mini-
batch by computing the gradient with respect to the weights of
the objective function,

W = W − η∇WC (6)

where η is the learning rate, which determines the size of the
update steps taken to reach a minimum. For this work we used
a fixed learning rate and fixed number of epochs.

The predicted class yi of the model for a given input xi is taken
as the unit that has the maximum activation and is described by

yi = argmaxk{Yk(xi,W)} (7)

2.5.3. From Frames Back to Events
After the training process is over the learned weights are scaled
by a constant integer K. This integer should be of the order of the
threshold of the fully connected classifier spiking neurons THFC.
As we will see in Section 3, we have set THFC = K, with K always
equal to 10,000,000.

3. RESULTS

We performed extensive training and testing on the different
data sets described in Section 2.1, in order to characterize
the effectiveness of the spiking classifier. We measure the
effectiveness of the spiking classifier by what we call here
“Classifier Loss.” We define “Classifier Loss” as the difference
in recognition performance between the accuracy obtained with
the ANN frame-based classifier and that obtained after mapping
the classifier to its SNN version. If “Classifier Loss” is negative,
there is a degradation when going from ANN to SNN, and if it is
positive there is an improvement.

Table 2 shows the different parameters used for the different
trials. Since the focus of this work is on studying and
characterizing the classifier, we tried to keep the first convolution
layer as similar as possible among all data sets. However,
depending on the nature of data set we had to adjust a few
parameters and options specifically for each. The number of
Feature Maps (FM), or C1 convolutions, was always kept at 18.
The feature map size, however, was changed between 28×28 and
128 × 128 to adapt to the input space of each data set. Kernel
size also varies from 7 × 7 to 21 × 21. Some meta-parameters
(like selected time slices for building histograms) were adjusted
manually at the very beginning by quickly playing with some
training set samples. We never used any test set result to fine
tune any parameter, because this would “leak” information about
the test set to the system (Nowotny, 2014). All meta-parameters
were decided from the beginning and then never touched again.
This was because our goal was not to optimize the overall system
accuracy, but the “Classifier Loss.”

The positive and negative thresholds of the C1 layer neurons
were set symmetrically and for the classifier FC we set a
maximum negative threshold to make it behave like a population
of LIF neurons, as discussed in Section 2.4. We observed that
for both synthetic MNIST data sets (with latency or Poisson
encoding), and for the DVS data sets, we obtained slightly better
results when using this configuration for neurons in layer C1. For
the FCClassifier we always used unsigned neurons with threshold
at 10M. The leakage parameters TLplus and TLminus are only used
when data is presented in OP (One Pass). When data is presented
SBS (Sample by Sample) all leakages were set to “0.”

Frontiers in Neuroscience | www.frontiersin.org 9 June 2017 | Volume 11 | Article 350

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stromatias et al. An Event-Driven Classifier for SNNs

TABLE 2 | Parameters used for the C1 Convolution Layers and the FC Classifiers.

Data set Input C1 Convolutions FC Classifier

Input

size

of

FMs

FM

size

Kernel

size
THplus THminus

TLplus

(OP)

TLminus

(OP)

of

neurons
THplus

TLplus

(OP)

Synthetic MNISTs 28 × 28 18 22 × 22 7 × 7 1.2× 108 −1.2× 108 1.2× 104 1.2× 104 10 107 1.2× 104

N-MNIST 34 × 34 18 28 × 28 7 × 7 2× 107 −231 106 106 10 107 106

MNIST-DVS 128 × 128 18 108 × 108 21 × 21 8× 108 −231 1.5× 104 −1.5× 104 10 107 1.2× 104

Slow-Poker-DVS 128 × 128 18 114 × 114 15 × 15 1.5× 107 −1.5× 107 1.5× 104 1.5× 104 4 107 1.5× 105

Fast-Poker-DVS 32 × 32 18 26 × 26 7 × 7 1.5× 107 −231 1.5× 104 1.5× 104 4 107 1.5× 105

TABLE 3 | Summary of performance results.

Data set TSS Train and Test SBS Train OP

ANN

(frames)
SNN

Classifier

Loss

Average

input

sample

activity

Average

total

sample

activity

Latency

(µs)

ANN

(frames)

SNN

Test OP

Classifier

Loss

SNN

Test SBS

Classifier

Loss

Latency Full 98.45 98.42 −0.03 151.12 957.37 10.89 98.41 98.39 −0.02 98.37 −0.04

Poisson Full 98.15 98.20 −0.05 1,000 16,070.28 11.38 98.3 98.25 −0.05 98.32 −0.02

N-MNIST Full 97.77 97.23 −0.54 4,203.61 29,9425.57 2,901.10 97.76 97.08 −0.68 97.09 −0.67

MNIST-DVS Full 97.3 97.25 −0.05 73,520.96 139,707.66 58,918.25 97.95 97.9 −0.05 97.95 0.00

Slow-Poker-DVS 100 ms 99.77 99.70 −0.07 1,418.94 154,483.18 774.27 98.95 98.59 −0.36 98.88 −0.07

Fast-Poker-DVS

2 ms

5 ms

10 ms

94.44

95.00

100

100

94.65

83.97

+5.66

−0.35

−6.03

2539.77

231662.29

224598.88

222681.92

100.67

124

126.21

92.78

95

100

100

93.13

85.50

−7.22

−1.87

−14.5

100

93.89

85.50

+7.22

−1.11

−14.5

The performance results obtained are summarized in Table 3.
The first column is the “Training Slice Size” (TSS). This refers to
the time slices into which the data set sample sequences were cut
to present them to layer C1 and build the normalized histograms
at layer Flatten for training in the frame domain. For all MNIST
types of data sets we always used the full sample spiking sequence.
This duration was equal to 255 µs for both synthetic MNISTs
(Latency and Poisson), between 2 and 3 s for MNIST-DVS and
about 300 ms for N-MNIST. For the Poker-DVS data sets we did
not use the full sample sequence. For the Slow-Poker-DVS, as
mentioned in Section 2, all sample recordings were split into 100
ms slices, while for the Fast-Poker-DVS, we tried three different
slice sizes (2, 5, and 10 ms), because the performance was very
sensitive to the slice size.

The results in Table 3 are separated into two groups, the
first for training and testing without any leakage with inputs in
SBS format, and the second trained with leakage with inputs
in OP format. In this second case, we show tests with inputs
in both OP and SBS formats. Columns “ANN (frames)” refers
to the accuracy obtained in the frame domain when training
the classifier with the normalized histograms as inputs. These
numbers will be used as the baseline reference for comparing
the performance of the classifier spiking version. Columns “SNN”
show the accuracy obtained whenmapping the learned weights to

the spiking network, and columns “Classifier Loss” indicate our
performance figure defined above. For the cases of training and
testing without leakage (SBS) we also provide the average number
of events per input sample (Average Input sample Activity), the
average total number of per samples produced within the full
network including the input (Average Total sample Activity), and
the “latency” defined as the time difference between the first spike
of the input layer and the first output spike from the Classifier.
The training parameters for example the number of epochs and
the learning rate (η) were kept fixed to 1,500 epochs and 0.1,
respectively, for every data set.

Figure 6 summarizes the classification accuracies of the test
set for the different data sets and their confidence intervals. The
confidence intervals were calculated for a confidence level of 0.99
and assuming that the test samples are statistically independent.
These confidence intervals give an idea of the expected accuracy
depending on the method (Isaksson et al., 2008; Nowotny, 2014).
It can be seen that the confidence intervals are closely related to
the test set size and the number of successes.

In the following sub-sections we indicate more specific
details for each data-set. Figure 7 reveals for each data-set how
recognition accuracy evolves during one symbol presentation (on
average) as function of the running number of input events. This
is, in an event-driven system, its internal states and its outputs

Frontiers in Neuroscience | www.frontiersin.org 10 June 2017 | Volume 11 | Article 350

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stromatias et al. An Event-Driven Classifier for SNNs

FIGURE 6 | Classification accuracies of the SNNs for each data set together with their corresponding confidence intervals.

FIGURE 7 | The classification accuracy of the SNNs for each data set as (A) a function of average percentage of input events per symbol presentation, and (B)

average absolute number of input events per symbol presentation.

evolve as input events are provided, event by event. Therefore,
some output can be available during symbol presentation and it
may change with each new input event during presentation of the
input event sequence. With few input events, output accuracy is
low. But as more input events arrive for a given input symbol, the
recognition accuracy keeps improving, until typically reaching
a plateau. Since the data-sets we are using have a quite diverse
average number of events per symbol, we show in Figure 7A

the recognition accuracy evolution with the percentage of input
events per symbol, while Figure 7B shows it as a function of the
absolute number of input events (in logarithmic scale).

3.1. Synthetic MNISTs
For the synthetic MNIST spiking data sets (Latency and Poisson)
we used the full original frame-based handwritten digit data
set consisting of 70,000 samples out of which 60,000 are used
for training and 10,000 testing. The training batch size was
kept fixed to 500 samples. In order to have a fair comparison
between the Poisson encoding and the Latency encoding, the
stimulus duration for both was set to 255µs. The threshold
of the C1 neurons was manually and coarsely adjusted to
maximize classification accuracy. The same parameters were
used for the FC Classifier layer for both synthetic encodings as

Frontiers in Neuroscience | www.frontiersin.org 11 June 2017 | Volume 11 | Article 350

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stromatias et al. An Event-Driven Classifier for SNNs

can be seen in Table 2. For the synthetic MNIST data sets we
observed typically a Classifier-Loss between −0.02 and −0.05%,
except for the Poisson case if training with leakage but testing
without leakage. In this case we observed a slight improvement
of +0.02%. Moreover, a comparison between the Latency and
Poisson encoding, revealed that the Latency encoding does
indeed generate less events, as expected. However, as seen in
Figures 7A,B the Poisson encoding requires less than 50% of
the total spikes to reach close to the maximum score, whereas
Latency encoding requires 100% of the input spikes to achieve
the same effect. This makes sense since in the Latency encoding
there is only one spike per pixel, while in Poisson encoding a pixel
fires multiple times.

3.2. N-MNIST
The N-MNIST data set comprises 70,000 samples, 60,000 for
training and 10,000 for testing. Each sample is composed of 3
sequential saccades of about 100 ms each. Therefore the whole
symbol duration is of about 300 ms. The training batch size
was set to 500 samples. The training and testing neural network
parameters can be seen in Table 2. For the SBS result there is a
loss in the accuracy of −0.54%. when training OP we observed
a slightly higher loss in the accuracy, −0.68% testing OP and
−0.67% testing SBS. Therefore the best SNN accuracy result
obtained is 97.23%when performing the training and testing SBS.

3.3. MNIST-DVS
For the MNIST-DVS data set, we use the full DVS 128×128 pixel
resolution. The data set comprises 10,000 MNIST digit samples,
out of which 8,000 are used for training and 2,000 for testing. The
training batch size was reduced to 20 samples. The threshold of
the C1 neurons was manually adjusted to improve classification
accuracy (see Table 2). In this case the C1 convolutional kernel
size selected was 21 × 21. For this data set we observed a loss in
the accuracy of 0.05% for the SBS experiments and for training
and testing OP. There is no accuracy loss training OP and testing
SBS. The best SNN accuracy result is 97.95%. There are no
accuracy results reported in literature for this data set, however,
it is interesting to note that using a smaller data set than the
N-MNIST, 10,000 samples compared to 70,000 samples of the
N-MNIST, we achieve a slightly better accuracy result.

3.4. Slow-Poker-DVS
Data set uses the full DVS resolution. There is a total of 6,751
samples, 5,402 samples are used for training and 1,349 for testing.
The training batch size was 50 samples and the convolutional
kernel size was 15 × 15 (see Table 2). Each sample duration was
set to 100 ms. The best SNN accuracy performance obtained was
99.70, 0.07% lower that the classifier result when performing the
training and testing SBS. The loss is higher when training and
testing OP, -0.36% and the accuracy of the classifier also dropped
to 98.95%.

3.5. Fast-Poker-DVS
The number of samples for this data set is limited to 131 samples.
Each sample duration is∼10–30ms. The approach followed with
this data set to increase the number of samples and improve

the accuracy results was to divide the sample representation
in different time slices for training the classifier using Softmax
regression. For example, using time slices of 2 ms, the training set
for the classifier extends to 776 samples and 192 for testing. Even
though the classifier training was done using these time slices,
the SNN testing was always done over the whole 131 sample
representation, the 10–30 ms. Therefore a 100% of accuracy
corresponds to 131 samples correctly identified. The results in
Table 3 shows that increasing the time slice increases the classifier
accuracy, but decreases the SNN accuracy. The classifier accuracy
increases because with larger time slices, the training and testing
samples are more similar, this is not happening with smaller
time slices. However, for SNN testing, finding a longer time
slice pattern in the whole test sample is more difficult and
therefore it behaves better with smaller time slices as 2 ms. It
is worth noting that by using a 2 ms time slice we achieve a
100% SNN accuracy for both training SBS and OP. However,
to be more correct, these results correspond to training error,
because the training slices were part of the whole sample of
the testing set. To obtain a more correct recognition accuracy,
the leave-one-out cross-validation (LOOCV)methodwas applied
to this data set obtaining the recognition accuracy shown in
Figure 8A. The recognition accuracy reaches its top when the
50–60% of the events of the samples are displayed. For both, 2
and 5 ms slice, the best recognition accuracy is 98.47 at 60% of
the events. This experiment was also done with the Fast-Poker-
DVS of 40 samples data base for the aim of comparing them with
the results in Orchard et al. (2015b) and Lagorce et al. (2016).
Orchard et al. (2015b) and Lagorce et al. (2016) obtained 97.5
and 100% recognition success, respectively. In this work, for the
40 cards, applying the LOOCV method and using 2 ms slices the
classification accuracy reaches 100% when presented 50–80% of
the inputs events, as seen in Figure 8B.

3.6. SNN Fine-Tuning
The SNN shown in Figure 4 was trained assuming Poisson
distribution for the input stimuli and was originally presented in
O’Connor et al. (2013) achieving a score of 95.2% in the frame
domain and 94.09% with a software SNN simulator. Since then
this SNN has been successfully implemented in various platforms
(Neil and Liu, 2014; Stromatias et al., 2015a,b), with the highest
score 95% reported in Stromatias et al. (2015a). Here, we removed
the output layer and trained a new classifier by taking advantage
of the feature extraction done by the previous two layers. Table 4
summarizes the results. The new frame-based classifier achieves a
97.24%, while the SNN accuracy increased from 95.26 to 97.25%.
The difference between the frame-based classifier and the SNN is
in the order of 0.01%.

3.7. Summary of Results and Comparison
with Related Work
Table 3 and Figure 7 summarize the results of this work for
all data sets. More specifically, Figure 7A shows how the
classification accuracy of an SNN improves as a function of the
percentage of input events. This seems to be consistent with
all data sets, both synthetically generated (Latency and Poisson
encoding) and from a DVS sensor, and is in accordance with

Frontiers in Neuroscience | www.frontiersin.org 12 June 2017 | Volume 11 | Article 350

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stromatias et al. An Event-Driven Classifier for SNNs

FIGURE 8 | Classification accuracy of the SNN using (A) the LOOCV method over the 131 samples Fast-Poker-DVS data set and (B) the LOOCV method over the 40

samples Fast-Poker-DVS data set.

TABLE 4 | Summary of fine-tuning an already trained SNN.

Classifier (frames) (%) SNN (MegaSim) (%)

Original Netowrk 95.2 (O’Connor et al., 2013) 95.26

Fine-tuned (this work) 97.24 97.25

previously published studies (Neil and Liu, 2014; Diehl et al.,
2015; Stromatias et al., 2015b). With Fast-Poker-DVS data set,
there is a decrease in the performance in the last 20% of the
input events due to the deformation of the card symbol when
it disappears. Figure 7B presents the classification accuracy as
a function of the absolute number of input events, in log scale,
for the different data sets. This information is useful because in
neuromorphic systems the overall energy consumption depends
on the total number of events that are going to be processed
(Stromatias et al., 2013; Merolla et al., 2014; Neil and Liu, 2014)
and this might have an impact on deciding which data set to use
based on the energy and latency constraints Figure 9, presents
the network latency for each data set.We identify network latency
as the time lapsed from the first input spike to the first output
spike.

Table 5 presents a comparison of the current work with results
in the literature on the MNIST data set and SNNs. The current
state-of-the-art results come from a spiking CNN with 7 layers
and max-pooling achieving a score of 99.44% and from a 4 layer
spiking FC network achieving a score of 98.64% (Diehl et al.,
2015). Both approaches were trained offline using frames and
backpropagation and then mapped the network parameters to an
SNN. However, even though this approach works very well with
Poisson spike-trains or direct use of pixels, performance drops
significantly with real DVS data. In addition, a direct comparison
is not fair because the focus of this paper was to develop a
classifier that works with both synthetic and DVS data and not
to train a complete neural network with multiple layers.

Table 6 gathers the results in literature using the N-MNIST
data set and SNN. The best classification accuracy reported is

FIGURE 9 | The mean and standard deviation of the classification latency of

the SNNs for each data set.

98.66% using a FC 3 layer network (Lee et al., 2016). Using a
CNN, this work reports the best classification accuracy 97.77%
until now. Again, the focus of this paper is not beating the
classification accuracy, there is no optimization done to improve
the performance, but to provide a valid SNN classifier training
method with an insignificant Classifier Loss compared to frame
based classification accuracy.

Finally Table 7 shows the literature results for the 40 card fast-
poker-dvs data set. With this work, we demonstrate that 100% of
classification accuracy is obtained using LOOCVmethod.

4. DISCUSSION

In this paper we have presented a novel method for training
a classifier and converting it to an SNN. One of the main
advantages of the proposed technique is that it is able to

Frontiers in Neuroscience | www.frontiersin.org 13 June 2017 | Volume 11 | Article 350

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stromatias et al. An Event-Driven Classifier for SNNs

TABLE 5 | Comparison of classification accuracies (CA) of SNNs on the MNIST data set.

Architecture Neural coding Learning-type Learning-rule CA (%)

Spiking RBM (Neftci et al., 2015) Poisson Unsupervised Event-Based CD 91.9

FC (2 layer network) (Querlioz et al., 2013) Poisson Unsupervised STDP 93.5

FC (4 layer network) (O’Connor et al., 2013) Poisson Unsupervised CD 94.1

FC (2 layer network) (Diehl and Cook, 2015) Poisson Unsupervised STDP 95.0

Synaptic Sampling Machine (3 layer network) (Neftci

et al., 2016)

Poisson Unsupervised Event-Based CD 95.6

FC (4 layer network) (this work(O’Connor et al., 2013)) Poisson Supervised Stochastic GD 97.25

FC (4 layer network) (O’Connor and Welling, 2016) – Supervised Fractional SGD 97.8

FC (4 layer network) (Hunsberger and Eliasmith, 2015) Not reported Supervised Backprop soft LIF neurons 98.37

FC (4 layer network) (Diehl et al., 2015) Poisson Supervised Stochastic GD 98.64

CNN (Kheradpisheh et al., 2016) Latency Unsupervised STDP 98.4

CNN (Diehl et al., 2015) Poisson Supervised Stochastic GD 99.14

Sparsely Connected Network (×64) (Esser et al., 2015) Poisson Supervised Backprop 99.42

CNN (Rueckauer et al., 2016) Poisson Supervised Stochastic GD 99.44

CNN (this work) Latency Supervised Stochastic GD 98.42

CNN (this work) Poisson Supervised Stochastic GD 98.20

TABLE 6 | Comparison of classification accuracies (CA) of SNNs on the N-MNIST data set.

Architecture Preprocessing Learning-type Learning-rule CA (%)

CNN (Orchard et al., 2015b) None Unsupervised HFirst 71.15

FC (2 layer network) (Cohen et al., 2016) None Supervised OPIUM (van Schaik and Tapson, 2015) 92.87

CNN (Neil and Liu, 2016) Centering Supervised – 95.72

FC (3 layer network) (Lee et al., 2016) None Supervised Backpropagation 98.66

CNN (this work) None Supervised SGD 97.77

TABLE 7 | Comparison of classification accuracies (CA) of SNNs on the 40 cards

Fast-Poker-DVS data set.

Architecture Learning-type Learning-rule CA (%)

CNN (Pérez-Carrasco et al.,

2013)

Supervised Backprop 90.1 − 91.6

CNN (Orchard et al., 2015b) Unsupervised HFirst 97.5 ± 3.5

CNN (Lagorce et al., 2016) Supervised HOTS 100

CNN (this work) Supervised Stochastic GD 100

work with both synthetically generated data, used frequently in
previous studies (Masquelier and Thorpe, 2007; O’Connor et al.,
2013; Neftci et al., 2014; Diehl and Cook, 2015; Diehl et al., 2015;
Kheradpisheh et al., 2016), as well as with real DVS data from
a neuromorphic vision sensor (Lichtsteiner et al., 2008; Posch
et al., 2011; Serrano-Gotarredona and Linares-Barranco, 2013).
Recent works reported very good results while using synthetically
generated events, however, this performance does not hold true
when switching to DVS data, as a large drop in the classification
accuracy is observed.

Here we used a single convolutional layer with the same
number of feature maps and the same 18 hand-coded Gabor-
like kernels, in order to prove that our methodology works
with both synthetic and DVS data. We did not try to optimize
the kernels for each data set as this would be out of the
scope of this work, only the dimensions of the feature maps
changed according to the size of each data set. The importance
of the results is to show the small difference between the
frame-based classifier accuracy result and the SNN classifier
accuracy results. We also considered cases where leakage in
neurons is activated, as this is more suitable for real-world
applications.

We have shown that for synthetic data there is a loss of 0.03%

in the classification accuracy when compared to the frame-based

classifier, while for the N-MNIST data set the higher loss between

the frame-based classifier and the SNN is in the order of 0.68%.

On the N-MNIST the SNN achieved a score of 97.77%, which

at the time of writing is the highest score for a convolutional
SNN using the N-MNIST raw data. We also tested the classifier
with the Fast-Poker-DVS data set, 40 cards, and obtained 100% of
accuracy by separating the data set into training and testing sets.

Frontiers in Neuroscience | www.frontiersin.org 14 June 2017 | Volume 11 | Article 350

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stromatias et al. An Event-Driven Classifier for SNNs

Furthermore, we extend this data set to a slightly bigger data set,
131 cards, showing a classification accuracy of 98.47%.

In addition, we presented a comparison between the different
encodings and data sets in terms of classification latency and
total number of events. This comparison is important because
for neuromorphic platforms the energy consumption depends
on the events to be processed (Stromatias et al., 2013; Merolla
et al., 2014), and depending on the application one encoding
might be more preferable than the other. As an example, mobile
and robotic platforms that have limited energy resources and
require fast responses might benefit from using Intensity-to-
Latency encoding, since it produces the lowest network activity
and output latency compared to all the data sets presented in this
work.

The proposed methodology has also been used to fine-tune
an already trained SNN. We showed that by using the features
learned in an unsupervised manner using the CD algorithm
(O’Connor et al., 2013) and only retraining the classifier, the
classification accuracy improved by 2%. This result suggests that
our classifier can be used in cases where features are extracted in
an unsupervised manner, either based on biologically-plausible
plasticity rules such as STDP (Bichler et al., 2012; Roclin et al.,
2013; Diehl and Cook, 2015; Kheradpisheh et al., 2016) or event-
based implementations of CD (Neftci et al., 2014, 2016).

AUTHOR CONTRIBUTIONS

ES and MS conceived the idea of the proposed classifier.
ES designed, and conducted the experiments with the

synthetic data and analyzed the results. MS designed,

performed the experiments with the DVS data sets and
analyzed the results. ES, MS, and BL wrote the paper. BL
wrote the MegaSim simulator code, and ES contributed new
codes and python layers for systematic runs of repeated
simulations and data analyses. BL contributed to the
conception and design of the experiments, data analysis,
and presentation of the work. TS provided an improved
DVS sensor with which the most recent recordings were
made.

ACKNOWLEDGMENTS

This work was supported in part by the EU H2020 grants
644096 “ECOMODE” and 687299 “NEURAM3”, by Samsung
Advanced Institute of Technology grant NPP, by Spanish
grants from the Ministry of Economy and Competitivity
TEC2012-37868-C04-01 (BIOSENSE) and TEC2015-63884-C2-
1-P (COGNET) (with support from the European Regional
Development Fund), and by Andalusian grant TIC-6091
(NANONEURO).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnins.
2017.00350/full#supplementary-material

Supplementary material is included showing the pseudo-
codes of the neuron models used in the algorithms.

REFERENCES

Ananthanarayanan, R., Esser, S. K., Simon, H. D., and Modha, D. S. (2009). “The

cat is out of the bag: cortical simulations with 109 neurons, 1013 synapses,”

in Proceedings of the Conference on High Performance Computing Networking,

Storage and Analysis (New York, NY), 1–12. doi: 10.1145/1654059.16

54124

Arthur, J., Merolla, P., Akopyan, F., Alvarez, R., Cassidy, A., Chandra, S., et al.

(2012). “Building block of a programmable neuromorphic substrate: a digital

neurosynaptic core,” in Neural Networks (IJCNN), The 2012 International Joint

Conference on (Brisbane, QLD), 1–8. doi: 10.1109/IJCNN.2012.6252637

Bichler, O., Querlioz, D., Thorpe, S. J., Bourgoin, J.-P., and Gamrat, C.

(2012). Extraction of temporally correlated features from dynamic vision

sensors with spike-timing-dependent plasticity. Neural Netw. 32, 339–348.

doi: 10.1016/j.neunet.2012.02.022

Bottou, L. (2010). Large-Scale Machine Learning with Stochastic Gradient Descent.

Heidelberg: Physica-Verlag. doi: 10.1007/978-3-7908-2604-3_16

Camunas-Mesa, L., Acosta-Jimenez, A., Zamarreno-Ramos, C., Serrano-

Gotarredona, T., and Linares-Barranco, B. (2011). A 32 x 32 pixel convolution

processor chip for address event vision sensors with 155 ns event latency

and 20 meps throughput. IEEE Trans. Circ. Syst. I Regul. Papers 58, 777–790.

doi: 10.1109/TCSI.2010.2078851

Camuñas-Mesa, L., Pérez-Carrasco, J., Zamarreño-Ramos, C., Serrano-

Gotarredona, T., and Linares-Barranco, B. (2010). “On scalable

spiking convnet hardware for cortex-like visual sensory processing

systems,” in Circuits and Systems (ISCAS), Proceedings of 2010 IEEE

International Symposium on (Paris), 249–252. doi: 10.1109/ISCAS.2010.55

37918

Camunas-Mesa, L., Zamarreno-Ramos, C., Linares-Barranco, A., Acosta-Jimenez,

A. J., Serrano-Gotarredona, T., and Linares-Barranco, B. (2012). An

event-driven multi-kernel convolution processor module for event-driven

vision sensors. IEEE J. Solid-State Circ. 47, 504–517. doi: 10.1109/JSSC.2011.21

67409

Cohen, G. K., Orchard, G., Leng, S.-H., Tapson, J., Benosman, R. B., and van Schaik,

A. (2016). Skimming digits: neuromorphic classification of spike-encoded

images. Front. Neurosci. 10:184. doi: 10.3389/fnins.2016.00184

Dan, Y., and Poo, M. (1992). Hebbian depression of isolated neuromuscular

synapses in vitro. Science 256, 1570–1573. doi: 10.1126/science.1317971

Diehl, P., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S. C., and Pfeiffer, M. (2015). “Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN)

(Killarney), 1–8.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., et al.

(2012). A large-scale model of the functioning brain. Science 338, 1202–1205.

doi: 10.1126/science.1225266

Esser, S. K., Appuswamy, R., Merolla, P. A., Arthur, J. V., and Modha, D. S.

(2015). “Backpropagation for energy-efficient neuromorphic computing,” in

Proceedings of the 28th International Conference on Neural Information

Processing Systems, NIPS’15 (Cambridge, MA: MIT Press), 1117–1125.

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Gerstner,W., and Kistler,W. (2002). Spiking NeuronModels: An Introduction. New

York, NY: Cambridge University Press.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). “Delving deep into rectifiers:

surpassing human-level performance on imagenet classification,” in 2015

IEEE International Conference on Computer Vision (ICCV) (Santiago),

1026–1034.

Frontiers in Neuroscience | www.frontiersin.org 15 June 2017 | Volume 11 | Article 350

http://journal.frontiersin.org/article/10.3389/fnins.2017.00350/full#supplementary-material
https://doi.org/10.1145/1654059.1654124
https://doi.org/10.1109/IJCNN.2012.6252637
https://doi.org/10.1016/j.neunet.2012.02.022
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1109/TCSI.2010.2078851
https://doi.org/10.1109/ISCAS.2010.5537918
https://doi.org/10.1109/JSSC.2011.2167409
https://doi.org/10.3389/fnins.2016.00184
https://doi.org/10.1126/science.1317971
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1126/science.1225266
https://doi.org/10.1109/JPROC.2014.2304638
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stromatias et al. An Event-Driven Classifier for SNNs

Hinton, G., Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for

deep belief nets. Neural Comput. 18, 1527–1554. doi: 10.1162/neco.2006.18.

7.1527

Hinton, G., and Salakhutdinov, R. (2006). Reducing the dimensionality of data with

neural networks. Science 313, 504–507. doi: 10.1126/science.1127647

MIT Technology Review (2013). 10 Breakthrough Technologies 2013:

Deep Learning. Available online at: http://www.technologyreview.com/

featuredstory/513696/deep-learning/

Hunsberger, E., and Eliasmith, C. (2015). Spiking deep networks with LIF neurons.

CoRR abs/1510.08829.

Isaksson, A., Wallman, M., Göransson, H., and Gustafsson, M. G. (2008). Cross-

validation and bootstrapping are unreliable in small sample classification. Patt.

Recogn. Lett. 29, 1960–1965. doi: 10.1016/j.patrec.2008.06.018

Izhikevich, E. M., and Edelman, G. M. (2008). Large-scale model of mammalian

thalamocortical systems. Proc. Natl. Acad. Sci. U.S.A. 105, 3593–3598.

doi: 10.1073/pnas.0712231105

Delbruck, T. (2013). jAER Open Source Project. Available online at: http://

sourceforge.net/apps/trac/jaer/wiki

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T. (2016).

Stdp-based spiking deep neural networks for object recognition. CoRR

abs/1611.01421.

Lagorce, X., Orchard, G., Gallupi, F., Shi, B. E., and Benosman, R. (2016). HOTS:

a hierarchy of event-based time-surfaces for pattern recognition. IEEE Trans.

Patt. Anal. Mach. Intell. 8828:1. doi: 10.1109/TPAMI.2016.2574707

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature 521, 436–444.

doi: 10.1038/nature14539

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proc. IEEE 86, 2278–2324.

doi: 10.1109/5.726791

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Lenero-Bardallo, J. A., Serrano-Gotarredona, T., and Linares-Barranco, B. (2011).

A 3.6 µs latency asynchronous frame-free event-driven dynamic-vision-

sensor. IEEE J. Solid State Circuits 46, 1443–1455. doi: 10.1109/JSSC.2011.21

18490

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128 times; 128 120 db 15

µs latency asynchronous temporal contrast vision sensor. IEEE J. Solid State

Circuits 43, 566–576. doi: 10.1109/JSSC.2007.914337

Liu, Q., Pineda-García, G., Stromatias, E., Serrano-Gotarredona, T., and

Furber, S. B. (2016). Benchmarking spike-based visual recognition: a

dataset and evaluation. Front. Neurosci. 10:496. doi: 10.3389/fnins.2016.

00496

Liu, S. C., van Schaik, A., Mincti, B. A., and Delbruck, T. (2010). “Event-based

64-channel binaural silicon cochlea with q enhancement mechanisms,” in

Proceedings of 2010 IEEE International Symposium on Circuits and Systems

(Paris), 2027–2030. doi: 10.1109/ISCAS.2010.5537164

Maass, W., and Markram, H. (2004). On the computational power

of circuits of spiking neurons. J. Comput. Syst. Sci. 69, 593–616.

doi: 10.1016/j.jcss.2004.04.001

Mahowald, M. (1994). An Analog VLSI System for Stereoscopic Vision. Norwell,

MA: Kluwer Academic Publishers.

Masquelier, T., and Thorpe, S. J. (2007). Unsupervised learning of visual

features through spike timing dependent plasticity. PLoS Comput. Biol. 3:e31.

doi: 10.1371/journal.pcbi.0030031

Mead, C. (1990). Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636.

doi: 10.1109/5.58356

Merolla, P., Ursell, T., and Arthur, J. V. (2010). The thermodynamic temperature

of a rhythmic spiking network. CoRR abs/1009.5473.

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Neftci, E., Augustine, C., Paul, S., and Detorakis, G. (2017). Neuromorphic deep

learning machines. CoRR abs/1612.05596.

Neftci, E., Das, S., Pedroni, B., Kreutz-Delgado, K., and Cauwenberghs, G. (2014).

Event-driven contrastive divergence for spiking neuromorphic systems. Front.

Neurosci. 7:272. doi: 10.3389/fnins.2013.00272

Neftci, E., Das, S., Pedroni, B., Kreutz-Delgado, K., and Cauwenberghs, G.

(2015). Event-driven contrastive divergence: neural sampling foundations.

Front. Neurosci. 9:104. doi: 10.3389/fnins.2015.00104

Neftci, E. O., Pedroni, B. U., Joshi, S., Al-Shedivat, M., and Cauwenberghs,

G. (2016). Stochastic synapses enable efficient brain-inspired

learning machines. Front. Neurosci. 10:241. doi: 10.3389/fnins.2016.

00241

Neil, D., and Liu, S.-C. (2014). Minitaur, an event-driven FPGA-based spiking

network accelerator. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 22,

2621–2628. doi: 10.1109/TVLSI.2013.2294916

Neil, D., and Liu, S.-C. (2016). “Effective sensor fusion with event-based sensors

and deep network architectures,” in 2016 IEEE International Symposium on

Circuits and Systems (ISCAS) (Montreal, QC), 2282–2285. Available online

atL http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7539039&

isnumber=7527154

Nowotny, T. (2014). Two challenges of correct validation in pattern recognition.

Front. Robot. AI 1:5. doi: 10.3389/frobt.2014.00005

O’Connor, P., Neil, D., Liu, S.-C., Delbruck, T., and Pfeiffer, M. (2013). Real-

time classification and sensor fusion with a spiking deep belief network. Front.

Neurosci. 7:178. doi: 10.3389/fnins.2013.00178

O’Connor, P., and Welling, M. (2016). Deep spiking networks. CoRR

abs/1602.08323.

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015a). Converting

static image datasets to spiking neuromorphic datasets using saccades. Front.

Neurosci. 9:437. doi: 10.3389/fnins.2015.00437

Orchard, G., Meyer, C., Etienne-Cummings, R., Posch, C., Thakor, N.,

and Benosman, R. (2015b). Hfirst: a temporal approach to object

recognition. IEEE Trans. Patt. Anal. Mach. Intell. 37, 2028–2040.

doi: 10.1109/TPAMI.2015.2392947

Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A QVGA 143 dB

dynamic range frame-free pwm image sensor with lossless pixel-level video

compression and time-domain CDS. IEEE J. Solid-State Circuits 46, 259–275.

doi: 10.1109/JSSC.2010.2085952

Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B., and Delbruck, T.

(2014). Retinomorphic event-based vision sensors: bioinspired cameras with

spiking output. Proc. IEEE 102, 1470–1484. doi: 10.1109/JPROC.2014.23

46153

Pérez-Carrasco, J. A., Zhao, B., Serrano, C., Acha, B., Serrano-Gotarredona, T.,

Chen, S., et al. (2013). Mapping from frame-driven to frame-free event-driven

vision systems by low-rate rate coding and coincidence processing–application

to feedforward convnets. IEEE Trans. Patt. Anal. Mach. Intell. 35, 2706–2719.

doi: 10.1109/TPAMI.2013.71

Querlioz, D., Bichler, O., Dollfus, P., and Gamrat, C. (2013). Immunity to

device variations in a spiking neural network with memristive nanodevices.

IEEE Trans. Nanotechnol. 12, 288–295. doi: 10.1109/TNANO.2013.22

50995

Roclin, D., Bichler, O., Gamrat, C., Thorpe, S. J., and Klein, J. O. (2013).

“Design study of efficient digital order-based STDP neuron implementations

for extracting temporal features,” in Neural Networks (IJCNN), The 2013

International Joint Conference on (Dallas, TX), 1–7.

Rueckauer, B., Lungu, I.-A., Hu, Y., and Pfeiffer, M. (2016). Theory and tools

for the conversion of analog to spiking convolutional neural networks. CoRR

arXiv:1612.04052.

Schmidhuber, J. (2012). “Multi-column deep neural networks for image

classification,” in Proceedings of the 2012 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), CVPR ’12 (Washington, DC: IEEE Computer

Society), 3642–3649.

Schmidhuber, J. (2015). Deep learning in neural networks: an overview. Neural

Netw. 61, 85–117. doi: 10.1016/j.neunet.201409.003

Serrano-Gotarredona, T., and Linares-Barranco, B. (2013). A 128 × 128

1.5latency 4 MW asynchronous frame-free dynamic vision sensor using

transimpedance preamplifiers. IEEE J. Solid-State Circuits 48, 827–838.

doi: 10.1109/JSSC.2012.2230553

Serrano-Gotarredona, T., and Linares-Barranco, B. (2015). Poker-DVS and

MNIST-DVS. their history, how they were made, and other details. Front.

Neurosci. 9:481. doi: 10.3389/fnins.2015.00481

Serrano-Gotarredona, T., Linares-Barranco, B., Galluppi, F., Plana, L., and Furber,

S. (2015). “ConvNets experiments on SpiNNaker,” in 2015 IEEE International

Frontiers in Neuroscience | www.frontiersin.org 16 June 2017 | Volume 11 | Article 350

https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1126/science.1127647
http://www.technologyreview.com/featuredstory/513696/deep-learning/
http://www.technologyreview.com/featuredstory/513696/deep-learning/
https://doi.org/10.1016/j.patrec.2008.06.018
https://doi.org/10.1073/pnas.0712231105
http://sourceforge.net/apps/trac/jaer/wiki
http://sourceforge.net/apps/trac/jaer/wiki
https://doi.org/10.1109/TPAMI.2016.2574707
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/5.726791
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1109/JSSC.2011.2118490
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.3389/fnins.2016.00496
https://doi.org/10.1109/ISCAS.2010.5537164
https://doi.org/10.1016/j.jcss.2004.04.001
https://doi.org/10.1371/journal.pcbi.0030031
https://doi.org/10.1109/5.58356
https://doi.org/10.1126/science.1254642
https://doi.org/10.3389/fnins.2013.00272
https://doi.org/10.3389/fnins.2015.00104
https://doi.org/10.3389/fnins.2016.00241
https://doi.org/10.1109/TVLSI.2013.2294916
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7539039&isnumber=7527154
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7539039&isnumber=7527154
https://doi.org/10.3389/frobt.2014.00005
https://doi.org/10.3389/fnins.2013.00178
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.1109/TPAMI.2015.2392947
https://doi.org/10.1109/JSSC.2010.2085952
https://doi.org/10.1109/JPROC.2014.2346153
https://doi.org/10.1109/TPAMI.2013.71
https://doi.org/10.1109/TNANO.2013.2250995
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1109/JSSC.2012.2230553
https://doi.org/10.3389/fnins.2015.00481
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Stromatias et al. An Event-Driven Classifier for SNNs

Symposium on Circuits and Systems (ISCAS) (Lisbon: IEEE), 2405–2408.

doi: 10.1109/ISCAS.2015.7169169

Siegert, A. J. F. (1951). On the first passage time probability problem. Phys. Rev.

81:617. doi: 10.1103/PhysRev.81.617

Soto, M. (2017). Slow Poker DVS Data Set. Available online at: http://www2.imse-

cnm.csic.es/caviar/SLOWPOKERDVS.html

Stromatias, E., Galluppi, F., Patterson, C., and Furber, S. (2013). “Power

analysis of large-scale, real-time neural networks on spinnaker,” in The 2013

International Joint Conference on Neural Networks (IJCNN) (Dallas, TX), 1–8.

doi: 10.1109/IJCNN.2013.6706927

Stromatias, E., Neil, D., Galluppi, F., Pfeiffer, M., Liu, S. C., and Furber, S. (2015a).

“Scalable energy-efficient, low-latency implementations of trained spiking

Deep Belief Networks on SpiNNaker,” in 2015 International Joint Conference

on Neural Networks (IJCNN) (Killarney), 1–8. doi: 10.1109/IJCNN.2015.

7280625

Stromatias, E., Neil, D., Pfeiffer, M., Galluppi, F., Furber, S. B., and Liu, S.-C.

(2015b). Robustness of spiking deep belief networks to noise and reduced

bit precision of neuro-inspired hardware platforms. Front. Neurosci. 9:222.

doi: 10.3389/fnins.2015.00222

van Schaik, A., and Tapson, J. (2015). Online and adaptive pseudoinverse

solutions for ELM weights. Neurocomputation 149, 233–238.

doi: 10.1016/j.neucom.2014.01.071

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Stromatias, Soto, Serrano-Gotarredona and Linares-Barranco.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 17 June 2017 | Volume 11 | Article 350

https://doi.org/10.1109/ISCAS.2015.7169169
https://doi.org/10.1103/PhysRev.81.617
https://doi.org/10.1109/IJCNN.2013.6706927
https://doi.org/10.1109/IJCNN.2015.7280625
https://doi.org/10.3389/fnins.2015.00222
https://doi.org/10.1016/j.neucom.2014.01.071
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	An Event-Driven Classifier for Spiking Neural Networks Fed with Synthetic or Dynamic Vision Sensor Data
	1. Introduction
	2. Materials and Methods
	2.1. Data Sets
	2.2. Spiking Neural Network Simulator
	2.3. Network Architecture
	2.3.1. Convolutional Neural Network
	2.3.2. Fully Connected Network

	2.4. Neuron Model
	2.5. Methodology for Training an Event-Driven Classifier
	2.5.1. From Events to Frames
	2.5.2. Training
	2.5.3. From Frames Back to Events

	3. Results
	3.1. Synthetic MNISTs
	3.2. N-MNIST
	3.3. MNIST-DVS
	3.4. Slow-Poker-DVS
	3.5. Fast-Poker-DVS
	3.6. SNN Fine-Tuning
	3.7. Summary of Results and Comparison with Related Work

	4. Discussion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References

