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Abstract: Mutations in BEST1 gene, encoding the bestrophin-1 (Best1) protein are 

associated with macular dystrophies. Best1 is predominantly expressed in the retinal 

pigment epithelium (RPE), and is inserted in its basolateral membrane. We investigated the 
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cellular localization in polarized MDCKII cells of disease-associated Best1 mutant proteins 

to study specific sorting motifs of Best1. Real-time PCR and western blots for endogenous 

expression of BEST1 in MDCK cells were performed. Best1 mutant constructs were 

generated using site-directed mutagenesis and transfected in MDCK cells. For protein 

sorting, confocal microscopy studies, biotinylation assays and statistical methods for 

quantification of mislocalization were used. Analysis of endogenous expression of BEST1 

in MDCK cells revealed the presence of BEST1 transcript but no protein. Confocal 

microscopy and quantitative analyses indicate that transfected normal human Best1 

displays a basolateral localization in MDCK cells, while cell sorting of several Best1 

mutants (Y85H, Q96R, L100R, Y227N, Y227E) was altered. In contrast to constitutively 

active Y227E, constitutively inactive Y227F Best1 mutant localized basolaterally  

similar to the normal Best1 protein. Our data suggest that at least three basolateral sorting 

motifs might be implicated in proper Best1 basolateral localization. In addition,  

non-phosphorylated tyrosine 227 could play a role for basolateral delivery.  

Keywords: BVMD; Best1 protein; cell polarity; MDCK cells  

 

1. Introduction 

Best vitelliform macular dystrophy (BVMD) is an autosomal dominant inherited disorder that 

affects central vision starting generally around teenage years [1]. Histopathologically, BVMD has been 

shown to manifest as a generalized retinal pigment epithelium (RPE) abnormality associated with 

lipofuscin accumulation, regions of geographic atrophy, and deposition of abnormal fibrillar material 

beneath the RPE [2]. In addition, patients are also diagnosed with a decreased electrooculogram  

(EOG) [3,4]. BVMD is linked to mutations in the Bestrophin-1 gene (BEST1, formerly VMD2) located 

on chromosome 11 [5,6]. Mutations in BEST1 are associated with phenotypic heterogeneity and cause 

five clinically distinct human diseases—the classical BVMD, adult-onset vitelliform macular dystrophy 

(AVMD), autosomal dominant vitreoretinochoroidopathy (ADVIRC), autosomal recessive bestrophinopathy 

(ARB) [7] and retinitis pigmentosa (RP) [8–10]. The BEST1 gene encodes the 585-amino acid protein 

bestrophin-1 (Best1) with an expected molecular mass of 68 kDa. The protein is expressed 

predominantly in the RPE and localizes mostly to the basolateral plasma membrane of the cells [11]. 

Two different models suggest that Best1 is a transmembrane protein with four transmembrane 

domains; its amino and carboxyl termini are localized within the cytoplasm, and the protein is not 

modified by N-linked glycosylation [12,13]. The main difference between these two models concerns 

the arrangement of transmembrane domains (TMDs) four and five in the lipid bilayer of RPE cells.  

Experimental data suggest that Best1 proteins are involved in Ca2+-dependent transport of chloride 

ions across cellular membranes as Cl− channels [14,15]. The protein is involved in the signal 

transduction pathway that modulates the light peak of the EOG, which might be regulated by 

phosphorylation of bestrophin-1 [16]. The hallmark diagnostic feature of BVMD is a decreased or 

absent slow light peak noted when measuring EOG [4,17]. Sun and colleagues proposed that this peak 

reflects a Cl− conductance in the basolateral membrane of the RPE [14,18]. Marmorstein and 
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colleagues suggested that human Best1 affects the light peak indirectly via its regulation on  

voltage-gated Ca2+ channels [19,20]. Best1 knock-out (Best1−/−) mice exhibit a normal or enhanced 

light peak, therefore Best1 might not be required for generating the light peak but might serve to 

antagonize it [21]. In addition, it was reported that bestrophin-1 protein conducts HCO−
3 similar to  

Cl− [22] and mediates glutamate release in astrocytes [23,24].  

Polarity of RPE is crucial in maintaining homeostasis of the whole retina. In polarized epithelial 

cells the plasma membrane is divided into apical and basolateral domains, separated by tight junctions 

and having distinct compositions of proteins and lipids that are exposed to different environments [25–27]. 

Polarity is particularly important for channels that specifically transport ions and other molecules at the 

basolateral or apical domains. Hence, the proper basolateral localization of Best1 is important for its 

function in RPE cells. Indeed, Mullins and co-workers showed that in a BVMD patient with a 

p.Y227N mutation, the Best1 protein localized not only along the basolateral membrane but also in the 

apical membrane of the RPE [28]. 

Basolateral and apical protein targeting depends on specific motifs in the protein structure. Basolateral 

delivery is usually mediated by specific signals located in the cytoplasmic domains of proteins. These 

signals often involve tyrosine-based (YXXØ, where Ø is an amino acid with a bulky hydrophobic side chain 

and X stands for variable amino acids) or di-leucine (LL) motifs [29,30]. Best1 displays several potential 

basolateral sorting motifs, e.g., Y85VTL, Y97ENL, L206L207 and Y227DWI. In contrast, apical 

targeting has been attributed to different types of sorting signals, including N-linked or O-linked 

carbohydrates, specific transmembrane domains, GPI anchors or cytoplasmic domain determinants [31,32].  

In the present study expression constructs of several disease-causing mutations (p.Y85H, p.L100R, 

p.L207I and p.Y227N) identified previously [6,33,34] and disrupting putative sorting motifs of Best1 

were generated. We then analyzed the mutants in respect to their basolateral targeting in polarized 

MDCK cells, a trusted and widely-used model for epithelial cell polarity studies [35,36]. Additionally, 

we analyzed the localization of one new mutation identified in our cohort that has not been described 

previously (c.287A > G; p.Q96R). 

2. Results and Discussion 

2.1. Expression of Bestrophin-1 in MDCK Cells 

BEST1 was identified as a retina-specific gene expressed in RPE cells [5,6]. Human-derived RPE 

cell lines ARPE-19 and D407 as well as rat RPE-J cell line express BEST1 mRNA [11]. To test if 

MDCK cells express BEST1 transcript, these cells were investigated with quantitative Real-Time PCR. 

As shown in Figure 1a, we were able to detect a transcript in MDCK cells expressed at low levels 

(after 34 cycles of PCR). The level of BEST1 transcription in MDCK cells was ~60% of the level 

observed in RPE-J cells (Figure 1b). Although they express BEST1 mRNA, RPE cell lines do not 

synthesize the Best1 protein. This is also true for MDCK cells, as they do not produce any Best1 

protein either (Figure 1c). MDCK cells transfected with human BEST1 express Best1 protein at an 

expected 68-kDa size. On the immunoblot, the upper band with a molecular mass of approximately  

70 kDa is considered as a non-specific band as described in RPE-J cells and human RPE using the 

same antibody in previous studies [7]. 
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Figure 1. (a) HPRT and BEST1 mRNAs are expressed in MDCK and RPE-J cells.  

M–100 bp ladder, N–negative control; (b) Quantification of BEST1 expression levels 

between MDCK and RPE-J cells using quantitative Real-Time PCR. Fold change variation 

in BEST1 expression levels is reported as 2^-∆∆Ct value, the reference mRNA being 

HPRT (mean ± SEM., n = 2); (c) Western blot analysis—Best1 protein is not synthesized 

by RPE-J or MDCK cells. After transfection, MDCK produce human Best1 at 68 kDa. 

(a) (b) (c) 

 

2.2. Basolateral Localization of Human Best1 in Polarized MDCK Cells 

In vivo, the Best1 protein localizes at the basolateral membrane of RPE cells [11]. In order to test if 

this localization is similar in MDCK cells, a normal human BEST1 construct was transiently 

transfected. The cells were examined by immunofluorescence staining followed by confocal 

microscopy. Four days after transfection, 5%–10% of cells showed Best1 staining. Development of the 

epithelial polarity depends on the assembly of tight junctions between the cells [37]. Therefore, cells 

were investigated with the tight junction marker ZO-1. A normal rim-like morphology typical for polar 

cells was observed in all cells. In a single transfected cell, X-Y and X-Z confocal cross-section images 

showed basolateral colocalization of Best1 with ZO-1 (Figure 2a). This basolateral staining was further 

confirmed by colocalization with β-catenin [38], which reveals membranes separating adjacent cells 

and on the basal side (Figure 2b). Some intracellular staining was noted, which corresponds to proteins 

still present in the biosynthetic pathway. Quantification of basolateral and apical signals show similar 

repartition of Best1 and β-catenin proteins along the different membranes of 10 randomly chosen 

single cells which do not overexpress Best1 (Figure 2c). Using the trapezoidal calculation approach 

(see Experimental Section), we show that 90% and 91% of both proteins were preferentially localized 

to the basolateral membrane, respectively.  
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Figure 2. (a) Transfected MDCK cells express Best1 (green) at the basolateral surface, 

colocalizing with the tight-junction marker ZO-1 (red) on X-Y and X-Z single confocal 

scans; (b) Best1 (green) at the basolateral surface, colocalizing with the basolateral marker 

β-catenin (red) on X-Z single scan. Nuclei are in blue, scale bar = 10 μm; (c) Best1 

localizes to the basolateral surface at the same level as the well-characterized marker  

β-catenin. Pixel intensity values obtained from confocal images per Z-focal plane of ten 

cells transfected with wild type BEST1 cDNA and the basolateral threshold in each cell 

were used to calculate percentage localized expression (mean ± SEM., n = 10, p = 0.018).  

 

2.3. Best1 Mutants Are Synthesized by MDCK Cells 

We generated Best1 mutants using site-directed mutagenesis. Mutation sites are localized in 

putative tyrosine sorting determinants (Y85VTL, Y97ENL, L206L207, Y227DWI) situated in 

different regions of the protein (Figure 3a). Interestingly, these putative sorting domains correspond to 

mutations identified in BVMD patients (p.Y85H, p.L100R, p.Y227N). In addition, we included the 

Q96R mutant, which represents a new mutation identified by our group located next to the Y97ENL 

motif. Normal and mutant BEST1 constructs were transiently transfected in MDCK cells. Expression 

of the different mutants was checked using western blot analysis 48 hours after transfection (Figure 3b). 

Expression levels of the different forms vary possibly due to different transfection efficiencies or 

different synthesis rates for each construct tested. For example, expression of mutant Y227E was 

decreased by 68% (SEM. ± 26, n = 2, p = 0.016) compared to normal Best1. 
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Figure 3. (a) Schematic drawing showing localization of the different mutations (black 

diamonds) tested in our study (modified from [12]); (b) Western blot analysis of the 

normal and mutant human Best1 protein in transiently transfected MDCK cells. Best1 

proteins are detectable as a 68 kDa band in all transfected cells, but not in non-transfected 

controls (MDCK lane). Actin bands are shown to indicate equal loading of cell lysates.  

 

2.4. BVMD-Related Mutations Affect Best1 Basolateral Localization 

To investigate if these mutations influence the localization of Best1, we studied the polarized 

expression of the different constructs in MDCK cells. X-Z confocal microscopy scans of individual 

cells showed increased apical staining for mutants Y85H, Q96R, L100R, Y227N when compared to 

normal Best1 protein (Figure 4a). Pixel intensity values in each Z-focal plane of the same cell 

indicated different curve shapes for Best1 mutants compared to both β-catenin and normal Best1 

(Figure 4b). The peak of maximum intensity for mislocalized Best1 mutants was shifted towards the 

apical region of the curves, which corroborates well the significant increase in apical staining. 

Quantitative analyses suggested a significant displacement of Best1 from the basolateral membrane to 

the apical region at a level of 15% for Y85H (p = 5.37 × 10−5), 10% for Q96R (p = 0.0001), 6% for 

L100R (p = 0.0009) and 9% for Y227N (p = 5.20 × 10−5) (Figure 4c). In contrast, mutant L207I did 

not show any change in membrane localization. 

We also investigated colocalization of mutants Y85H and Q96R with ZO-1 and wheat germ 

agglutinin (WGA) as tight-junction and extracellular apical markers respectively. Y85H and Q96R 

were partially localized apically above the tight junctions of the cells (Figure 5a). We observed partial 

colocalization of Y85H and Q96R mutants with WGA at the apical membrane that was not detected 

with normal Best1 (Figure 5b).  

Biotinylation assays for the Y85H and Q96R mutants at the apical and basolateral cell membranes 

show an increase in apical surface localization with respect to wild-type Best1 (Figure 5c). 
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Figure 4. (a) X-Z confocal single image scan of transiently transfected cells with different 

BEST1 cDNA constructs showing mislocalization of mutants Y85H, Q96R, L100R and 

Y227N. Cells were stained for Best1 (green), β-catenin (red) and nuclei (blue).  

Scale bar = 10 μm; (b) Z-series confocal stack signals corresponding to each labeling were 

quantified. Curves indicate the pixel intensity of each section along the Z-axis for each cell 

(Best1, green; β-catenin, red; nuclei, blue). The black vertical line indicates the Z-focal 

plane chosen as threshold for apical and basolateral domains separation. Basolateral and 

apical sides are as indicated. Horizontal axis represents μm distance and vertical axis 

shows pixel intensities; (c) Bar graph illustrating quantification of Best1 mutants 

distribution in the basolateral and apical domains of the cells compared with normal 

protein (mean ± SEM., n = 10, * p < 0.01, *** p < 0.0001).  
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Figure 5. (a) Mutant signals (green) are detected above the tight-junction marker ZO-1 

(red); (b) Mutants (red) show partial colocalization with WGA (green) at the apical 

membrane (orange signals). Nuclei are in blue. Scale bars = 10 μm; (c) Surface-biotinylated 

Y85H and Q96R proteins confirm increased apical localization (Ap) versus basolateral (Bl) 

localization compared to normal Best1. 

 

2.5. Pseudo-Phosphorylation of Tyrosine 227 Affects Best1 Basolateral Localization 

Best1 is a phosphorylated protein [16,39] and activation of drosophila Best1 requires its 

phosphorylation [40]. As described in the section above, the tyrosine Y227 residue seems important 

for basolateral sorting. One further question is whether tyrosine-227 phosphorylation is necessary for 
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basolateral targeted expression. In order to address this, polarized sorting of Y227E and Y227F Best1 

was analyzed. Pseudo-phosphorylation of tyrosine-227 was performed by substituting tyrosine with 

glutamic acid, and tyrosine activity was blocked by mutating the tyrosine residue into phenylalanine. 

Interestingly, constitutively pseudo-phosphorylated Y227E increased apical staining (Figure 6a) and a 

concomitant peak at the apical region of the quantification curve was observed (+15%, p = 0.0013, 

Figure 6b,c). Non-activated Y227F displayed a basolateral labeling signal and peak in the basolateral 

side of the quantification curves as is the case for normal Best1. These results suggest a probable role 

of non-phosphorylated tyrosine-227 for proper basolateral sorting. 

Figure 6. (a) X-Z confocal single scan showing that constitutively phosphorylated Best1 

(Y227E) is partially targeted to the apical membrane compared to normal and  

non-phosphorylated (Y227F) Best1. Best1 in green, β-catenin in red, nuclei in blue.  

Scale bar = 10 μm; (b) Quantification of basolateral to apical localization of the three 

markers (Best1, green; β-catenin, red; nuclei, blue) along the Z-axis confirming the result. 

Vertical line indicated basolateral-apical domains separation. Horizontal axis represents 

μm distance and vertical axis shows pixel intensities; (c) Bar graph of the repartition 

percentage of Best1 between basolateral and apical domains (mean ± SEM., n = 10,  

** p < 0.005). 

 

 

Mutations in the Bestrophin-1 (BEST1) gene cause a variety of degenerative eye diseases in 

humans, collectively referred to as “bestrophinopathies” [7,9,41,42]. Best1 protein has been 

hypothesized to be either a Ca2+-activated Cl− channel [43,44], or a regulator of ion transport, or  

both [14,18,41,42]. In tissues, human BEST1 mRNA is expressed in the retina/RPE, brain, spinal cord, 
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testis, trachea and kidney [6,45]. In dogs, Best1 mRNA has been detected in RPE and brain [46], and 

in mice a wider distribution has been observed [47]. Best1 proteins are localized in the basolateral 

plasma membrane of RPE cells in macaques, swine [11], humans [28], canines [46] and mice [21,48].  

The purpose of this study was to investigate if defective sorting and localization of Best1 protein in 

polarized epithelial cells could be implicated in the pathogenesis of BVMD. Indeed, Marmorstein and 

colleagues have shown basolateral sorting of human Best1 by immunofluorescence staining and cell 

surface biotinylation [11]. Additionally, a study showed leakage of Best1 sorting from the basolateral 

to the apical membrane of RPE cells in a BVMD patient harboring a p.Y227N mutation in BEST1 [28]. 

Milenkovic et al. showed disturbed trafficking of some mutant Best1 proteins (including Y227N) in 

MDCK cells. These cells are a widely used model system to study protein localization in polarized 

epithelial cells [35]. Unlike RPE-J cells, they grow in a proper monolayer, and basolateral and apical 

membranes are clearly identified using different markers [49]. Therefore, we decided to use these cells 

in order to study cellular location of Best1 mutants. First, we analyzed endogenous BEST1 mRNA and 

Best1 protein expression. In a number of RPE cell lines (ARPE-19, D407 and RPE-J), BEST1 

transcript can be detected but none of them express the protein endogenously [11]. Similarly, although 

we detected BEST1 mRNA after 34 cycles of amplification with Real-Time PCR, Best1 protein was 

not expressed by native MDCK cells. In contrast, transfected Best1 was expressed at the basolateral 

membrane of MDCK cells. Thus, we consider that basolateral sorting signals are similarly interpreted 

by the cell sorting machinery in MDCK and RPE cells, showing that MDCK cells are appropriate for 

the investigations reported here. Immunofluorescence staining showed a clear and specific signal for 

normal human and mutant Best1, as well as for β-catenin, ZO-1 and WGA. Our results indicate that 

human Best1 was preferentially targeted to the basolateral membrane in transfected MDCK cells 

similarly to the basolateral marker β -catenin. 

We examined known and novel BEST1 mutations, p.Y85H, p.Q96R, p.L100R, p.L207I and 

p.Y227N, reported as causative for BVMD, some of them also found in our French cohort [6,33,34]. 

Mutant L207I is preferentially basolaterally localized similarly to normal Best1, suggesting that the 

putative di-leucine sorting motif L206L207 in the large cytoplasmic domain of Best1 [12] does not 

seem necessary for basolateral targeting. Isoleucine molecular structure is very similar to leucine 

structure, and these two amino acids seem to be equally recognized by the cell sorting machinery. In 

contrast, the other mutants showed altered basolateral sorting. Our colocalization studies with apical 

and basolateral markers as well as biotinylation data indicate that tyrosine-85, which is a part of the 

Y85VTL putative sorting motif, also plays a crucial role for basolateral targeting in MDCK cells since 

mutant Y85H has a decreased basolateral targeting associated with a concomitant increased apical 

membrane expression compared to normal Best1. The p.Y85H mutation lies in the second 

transmembrane domain, for which a key role for the tyrosine residue in both the assembly of 

membrane topology and the conductance of ions across the membrane has been previously 

demonstrated [12,35]. Therefore, we cannot exclude the hypothesis that impairment of Y85 function 

would alter membrane targeting due to a different membrane topology instead of the disruption of its 

putative sorting role. In contrast to strong apical localization shifts observed in confocal images, 

calculated percentage apical expression changes seem lower because of the choice of highly 

conservative basolateral/apical thresholds in each cell. We also observed an altered basolateral to 

apical sorting in mutants Q96R and L100R, sitting near the tyrosine sequence Y97ENL in the large 
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cytoplasmic loop of Best1 [12], another putative sorting motif. Since the expression of both mutants is 

apically increased, we speculate this may be due to the altered exposure of the tyrosine motif to the 

cell sorting environment compared to the native protein. Using surface biotinylation assays, we 

confirmed that synthesized Y85H and Q96R proteins are delivered to the plasma membrane. Although, 

it is also possible that some amounts of the protein are retained in the cytoplasm.  

Tyrosine-227 marks another putative sorting motif Y227DWI, and in a BVMD patient the p.Y227N 

mutation leads to partial mistargeted apical distribution of the protein in the RPE [28]. In accordance 

with this, we found lower basolateral expression of mutant Y227N (81%) in polarized MDCK cells. 

Mislocalization of Y227N and D228N human Best1 has been reported [8,36], confirming the 

importance of the Y227DWI putative sorting motif for Best1 basolateral expression. In addition, a 

significantly lower percentage of the active Y227E variant is found at the basolateral membrane 

domain in MDCK cells in contrast to the inactive Y227F mutant and normal Best1 (75% versus 92% 

and 90%, respectively). We speculate and attribute the altered localization of the proteins to 

constitutive pseudo-phosphorylation of tyrosine-227 (Y227E), suggesting that it is important to keep 

tyrosine-227 non-phosphorylated (Y227F) for correct basolateral localization of Best1. Y227E and 

Y227N mutants both comprise hydrophilic charges that might influence the protein localization due to 

“pseudo-phosphorylation”-like effect. Into the Best1 molecule there are several tyrosine residues that 

could be phosphorylated, and direct proof for specific phosphorylation at Y227 would help us support 

or exclude such hypothesis. Another hypothesis would be that these amino acid modifications 

(asparagine and glutamate have similar structures) might influence the tridimensional structure of the 

protein, thus impairing its proper membrane targeting. In any case, it is clear from our data and from 

other published work [8,28,36] that the Y227DWI motif is important for proper Best1 directing at the 

basolateral membrane. 

Our findings indicate an important role of some amino acids into and close to the putative sorting 

tyrosine motifs Y85VTL, Y97ENL, Y227DWI for basolateral expression of Best1. Y85VTL and 

Y97ENL motifs are closer to each other compared to Y227DWI, which is almost at the end of the 

large cytoplasmic domain. Potentially, they might convey an accumulative effect on polarized sorting, 

which has not been investigated in this study. If the mutant proteins are mistargeted to the apical 

membrane, they would be between 60% and 150% more abundant than the normal protein at that 

domain. We therefore hypothesize that this altered basolateral localization of Best1 could be 

responsible for altering the ion conductance both at the basolateral and the apical membranes of the 

cells. The diminished basolateral presence of Best1 proteins might explain the decrease of the light 

peak as measured by EOG in BVMD patients carrying these particular BEST1 mutations [21]. 

However, other pathogenic mechanisms than protein mislocalization exist, as suggested by the 

discrepancy between the absence of localization phenotype we observed for mutant L207I that gives 

rise to BVMD pathology in patients. 

Our results show mislocalization of Best mutants disrupting potential sorting motifs Y85VTL, 

Y97ENL and Y227DWI. Importantly, tyrosine motifs need to be located in the intracellular portion of 

the protein to be recognized by the cell sorting machinery [29,31]. If we refer to the model by 

Milenkovic and colleagues (see Figure 3a), most tyrosine motifs we discussed are displayed in the 

cytoplasm of the cell where they are available for recognition. In contrast, the model by Tsunenari and 

colleagues assumes that TMD4 traverses the membrane while TMD5 is inserted in the extracellular 
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side of the lipid bilayer, parallel to the surface [13]. This Best1 tertiary structure places both important 

motifs Y97ENL and Y227DWI inside the lipid bilayer and outside of the cell respectively, where they 

cannot be recognized by the cell machinery. According to the Milenkovic model, the localization shift 

of our mutants seems to be proportional to the proximity of the mutation to the cell membrane (e.g., 

Y85H > Q96R-Y227N > L100R). Taken together, we consider our findings fit better the Best1 model 

structure proposed by Milenkovic and colleagues, where TMD4 is part of a hydrophobic intracellular 

loop and TMD5 is an integral transmembrane domain [12].  

The function of Best1 is still controversial and incompletely understood, but it is clear that the 

proper localization of the protein is crucial for homeostasis and function of RPE and retina. 

Observations in this report suggest that altered basolateral localization of Best1 protein may participate 

in the disease mechanism in BVMD patients. Polarized sorting of Best1 is a complex mechanism that 

may require several sorting motifs and the phosphorylation state of some tyrosine residues could be 

part of the sorting process. 

3. Experimental Section  

3.1. Materials  

All reagents and chemicals were supplied by Sigma-Aldrich (St. Quentin Fallavier, France) unless 

otherwise stated. DNA ladder was obtained from Biolabs (Seville, Spain) and Amersham High-Range 

Rainbow Molecular Weight Marker from GE Healthcare (Barcelona, Spain), DAPI from Invitrogen 

(Cergy-Pontoise, France), Polymount mounting buffer from Biovalley (Conches, France). EZ-Link™ 

sulfo-N-hydroxy-succinimidyl-biotin (Sulfo-NHS-biotin) and the streptavidin-horseradish peroxidase 

(HRP) conjugate were obtained from Pierce (Madrid, Spain). Pansorbin®
 cells were supplied by 

Calbiochem (Madrid, Spain). Antibodies were obtained as follows: mouse IgG1 antibody (E6-6) 

directed against the C-terminal domain of human Best1 from Novus Biologicals Inc. (Littleton, 

France) [7,20,50], rabbit whole antiserum β-catenin antibody and rabbit IgG antibody against actin 

from Sigma-Aldrich, rabbit anti-ZO-1 from Zymed (Invitrogen, Cergy-Pontoise, France), HRP-linked  

anti-mouse and anti-rabbit IgG from Amersham Pharmacia Biotech (GE Healthcare, Barcelona, 

Spain), goat anti-mouse AlexaFluor 488 and 594, goat anti-rabbit AlexaFluor 633 from Invitrogen, and 

FITC-conjugated wheat germ agglutinin (Sigma, St. Quentin Fallavier, France). 

3.2. Expression Vector and Mutagenesis 

The cDNA sequence of human BEST1 gene cloned into pReceiver vector was purchased from 

imaGenes GmbH (Berlin, Germany). The ORF contains 1758 nucleotides, a TAG stop codon and four 

known synonymous polymorphisms: c.109T > C, p.L37L; c.219C > A, p. I73I; c.1410G > A, 

p.T470T; c.1608T > C, p.T536T with NCBI SNP reference numbers rs1800007, rs1109748, rs149698 

and rs5835779, respectively. The vector contains ampicillin and neomycin resistance genes. Gene 

expression is under the control of the CMV promoter. 

All BEST1 mutants—p.Y85H (c.253T > C); p.Q96R (c.287A > G); p.L100R (c.299T > G); p.L207I 

(c.619C > A); p.Y227N (c.679T > A); p.Y227E (c.679T>G and c.681C > G) and p.Y227F (c.680A > T) 

were generated using QuickChange® II Site-Directed Mutagenesis Kit (Stratagene, Massy, France) and 
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were confirmed via direct sequencing. The primers were chosen using QuickChange® Primer Design 

Program (Stratagene, Les Ulis, France) (Table 1) and purchased from Invitrogen (Cergy-Pontoise, France). 

Table 1. Primers used for site-directed mutagenesis. 

Mutants Primers 

Best1 Y85H 
F 5'-CGTGCTGGGCTTCCACGTGACGCTGGT-3' 

R 5'-ACCAGCGTCACGTGGAAGCCCAGCACG-3' 

Best1 Q96R 
F 5'-CCGCTGGTGGAACCGGTACGAGAACCTGC-3' 
R 5'-GCAGGTTCTCGTACCGGTTCCACCAGCGG-3' 

Best1 L100R 
F 5'-CAGTACGAGAACCGGCCGTGGCCCGAC-3' 
R 5'-GTCGGGCCACGGCCGGTTCTCGTACTG-3' 

Best1 L207I 
F 5’-GGGACCCTATCCTGATCCAGAGCCTGCTG-3' 
R 5’-CAGCAGGCTCTGGATCAGGATAGGGTCCC-3' 

Best1 Y227N 
F 5'-GTGGACACCTGTATGCCAACGACTGGATTAGTATC-3' 
R 5'-GATACTAATCCAGTCGTTGGCATACAGGTGTCCAC-3' 

Best1 Y227E 
F 5'-GTGGACACCTGTATGCCGAGGACTGGATTAGTATCCC-3' 
R 5'-GGGATACTAATCCAGTCCTCGGCATACAGGTGTCCAC-3' 

Best1 Y227F 
F 5'-GTGTGGACACCTGTATGCCTTCGACTGGATTAGT-3' 

R 5'-ACTAATCCAGTCGAAGGCATACAGGTGTCCACAC-3' 

3.3. Real-Time PCR Analysis 

Total RNA was extracted using TRIzol extraction kit (Invitrogen, Cergy-Pontoise, France) 

according to the manufacturer’s instructions. The QuantiTect Reverse Transcription Kit (Qiagen, 

Seville, Spain) was used to generate cDNAs from 1 μg of total RNA in a 40-μL total reaction volume. 

Primers were designed within the coding sequence and spanning introns (Sigma-Aldrich, St. Quentin 

Fallavier, France). We used the hypoxanthine phosphoribosyltransferase (HPRT) as reference mRNA. 

Primer sequences used for analysis in RPE-J cells were HPRT 5'-GTTCTTTGCTGACCTGCTGG-3', 

5'-GTTGAGAGATCATCTCCACC-3', and BEST1 5'-GTGTGCACCTTGCGTACTC-3',5'-GTAGTTCTTG 

AGTGGGTTCAG-3'. Primers sequences spanning the same amplicon used for analysis in MDCK cells 

were HPRT 5'-CCTCATGGACTAATTATGGAC-3', 5'-CTGTTCAGTGCTTTGATATAATC-3', and 

BEST1 5'-CGATGGAGCGGGATATGTAC-3',5'-GTGCCTTCCTCTTCCTCCT-3'. Real-Time PCR 

was carried out using the 7500 Fast Real-Time PCR machine (Applied Biosystems, Madrid, Spain). 

The PCR reaction was performed using 1 μL cDNA, 10 μL SYBR Green master mix (Applied 

Biosystems, Cergy-Pontoise, France) and 400 nM primer in a total reaction volume of 20 μL. PCR 

conditions were as follows: 50 °C for 2 min and 95 °C for 10 min; 40 cycles at 95 °C for 15 s and  

60 °C for 1 min. We repeated the experiments twice, and in every experiment each sample was 

amplified in triplicates. Both Real-Time PCR products have been confirmed via direct sequencing. 

Differences between the mean cycle threshold (Ct) values of BEST1 and HPRT genes were calculated 

as ∆CtBEST1 = CtBEST1 − Ct HPRT. Relative fold change in BEST1 expression levels was determined as 

2−∆∆Ct, and we considered BEST1 expression in MDCK cells in comparison with RPE-J by calculating 

2−∆∆Ct = ∆CtMDCK − ∆CtRPE-J.  
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3.4. Cell Culture 

MDCK cells (ATCC, Teddington, UK), strain II, were grown in DMEM with 10% FCS, 

streptomycin (100 mg/L) and penicillin (60 mg/L) at 37 °C and 5% CO2. RPE-J cells [51] were maintained 

in DMEM with 4% FCS, 1% non-essential amino acids, 1% HEPES, streptomycin (100 mg/L) and 

penicillin (60 mg/L) at 32 °C and 5% CO2. For polarity studies, 30,000 and 200,000 MDCK cells were 

plated and grown on coverslips in 24-well plates and on 24-mm (6-well plates) Costar Transwell filters 

(Corning, Sofia, Bulgaria) for five days, respectively [52,53]. The state of polarity was confirmed by 

measuring the transepithelial resistance (data not shown). For cell extraction studies, 30,000 MDCK 

and RPE-J cells were plated and grown in 24-well plates for 3 days. Transfections of MDCK cells were 

performed 24 h after cell seeding using the Effectene® Transfection Reagent (Qiagen, Sofia, Bulgaria).  

3.5. Cell Lysis and Biotinylation Assay 

Cells were extracted with 200 µL RIPA buffer and a cocktail of protease inhibitors 48 h after 

transfection. 100 µL of cell lysates were precipitated with acetone at −20 °C. Precipitates were then 

dissolved in reducing sample buffer and separated on 10% SDS-PAGE gels.  

Transiently transfected MDCK cells were washed three times with PBS++ (PBS with 0.1 mM CaCl2 

and 1 mM MgCl2) and once with a biotinylation buffer (120 mM NaCl, 20 mM NaHCO3, 1 mM 

MgCl2, 0.1 mM CaCl2, pH 8.5) at 4 °C for 15 min. Sulfo-NHS-biotin labeling (0.5 mg/mL in 

biotinylation buffer) was performed twice for 20 min at 4 °C either basolaterally or apically with 1% 

BSA in PBS++ on the opposite site. For each transfection with Best1 mutants Y85H and Q96R, three 

wells for apical and three for basolateral labeling were used. Cells were washed once with DMEM 

supplemented with 0.2% BSA and 20 mM Hepes, pH 7.4, and three times with PBS++ for  

5 min at 4 °C [52–54].  

3.6. Immunoprecipitation 

Cells were washed twice with PBS++ and solubilized in 0.5 mL lysis buffer (1% IGEPAL® CA-630 

(Sofia, Bulgaria), 10 mM Tris-HCl pH 7.4, 60 mM EDTA, 0.4% deoxycholic acid) in the presence of 

protease inhibitors (0.75 mM PMSF, 10 µg/mL aprotinin, 10 µg/mL leupeptin and 10 µg/mL 

pepstatin) for 30 minutes at 4 °C. Lysates from triplicates for each transfection and labeling were 

collected together. Insoluble materials were removed by centrifugation (13,000 rpm, 5 min) and 

supernatants were pretreated with Pansorbin® cells for 1 h at 4 °C. SDS was added to a final 

concentration of 0.3%. After overnight incubation at 4 °C with a human anti-Best1-specific mouse 

antibody (IgG1, clone E6-6) immune complexes were precipitated with Protein G-sepharose (5 mg/mL 

washing buffer, 1% IGEPAL® CA-630 (Sofia, Bulgaria), 0.5% deoxycholic acid, 0.1% SDS, 150 mM 

NaCl, 10 mM Tris-HCl pH 7.4). After centrifugation (13,000 rpm, 1 min) the sepharose beads were 

washed four times with washing buffer and boiled in reducing sample buffer. The eluted proteins were 

separated by 10% SDS-PAGE [52,53]. 
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3.7. Immunoblotting 

Electrophoretically separated proteins were transferred to PVDF membranes (GE Healthcare, Sofia, 

Bulgaria) by wet western blotting. Non-specific binding was blocked with 10% BSA in TBS for  

1 hour. Blots were incubated overnight with human anti-Best1-specific mouse antibody at 4 °C followed 

by incubation with HRP-conjugated anti-mouse IgG antibody for 2 h at room temperature. To detect 

actin proteins, membranes were incubated with rabbit IgG antibody against actin followed by  

HRP-conjugated anti-rabbit IgG antibody. For detection of biotinylated Best1 and mutant proteins, 

non-specific binding was blocked with 5% BSA in TBS-N for 1 h, and blots were incubated with 

HRP-conjugated streptavidin in TBS-N for 1 h. Immunoreactivity was detected using the ECL plus 

western blotting detection system (GE Healthcare, Sofia, Bulgaria) according to manufacturer’s 

instructions. Bands were detected using Amersham Hyperfilm™ MP (GE Healthcare), films were 

scanned and sample signals from the same experiment present on the same blot were quantified with 

NIH ImageJ 1.42 software (version 1.42, NIH, Bethesda, MD, USA). We calculated Best1/actin ratios 

for each experiment, calculated mean ratios and SEM., and tested for significance with Student’s t-test. 

3.8. Immunofluorescence Staining and Microscopy Analysis 

Transiently transfected MDCK cells expressing human Best1 or Y85H, Q96R, L100R, L207I, 

Y227N, Y227E and Y227F mutants were grown for five days on coverslips and fixed with ice-cold 

methanol. After blocking with PBS++ containing 1% BSA for one hour, cells were incubated with a 

mouse anti-Best1, rabbit β-catenin, rabbit ZO-1 and WGA overnight at 4 °C. Bound antibodies were 

detected using proper secondary antibodies for two hours at room temperature. For negative controls, 

samples were incubated with the secondary antibody alone. Nuclei were labeled with DAPI. Best1 and 

WGA fluorescence was visualized using an Olympus FV1000 microscope and Fluoview 2.0 software 

(version 2.0, Olympus, Rungis, France), with a 60× objective, 4-time zoom and 0.45-µm step size 

scans. For all confocal data used for quantification, we acquired images using Leica TCS SP5 confocal 

microscope and LAS AF software (version 2.6.1, Leica Microsystems, Wetzlar, Germany), with a 

HCX PL APO lambda blue 63.0 × 1.40 OIL objective and 4-time zoom enlargement. Z- and Y-series 

image data were acquired in 0.35- and 0.30-µm step size sequential scanning respectively. Series data 

were analyzed using METAMORPH 7.5.1.0 software (version 7.5.1.0, Molecular Devices, Sunnyvale, 

CA, USA). Signals for Best1, β-catenin (basolateral marker) [38] and nuclei were quantified. Image 

stacks were used to generate intensity curves for all three signals along the different Z-focal planes. 

Ten randomly chosen cells from normal Best1 and each mutant were analyzed. The number of focal 

planes varies in the different cells depending on the slightly different cell height. Basolateral 

localization threshold values were defined by visual exploration of confocal images and by 

examination of Best1 and β-catenin curves for each cell where 90% of β-catenin is basolateraly sorted. 

After detection of basolateral thresholds, the area under the Best1 curve was calculated for basolateral 

and apical portions of localization for each cell, respectively. The trapezoidal method is used to 

approximate the area under the bestrophin-1 curve, by inscribing or circumscribing “n” number of 

trapezoids under a curve. Areas of the trapezoids are then summed for basolateral and apical region of 

the curve respectively. The number of trapezoids under the curve is equal to the number of confocal 
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plane points represented by the curve. p values were computed using two-sided independent sample 

Student’s t-tests, comparing the bestrophin-1 localization for each mutant to the normal protein. 

4. Conclusions  

Alterations of the cellular localization of Best1 mutants may affect the ion equilibrium and overall 

functioning of the RPE cells representing an interesting insight into the underlying pathogenic 

mechanisms of BVMD. Our data indicate that several disease-causing mutations are associated with 

altered localization of hBest1 protein. As well, at least three putative basolateral sorting motifs might 

be implicated in proper Best1 basolateral localization. In addition, non-phosphorylated tyrosine 227 

may play a role in basolateral delivery. 
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