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Preface 

During my studies in Environmental Science, I thought my future was the protection of the 

environment; I imagined a future in direct contact with the Nature since that seemed to be 

the best way to protect it. Right after I finished my bachelor degree, I understood that the 

protection starts much before I had thought, i.e., before the pollution and the damage. 

Thus, the prevention has become my tool to avoid the impact of human activities to the 

environment. I became an Environmental Inspector and Auditor; and I learned very much 

about environmental regulation and, particularly, about waste management and so I 

realized my future was to contribute to the prevention and minimization of the 

environmental impacts in the management of municipal solid waste (MSW). 

A postgraduate in Renewable Resources and Environmental Engineering gave me the 

technical background for this doctoral thesis. During the doctoral training, my life has been 

a fight for developing a tool able to calculate time-integrated GHG emissions in the use of 

MSW refuse for the production of a mix of products and services in advanced waste-to-

energy (WtE) plants. This report is the result of that effort, hard but rewarding, where hard 

work and sacrifice are mixed with the pride of a job well done and the luck to have meet 

great friends and great experts. 
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Abstract 

The evaluation of the climate benefit in the production of fuels from conventional biomass has 

recently evolved by incorporating a dynamic approach, a comparison with the reference system and 

other recommendations from the IPCC. Important drawbacks have been identified in the 

comparison of conventional (static) and dynamic (time-integrated) assessments for the production 

of biofuels. This thesis contributes to a better understanding of the real climate benefit in the 

production of products and services using a specific and plentiful waste in Europe, i.e., MSW refuse 

(the unsorted stream of MSW usually disposed of). Lately, some dynamic assessments have been 

made for the production of fuels and electricity using forest and agricultural residues. In this thesis, 

the existing work is expanded by considering a residue (MSW refuse) which is already in-use within 

the different regional waste management schemes in Europe (incineration and landfilling) and the 

production of a material that stores biogenic carbon, i.e., renewable-derived plastic materials. The 

climate benefit of the proposed advanced waste-to-energy (WtE) plant is evaluated by defining two 

systems (the one proposed in the thesis and the reference system) using system expansion and 

substitution. The dynamic modeling of the waste management scheme in Europe (current and 

future) as well as the temporary storage of the biogenic carbon fraction in the renewable-derived 

plastics (intimately related to the management scheme) are the main contributions to the field. The 

proposed methodology is based on two climate benefit indicators: the climate mitigation index (CMI) 

and the differential climate impact (DCI). The indicators analyze the impact of the replacement of 

the current waste management system for one based on advanced WtE plants. In Paper I, a 

preliminary work applying the static methodology (GHG balance) is carried out for the analysis of 

the results in advanced WtE plants producing biofuels, drop-in chemicals and electricity and with 

the possibility of carbon capture and storage in bioenergy (Bio-CCS). In Paper II, the dynamic GHG 

emission assessment is applied to the advanced WtE plant analyzed in Paper I. In Paper III and IV, 

two countries are selected for the comparison of the systems: Spain, where landfilling is dominant; 

and Sweden, where incineration is dominant. Moreover, two different scenarios are taken into 

account: Scenario 1, in which the reference system remains unaltered, and Scenario 2, in which 

there is an evolution towards landfill banning and decarbonization of the energy mix. The results 

reveal that the landfilling replacement in dominant-landfill European countries has a positive climate 

impact in the short term, although the long-term impact depends on the evolution of the reference 

system (waste management and electric mix). Renewable-derived plastics are proposed (Paper IV) 

as an alternative greenhouse gas removal (GGR) technology and compared with Bio-CCS as the 

common GGR technology in most Integrated Assessment Models (IAMs). The production of plastics 

compares favorably in terms of climate benefit in the short and medium term and would even 

provide a larger climate benefit in incineration-dominant regions in the long term. In Paper V and VI, 

the static and dynamic assessment for the production of electricity is analyzed. 
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Resumen en castellano 

En esta tesis se desarrolla el análisis dinámico (integrado en el tiempo) de las emisiones de gases 

de efecto invernadero (GEI) asociadas a la producción de productos y servicios en un planta de 

gasificación (tratamiento avanzado de valorización energética) alimentada por la fracción rechazo 

de los residuos sólidos urbanos (RSU), es decir la fracción no reciclable ni compostable que va a 

depósito en vertedero o incineración. Tradicionalmente, el cálculo de la huella de carbono de un 

proceso alimentado por fuentes renovables se ha llevado a cabo desde un punto de vista estático, 

mediante métodos exhaustivos que permiten calcular las emisiones de GEI asociadas al ciclo de 

vida completo de un proceso o producto y cuyo objetivo es la comparación de alternativas para 

producir una misma unidad funcional (por ejemplo, una misma planta de producción que puede ser 

alimentada por diferentes tipos de biomasa) incluyendo la alternativa de origen fósil. Sin embargo, 

el resultado final de estos estudios estáticos es un valor promedio de las emisiones de GEI 

anuales, un resultado que puede ser insuficiente cuando la fuente renovable que se analiza es un 

residuo que forma parte de un ciclo biológico de degradación que se usa como sistema de 

referencia para valorar si ese residuo debe ser utilizado como fuente energética o no. Por otro lado, 

recientemente se están llevando a cabo estudios dinámicos de emisiones centrados en residuos 

agrícolas y forestales; sin embargo, la fracción rechazo de los RSU tiene un potencial energético 

similar a los residuos agrícolas en Europa. Los estudios dinámicos analizan la evolución de las 

emisiones de GEI producidas en un proceso de degradación de la materia (normalmente residuos) 

y los comparan con un sistema de referencia siguiendo las recomendaciones del Panel 

Intergubernamental por el Cambio Climático (IPCC por sus siglas en inglés). La fracción rechazo 

de los RSU puede proceder bien de plantas de tratamiento mecánico y biológico (TMB) o de la 

separación en origen, siendo la práctica más común en Europa su depósito en vertedero 

(especialmente en las regiones del sur de Europa). El depósito en vertedero produce emisiones de 

GEI que empiezan unos pocos meses o incluso años después del depósito y continúan hasta 40 

años después con diferente intensidad a lo largo del tiempo. De ahí la necesidad de aplicar un 

enfoque dinámico a un estudio donde el sistema de referencia es el vertedero. Esta tesis estudia, 

en clave del potencial beneficio climático, la sustitución del sistema actual de gestión de la fracción 

rechazo de los RSU (vertedero e incineración) por un sistema basado en plantas de gasificación 

avanzadas. Estas plantas producirían un mix de productos (combustibles y/o químicos de origen 

renovable) y/o servicios (electricidad y/o calor). Se analizan dos familias de plantas de gasificación 

avanzada: por un lado, grandes plantas de gasificación llamadas biorrefinerías termoquímicas que 

producen combustibles/químicos así como electricidad/calor con una alta eficiencia energética. Por 

otro lado, plantas de gasificación de pequeña y mediana escala produciendo electricidad. Dado 

que las plantas de producción de electricidad (pequeña/mediana escala) son susceptibles de una 

implementación a corto plazo, también son analizadas desde el punto de vista económico. 
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Los plásticos de origen renovable (fabricados a partir de los químicos generados en la biorrefinería 

termoquímica) son propuestos como una tecnología alternativa a la captura y almacenamiento de 

carbono en bioenergía (Bio-CAC) para la retirada de carbono de la atmósfera. En el caso de los 

plásticos renovables el carbono queda retenido en el plástico durante un periodo de tiempo que 

dependerá del tipo de plástico, su tiempo de vida y el sistema convencional de gestión de los 

residuos plásticos. La posibilidad de incorporar alternativamente o en conjunto el Bio-CAC 

(tecnología comúnmente analizada en los Modelos de Evaluación Integrados, IAMs en inglés) y los 

plásticos de origen renovable se analiza en detalle. Los resultados revelan que la producción de 

plásticos de origen renovable es comparable en términos de beneficio climático a corto y medio 

plazo e incluso podría suponer un mayor beneficio climático a largo plazo en países donde la 

incineración es una práctica predominante (típicamente en el norte de Europa). 

Desde el punto de vista metodológico, dos países han sido analizados: España, que representa a 

los países del sur de Europa donde el depósito en vertedero es predominante y Suecia, 

representando a los países del norte de Europa donde la incineración es predominante. Para el 

análisis, dos posibles escenarios son considerados, un escenario 1 donde el sistema de gestión de 

residuos y el mix energético no varían a lo largo del tiempo (este escenario permite la comparación 

con una evaluación estática de emisiones desarrollada también en esta tesis) y un escenario 2 que 

evoluciona hacia un sistema sin depósito en vertedero y un mix energético (electricidad) bajo en 

carbono. En ambos escenarios se estudia un horizonte de tiempo de 100 años según recomienda 

el IPCC. 

De la colaboración con el Joint Research Centre (JRC, Comisión Europea) surgió una propuesta 

metodológica basada en dos nuevos indicadores de beneficio climático: el índice de mitigación 

climática (CMI, en inglés) y el diferencial de impacto climático (DCI, en inglés). Del mismo modo, el 

JRC colaboró en el modelado del carbono biogénico almacenado en los plásticos de origen 

renovable que dio lugar a un parámetro para ser incorporado en un análisis estático de emisiones 

(�̅�pool, promedio de carbono biogénico almacenado en plásticos de origen renovable) y en uno 

dinámico (epool, sumatorio de las corrientes de reciclaje, vertedero e incineración a lo largo del 

tiempo). Por tanto, el modelado dinámico del sistema de gestión de residuos (actual y futuro) así 

como el modelado del almacenamiento de carbono biogénico en los plásticos de origen renovable 

son las principales contribuciones de esta tesis. 

Los resultados revelan que un análisis estático de las emisiones temporales no es suficiente para 

la toma de decisiones sobre la sustitución del vertedero por plantas de gasificación avanzadas. El 

impacto de esta sustitución tiene un efecto positivo a corto plazo para ambos tipos de plantas 

aunque el concepto de biorrefinería termoquímica produciendo plásticos de origen renovable cursa 

con el mayor beneficio climático. El beneficio a largo plazo no estaría garantizado a no ser que se 

tomen medidas para la restricción del depósito en vertedero. 
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1. Introduction 

1.1. Residual biomass and MSW refuse 

According to the Renewable Energy Directive (RED) (Directive 2009/28/EC1), ‘biomass’ 

means the biodegradable fraction of products, waste and residues from biological origin, 

from agriculture (including vegetal and animal substances), forestry and related industries 

including fisheries and aquaculture, as well as the biodegradable fraction of industrial and 

municipal waste. In the last decades, biomass has become a promising alternative to fossil 

fuels in the production of energy. However, non-residual biomass has associated 

upstream greenhouse gases (GHG) emissions (cultivation, harvesting, direct and indirect 

land-use change) that could compromise the sustainability of the process (Directive 

2015/1513/EC, Lapola et al., 2010, Gerssen-Gondelach, et al., 2016). For instance, in the 

case of the energy crops, one of the first impacts is the displacement of food crops needed 

for human and animal feeding (direct land-use change, LUC) and other is the need of 

finding new land (maybe not as productive as the first) where set up the displaced food 

crop (indirect land-use change, ILUC). A higher use of the land involves a higher climate 

impact over it e.g. a higher degradation and loss of biodiversity; and this impact can be 

difficult to estimate due to the uncertainties associated to ILUC e.g. agriculture and food 

security or others land uses (Directive 2015/1513/EC, ILUC Quantification Study of EU 

Biofuels). 

On the contrary, residual biomass has not upstream GHG emissions associated. 

According to the previous definition of biomass, the biodegradable fraction of municipal 

solid waste (biowaste) is considered as biomass. In fact, biowaste is currently used in the 

production of compost or in the production of biogas by anaerobic digestion (energy 

valorization). Both options fulfill the waste hierarchy2 prioritizing first the recycling and then 

the valorization before the disposal (Directive 2008/98/EC) and therefore it would seem 

that there is no need to change the current situation. However, the waste hierarchy is not 

the unique tool to make decisions about waste management. The European regulation 

establishes targets to be achieved in order to reduce the land disposal in Europe (Directive 

2008/98/EC). Because of that, it is necessary to find alternatives to manage the huge 

amount of wastes going to landfill disposal in Southern and Eastern Europe e.g. in Spain 

the 55% of the municipal solid waste (MSW) generated is landfilled every year; whereas in 

                                                           
1
 Directive 2009/28/EC was further amended by Directive 2015/1513/EC but the concept of biomass and the 

aspects affecting this thesis, except those specified in the text, remain in force in the original Directive. 
2
 http://ec.europa.eu/environment/waste/framework/ 

http://ec.europa.eu/environment/waste/framework/
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the Northern Europe, landfilling ratio is below incineration and recycling ratios being even 

negligible in some countries e.g. zero landfilling in Germany (Figure 1).  

 

 

 

Figure 1. Landfilling and incineration ratios regarding total MSW generated in Europe 
(Aracil et al., 2017). 

 

MSW refuse is the unsorted stream of MSW going currently to landfill disposal or 

incineration. This stream has two possible origins depending of the waste collection 

method. The first one is the stream not separated at source and collected in a communal 

bin. The second one, it is the refuse of mechanical biological treatment (MBT) plants fed 

by a mix of wastes and where the compostable and recyclable fraction has been 

separated. Therefore, MSW refuse is a heterogeneous mix of waste streams whose 

sorting is not viable. This stream is partially biodegradable; hence, it is not considered as 

pure biomass. However, MSW refuse usually contains a biodegradable fraction over 50% 

(IEA, 2012). Considering a lower heating value around 9 MJ/kg (Boesch et al. 2014, 

Consonni and Viganò et al., 2012 and Yassin et al., 2009), the MSW refuse generated in 

Europe would be equivalent to 1,250 PJ/year. Therefore, MSW refuse in Europe has a 

similar potential to agricultural residues, which are already considered to play an important 

role in the future bioeconomy (Philippidis et al., 2016).  
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On the other hand, the urgent need of reducing GHG emissions in order to limit the global 

warming makes the search of alternatives to the use of fossil fuels essential (Directive 

2009/28/EC). Moreover, waste disposal (landfilling or mass-burnt incineration) should be 

replaced by waste-to-resource alternatives in order to fulfill the objectives of the Circular 

Economy (Report from the Commission to the European Parliament, 2017). Therefore, an 

advanced waste-to-energy (WtE) plant using MSW refuse as a feedstock for the 

production of products (biofuels and/or renewable-derived plastics) and/or services 

(electricity and/or heat) by means of gasification would be an interesting system for the 

reduction of GHG emissions.  

 

1.2. Situation of landfill disposal as a part of the MSW management in the world, 

Europe and Spain 

Land disposal is still by far the most popular option among the waste management options 

in the world since its cost is low, e.g. the gate fee, the charge levied to a quantity of waste 

received at a waste processing facility, is lower for a landfill than for a WtE plant (CEWEP, 

2016). In Figure 2, MSW treatment ratios are shown for Europe and some more selected 

countries (Eurostat, 2014, EPA, 2014, Mian et al., 2016). The landfilling ratio for Spain, 

Romania, USA or China is over 50% and two reasons for this ratio can be considered: on 

the one hand, the level of development, e.g. Romania is one of the poorest European 

countries; and, on the other hand, the land availability, e.g. USA is between the five largest 

countries in the world. Singapore is a clear example of country with land scarcity and this 

country just landfills the 3% of their MSW generated. 

Hence, landfilling requires the use of a not always available land and it has associated 

several environmental impacts over land, atmosphere, hydrosphere and biosphere. 

Because of that, the most developed countries are evolving towards alternatives to 

manage their waste being energy recovery the most usual alternative to landfilling.  
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Figure 2. MSW treatment (landfilling, recycling and incineration) ratios regarding total 

MSW generated (mass basis) in Europe, USA, China and Singapore (Eurostat, 2014, 

EPA, 2014, Mian et al., 2016). 

 

In Southern and Eastern Europe, landfilling involves a variety of dumping and landfill sites 

of different volumes where waste is disposed to different depths using different covers and 

different degasification methods. The environmental impact of the landfilling depends on 

their characteristics and the state of its management, e.g. landfill emissions are directly 

proportional to the landfill site volume and inversely proportional to the biogas fraction 

collected and burned. Opened-air dumping sites are still common in many Eastern 

European countries, e.g. Serbia or Romania, where a first task would be the transition 

towards modern landfills where waste is pretreated, buried and further degasified 

(Stanisavljevic et al., 2012). In fact, recent studies determine the methane concentration in 

the atmosphere is rising dramatically in the last decades. This methane is released from 

different sources but two thirds of the emissions are attributable to anthropogenic activities 

related to agriculture and waste management (Saunois et al., 2016, Global Carbon 

Project, 2001). In the waste sector, landfilling represents an important source of methane 

emissions. Because of that, mitigation strategies, e.g. covering and degasifying landfills, 

are determinant to reduce CH4 emissions (Saunois et al., 2016, Global Carbon Project, 

2001). However, dominant-landfill European countries should also encourage WtE 

initiatives in order to minimize GHG emissions and approach EU legislation (Nikolic et al., 

2017).  

In December of 2015, the first draft on Best Available Techniques (BAT) Reference 

Document for waste treatment was published (BAT, 2015). However, the European 
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Federation of Waste Management and Environmental Services (FEAD) has highlighted the 

limitations of this document to represent the waste management in Southern and Eastern 

Europe and the lack of recycling promotion in favor of landfilling. In order to face the 

challenge of minimizing the landfill impact, several projects have been carried out in 

Europe as for example the LIFE project called Good practice on energy and products from 

biomass and waste that finances projects as Assessing, Capturing & Utilising Methane 

from Expired and Non-operational landfill whose aim is to demonstrate techniques for 

valorizing and mitigating methane emissions from closed landfill sites (ACUMEN).  

In Spain, recent news have commented the problem associated to waste management. 

These news are related to different issues but landfilling is one of the most usual topics. 

For instance, landfill restriction in Northern Europe entailed the promotion of WtE plants 

and that has led Nordic countries as Norway and Sweden into a struggle to import wastes 

from other European countries to feed their plants (2016/10). The environment risks of 

illegal waste treatment plants (2016/05 and 2016/08) and the growing role of methane 

(from landfilling) in anthropogenic climate change (2016/12) are also current issues in 

Spain (El País, 2016). Therefore, waste management is nowadays a social, environmental 

and techno-economic challenge in the world since huge amounts of wastes and residues 

are produced every year and their management is country-dependent. 

Landfilling produces biogas composed mainly by CO2 and CH4. This biogas is produced by 

the partial degradation of the biodegradable fraction; i.e. a part of the biodegradable 

fraction remains unaltered and stored in the landfill site. Therefore, this biogas is 

completely biogenic. However, methane contributes twenty-five times more than dioxide 

carbon to the global warming (IPCC, 2014). Because of that, methane emissions from 

landfilling must be accounted and considered as environmental burden (Figure 3). As it 

was commented before, biogas recovery is not common in all the dominant-landfill 

countries and, when it is incorporated, only a part of the biogas is captured and combusted 

to generate electricity or burned in flare. Hence, emissions are released in the electricity 

production process (biogas combustion) and biogas leaks from the landfill site. Biogas 

leaks are not constant in the time, they represent a slow and uneven process with different 

intensity over time, and therefore, the temporal aspect of these emissions must be taken 

into account. In this thesis, a dynamic GHG emission assessment has been proposed and 

developed in order to integrate the time in the GHG emission calculation. 
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Figure 3. Methane emission profile of a landfill in Southern Europe (calculated 

from IPCC, 2006). 

 

1.3. Conventional and Advanced WtE plants 

The conventional WtE plant is based on incineration, which consists on the complete 

combustion of the MSW refuse to produce heat that is used directly or converted into 

electricity in a power plant. The most common technology used for incineration is a moving 

grate allowing the use of MSW refuse without pretreatment. In Southern Europe, electricity 

is the main product in combined heat and power (CHP) plant, since heat demand is 

generally low, so that high electrical efficiency is required. To produce electricity with 

reasonable efficiency (>20%) large scale is necessary (>0.5 Gt RDF/y) (Consonni and 

Viganò, 2012). Therefore, MSW refuse is transported from several production sites, e.g. 

mechanical and biological treatment (MBT) plants or transfer stations to a centralized 

large-scale incineration plant.  

The advanced WtE plant is based on gasification of RDF to produce a syngas, which in 

the context of the present study is further combusted to produce electricity/heat or 

converted into fuels/drop-in chemicals (for the production of renewable-derived plastics). 

Gasification technologies can be adapted to the volume of waste available (medium scale, 

i.e. lower than 100 kt/y) to produce electricity (Arena et al., 2015). Several technologies 

can be considered for the production of syngas (moving grate and fluidized bed gasifiers). 

Fluidized bed gasification (FBG) technologies require a homogeneous fuel, so that the 

MSW refuse has to be pretreated and converted into refuse derived fuel (RDF). Moving-

grate gasifiers can generally be operated with direct MSW refuse but the lower technical 

development of gasification compared to incineration suggests to pretreat the refuse in 
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order to improve the availability of the gasification process and the increase in the heating 

value of the feedstock (Table 1) 

 

Table 1. Technologies for conventional and advanced WtE plants of interest in this thesis. 

 Technology Scale Feedstock 

Conventional 

WtE 

Moving grate combustor (GC) and 

steam Rankine cycle (SRC) 
Large MSW refuse 

Advanced WtE 

Fluidised bed gasifier (FBG) and 

internal combustion engine (ICE) 
Medium-

small 

RDF from MSW 

refuse FBG and organic Rankine cycle (ORC) 

Moving grate gasifier (GG) and SRC 

 

1.4. Static vs. Dynamic GHG emission assessment for MSW refuse. The role of 

dynamic GHG emission assessment in the evaluation of greenhouse gas 

removal technologies 

Several tools have been developed in the literature for the calculation of GHG emissions of 

processes using biomass (Guinée et al., 2009, Yang and Zhang, 2011). In this thesis, the 

GHG balance is defined as an annual average of all anthropogenic cradle-to-grave GHG 

emissions in the production of products and/or services using MSW refuse. GHG balance 

can be seen as a simplified version of a carbon footprint assessment3, which aims to be 

useful for the calculation of a GHG saving of a process (biofuel production) or it is applied 

to new process concepts still far to be commercial (advanced WtE plants).  

                                                           
3
 The conventional environmental assessment (carbon footprint assessment) would be carried out using a Life 

Cycle Assessment (LCA) limited to the GHG emissions of the whole process (cradle-to-grave). LCA is a well-

known tool, which analyzes all relevant emissions and resources consumed and the related environmental and 

health impacts and resource depletion issues that are associated with any goods or services (EUR 24708 EN, 

2010). The carbon footprint assessment is a scientific tool useful for the comparison of new products and 

technologies, which requires of precise data (inventory) and well-defined system boundaries. Therefore, it is 

necessary to have a detailed knowledge of the full life cycle of the product (from the extraction of resources, 

through production, use, and recycling, up to the disposal of remaining waste (EUR 24708 EN, 2010)) and the 

fossil reference (the LCA is in essence a comparison of different alternatives to produce the same functional 

product). LCA requires a relevant functional unit and well-defined system boundaries. The GHG balance uses 

MJ of products as a functional unit, therefore, it would not be a consistent method compared to LCA standards. 
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The GHG balance allows a static assessment of the GHG emissions where the value 

achieved is an average of the annual GHG emissions, i.e. the emissions are supposed to 

be constant along time. However, static GHG assessments are a simplification of the 

actual GHG emissions associated to the process. This simplification cannot be enough for 

dynamic processes. For instance, degradation is a time-dependent process, so the 

assessment of the moment and the duration of the emissions is essential. In the case of 

agricultural and forest residues for bioenergy production, the usual alternative is to leave 

them on the ground degrading and incorporating organic carbon to the soil (Giuntoli et al., 

2015b, Gaudreault et al., 2015, Guest et al., 2013b, Gustavsson et al., 2017). This 

degradation is a slow and uneven process generating emissions with different intensity 

over time (similar to landfilling). Time factor has to be taken into account to decide if it is 

better to use the residues as feedstock or to leave on the ground. In the case of MSW 

refuse, the timing of GHG emissions in the landfill has to be modeled. Therefore, a 

dynamic GHG assessment is supposed to be necessary in studies about emissions from 

the residues degradation.  

Moreover, dynamic GHG assessment allows studying the evolution and/or changes in a 

process and their impact on the climate. For instance, the waste management scheme in 

Europe is expected to change along time in order to fulfill the environmental regulation, it is 

a scheme subject to a slow but constant evolution. This evolution would be only an 

average in a static GHG assessment. On the other hand, dynamic GHG emission 

assessment is an efficient tool to assess the potential climate impact of greenhouse gas 

removal (GGR) technologies. GGR technologies (Table 2) are a type of climate 

engineering aiming to remove greenhouse gases (GHG) from the atmosphere, and thus 

tackling the root cause of global warming. These techniques either directly remove GHG, 

typically CO2, or alternatively seek to influence natural processes to remove GHG 

indirectly.  
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Table 2. Summary of GGR technologies. 

Afforestation and reforestation 

Wetland restoration 

Agricultural soil sequestration 

Biochar 

Bioenergy with carbon capture and storage (Bio-CCS) 

Renewable-derived plasticsa 

                                       a 
Proposed in this thesis. 

 

Bio-CCS allows capturing the biogenic CO2 produced in industrial processes using 

biomass or wastes and avoiding its emission to the atmosphere, yielding a net removal of 

CO2 from the atmosphere (Koornneef et al., 2012). The production of renewable-derived 

plastics is proposed in this thesis as an alternative GGR technology to Bio-CCS. 

Renewable-derived plastics are plastics made from biomass (also bio-plastics4) or wastes 

that represent a biogenic carbon storage in stable chemical structures. The storage period 

for a renewable-derived plastic depends on the type of plastic, on the lifetime and on the 

treatment applied to the plastic waste at the end of its lifetime (Guest et al., 2013a, Wang 

et al., 2014, Levasseur et al., 2013, Pawelzik et al., 2013, Vogtländer et al., 2014). 

Recycling of waste plastics becomes crucial to extend plastics lifetime, reducing the 

consumption of fossil fuels and the environmental footprint. Depending on the plastic 

material, there is a maximum number of recycling cycles and therefore a limit to their 

overall lifetime. However, not all plastic materials are recycled and each recycling cycle 

generates a waste refuse that cannot be further recycled. Hence, every year around 70% 

of post-consumer plastics waste is either landfilled or incinerated (with energy recovery) in 

Europe (Plastics Europe, 2015).  

In the carbon cycle, the carbon previously captured by photosynthesis (1) comes back to 

the atmosphere by means of breathing and combustion processes (2) but a fraction of the 

carbon is stored permanently, e.g. fossil reservoir and long-lived trees (3), or temporally, 

e.g. living beings and soil (4). In the Bio-CCS process, an extra fraction of carbon is stored 

permanently in a geological reservoir (5). In the case of the renewable-derived plastics, an 

                                                           
4
 Renewable-derived plastics is a term preferred to bio-plastic in this thesis since MSW refuse is not pure 

biomass. 
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extra fraction of carbon is stored temporally (6), e.g. plastics in use in the market, or 

permanently, e.g. plastics landfilled (7) (Figure 4). 

 

 

Figure 4. Carbon cycle incorporating Bio-CCS and renewable-derived plastics. Numbers 

refer to the different processes involved: 1. Photosynthesis, 2. Breathing and combustion, 

3. Permanent storage in fossil reservoir and long-lived trees, 4. Temporal storage in living 

beings and soil, 5. Permanent storage in geological reservoir, 6. Temporal storage in 

renewable-derived plastics in use and 7. Permanent storage in renewable-derived plastics 

landfilled. 

 

Table 3 shows a comparison between both GGR technologies. In the case of Bio-CCS, the 

stability of the process is uncertaint since technical (e.g. the need of a deeper 

characterization of CO2 storage sites) and financial limitations are seriously hindering their 

deployment and implementation (Kemper et al., 2015, ETP, 2015, Lomax et al., 2015, 

Sigurjonsson et al., 2015). In line with this, an important concern with Bio-CCS is its 
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dependence on large-scale bioenergy use, which can have adverse impacts on land use 

and biodiversity (IPCC, 2012). In the same way, the stability of the biogenic carbon 

storage in renewable-derived plastics is assessed in this thesis since it is strongly 

dependent of the plastic waste management scheme. However, renewable-derived 

plastics can be directly introduced into existing and established value chains, infrastructure 

and markets (Arvidsson et al., 2016, Haro et al., 2014) reducing the uncertainties about 

the stability of these plastics as GGR technology. 

 

Table 3. Comparison between Bio-CCS and renewable-derived plastics. 

 Regulated GGR Stability Large-

scale 

Temporality Geological 

storage 

Bio-CCS x x ? x - x 

Renewable-

derived plastics 

- xa ? -b x - 

a 
Proposed in this thesis. 

b 
Independent of the scale. 
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2. Goal and scope 

The aim of this thesis is the assessment of the climate benefit in the production of products 

(biofuels, drop-in chemicals and renewable-derived plastics) and/or services (electricity 

and heat) using MSW refuse as feedstock in advanced WtE plants5. The climate impact of 

existing (combustion for heat and power) and emerging (gasification for products and 

services) concepts of advanced WtE plants has been assessed.  

The specific aims in this thesis are presented in Figure 5: 

 Assessment of the GHG emissions associated to different configurations of 

advanced WtE plants producing biofuels and drop-in chemicals from MSW 

refuse (static assessment) with the possibility of Bio-CCS incorporation (Paper 

I). 

 Assessment of the dynamic GHG emissions in an advanced WtE plant 

(thermochemical biorefinery) producing biofuels and electricity from MSW 

refuse (Paper II). 

 Analysis of the climate benefit in the production of biofuels from MSW refuse in 

Europe considering the climate burdens from different MSW management 

schemes in Europe (Paper III). 

 Contrasting the potential climate benefit of renewable-derived plastics from 

MSW refuse and Bio-CCS in advanced WtE plants (Paper IV). 

 Assessment of alternative for the management of MSW refuse in incineration 

and gasification-based WtE plants (environmental and techno-economic 

analysis) (Paper V). 

 Assessment of alternative for the management of MSW refuse in incineration 

and gasification-based WtE plants (dynamic environmental assessment) (Paper 

VI). 

 

                                                           
5 In advanced WtE plants the metal recovery from bottom and/or fly ashes is possible. Metal recovery is 

interesting from the GHG emission assessment point of view since it involves avoided emissions from metal 

industry. However, metal recovery is not considered in this thesis since there are many uncertainties about the 

recovery potential, the type of ashes to be used and the profitability of the process. Moreover, the construction 

and dismantling of the WtE plants are not considered in this thesis since their impact over time is considered 

negligible. 



 

13 
 

 

Figure 5. Overview of the appended papers and their scope. In red, the pillars of the 

methodology applied in this thesis. Blue flags relate each Paper to the mix of products and 

services assessed and green flags shows the route from chemical to plastics analyzed in 

Paper IV. Circles represent the geographical scope of the thesis. The asterisk means the 

production of district heating is only considered in Northern European countries. 

 

2.1. Geographical scope of the thesis 

The geographical scope of this thesis is Europe. In Europe, the different municipal waste 

management schemes can be described into two extreme cases: dominant landfilling or 

dominant incineration. Dominant landfilling is representative of the Southern and Eastern 

Europe whereas the dominant incineration is representative of the Central and Northern 

Europe. Spain and Sweden have been selected to represent each case (Figure 6). The 

availability of data and the knowledge of the situation in the countries were taken into 

consideration in the decision-making. Sweden was chosen since the incineration is the 

main way to manage the MSW refuse but also this country has a low-carbon electricity 
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(based on nuclear energy and renewables) and heat mix (based on industrial excess 

heating, WtE plants and renewables). Spain was chosen since landfilling is dominant in 

this country and it has a high-carbon electricity mix. A great difference between Spain and 

Sweden is their need of district heating, in Sweden is essential during most of year 

whereas in Spain only some regions in the Northern need it during the winter. Because of 

that, the advanced WtE plant in Sweden produces district heating from excess heat in the 

process (Paper III and IV). In the rest of the papers, the municipal waste management 

scheme in Spain and particularly in the region of Andalusia was analyzed. The Spanish 

waste management scheme is based on recycling and landfilling and, to a lesser extent, 

on incineration. However, Andalusia is a region in the south of Spain where landfilling is 

dominant and incineration is not implemented, very similar to Southern and Eastern 

European countries. Hence, the implementation of WtE plants replacing landfills was 

analyzed for the case of Andalusia (Paper I, II and V). 

 

Figure 6. Waste management scheme in Spain and Sweden. In Spain, MSW refuse is the 

unsorted fraction coming from MBT plants whereas in Sweden, this fraction is separated at 

source. 
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3. Context of the thesis 

The research conducted in this thesis started in the context of the BIOTER (BIOrefinería 

TERmoquímica basada en dimethyl-ether (DME)) project granted to BEGUS6 for the 

assessment of new concepts of thermochemical biorefinery using DME as a platform 

chemical in 2012. One of the pillars of this project was the assessment of the GHG 

emissions associated to the life cycle of these thermochemical biorefineries concepts. A 

tool for the calculation of GHG emissions was developed and applied to these 

configurations using lignocellulosic biomass as feedstock. The tool was based on a 

simplified carbon footprint assessment called GHG balance. In 2014, a summary of the 

results of this tool was exhibited in the 22nd European Biomass Conference and Exhibition. 

From the experience in this conference and once the BIOTER project was completed 

emerged the interest of developing a tool for the calculation of time-integrated GHG 

emissions and the search and analysis of new feedstocks. 

In 2015 and 2016, results of time-integrated GHG emissions using MSW refuse as 

feedstock in thermochemical biorefineries producing products (biofuels and/or renewable-

derived drop-in chemicals), and/or services (electricity and/or heat) were presented in the 

23rd European Biomass Conference and Exhibition in Vienna and in the 6th International 

Conference on Engineering for Waste and Biomass Valorization in Albi (France).  

In parallel, an exhaustive assessment of the emissions associated to landfilling and 

incineration with energy recovery was carried out. The aim of this assessment was to 

develop a short-time alternative scenario to the thermochemical biorefinery. Therefore, a 

local study where incineration with energy recovery was the alternative to landfilling was 

economic and environmental assessed and exhibited in the 6th International Conference 

on Engineering for Waste and Biomass Valorization in Albi (France). 

  

                                                           
6
 Bioenergy Group of the Chemical and Environmental Engineering Department of the University of Seville 

headed by Prof. D. Pedro Ollero, http://grupo.us.es/bioenergia/es/. 

http://grupo.us.es/bioenergia/es/
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4. Methodology 

Table 4 shows a summary of the main parameters and indicators used in the methodology 

according to the type of GHG emission assessment (static or dynamic) in order to specify 

if they has been developed in this thesis or, on the contrary, they are based on literature. 

 

Table 4. Summary of the main parameters and indicators used in this thesis. 

 
Parameters and/or 

indicators 
Reference 

Static GHG emission 

assessment 

GHG balance and saving International 

organizations, literature 

and EU regulation 
Differential GHG impact 

Average biogenic carbon 

storage in renewable-

derived plastics (�̅�pool)
7 

Developed in this thesis 

Dynamic GHG emission 

assessment 

Time-integrated biogenic 

carbon storage in 

renewable-derived plastics 

over time (epool)
7 

Developed in this thesis 

AGWP and AGTP 

International 

organizations, literature 

and EU regulation 

DCI and CMI Developed in this thesis 

 

4.1. Definition of the Bioenergy (BIO) and Business As Usual (BAU) systems 

In this thesis, a scheme is a set of related systems associated to a particular country, 

region or area land, e.g. waste management system in Sweden; whereas a system is 

understood as a set of related units contributing to a particular objective, e.g. reference 

system. In this case, every unit is an emission source, biogenic or anthropogenic, using a 
                                                           
7
 In the modeling of the biogenic carbon storage in renewable-derived plastics a parameter to be included in 

the GHG balance (static) (�̅�pool) has been calculated as well as the evolution of this parameter over time 

(dynamic) (epool). 
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particular feedstock for the generation of particular product o products, e.g. an incineration 

plant is a unit in the reference system using MSW refuse in the production of electricity 

(and heat) and releasing GHG emissions to the atmosphere during the process (Figure 7). 

If these units belong to a conventional system in a particular region, this system is called in 

this thesis Business As Usual (BAU) system. The BAU system can be different between 

regions since the waste management is country-specific, e.g. a landfill site is a unit in the 

BAU system of Spain but not in Germany where MSW landfilling is negligible 

(EUROSTAT, 2014). On the contrary, if a system is proposed in a particular region in order 

to mitigate GHG emissions from the waste management, the system is called Bioenergy 

(BIO) system. In this case, the main unit of the BIO system is an advanced WtE plant.  

 

 

Figure 7. Relations between scheme, system and unit used in this thesis. 

 

In a LCA study, the functional unit is a measure of the function of the studied system and it 

provides a reference to which the inputs and outputs of the system/process/product 

analyzed can be related. Typically, the functional unit can be defined for the input or the 

output to the e.g. the system analyzed. However, when two systems are compared in 

terms of an LCA study, it is crucial that the functional unit is defined for the input and the 

output in both systems. When the functional unit is defined for both input and output, the 

deficit of one or several products must be compensated from a conventional unit, e.g. 

electricity grid mix. Because of that, in the BIO system there may be fossil-derived 

emission sources. Attributional modelling is life cycle inventory (LCI) modelling frame that 

inventories the inputs and output flows of all processes of a system as they occur. 
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Modelling process along an existing supply-chain is of this type (EUR 24708 EN, 2010). In 

this thesis, long-term marginal processes with system expansion and substitution is 

applied making somehow hard to classify the study as either attributional8 or 

consequential9. As indicated in the ILCD Handbook (EUR 24708 EN, 2010), the kind of 

LCA study done here could be classified as interactional. The apparent mixing of 

strategies in the methodology is only that apparent since a systematic approach has been 

followed according to current recommendation from the Joint Research Centre (JRC) as it 

will be shown latter. Considering the different categories usually analyzed, in this thesis 

only the climate change is considered. The horizon for this assessment is 100 years as the 

Intergovernmental Panel on Climate Change (IPCC) recommends (IPCC, 2014). 

Figure 8 shows an example of the boundaries of the BIO and BAU systems where the 

functional unit is defined for both the input and the output of the two systems analyzed. In 

the BAU system, the MSW refuse is landfilled or incinerated to produce electricity and/or 

heat whereas fuels and/or drop-in chemicals are produced from fossil fuels. In the BIO 

system, MSW refuse is used in the advanced WtE plant to produce products (biofuels 

and/or renewable-derived plastics) and services (electricity and/or heat); and an input from 

electricity grid and heat mix are considered to balance the heat and/or electricity 

production in the BAU system. Therefore, both systems (BIO and BAU) have the same 

input (same amount and type of feedstock) and output (i.e. same amount and type of final 

products and services). The functional unit is in most cases defined using a basis of 1 MJ 

of output product and services from the advanced WtE plant. Therefore, substitution and 

system expansion are defined accordingly. Only in the Paper V the functional unit is 

defined using a basis of 1 ton of MSW refuse input to the system. Although in Spain the 

district heating might be interesting in some regions, the impact of a future use of MSW 

refuse in a hypothetical Spanish district heating is considered negligible. Hence, district 

heating is only analyzed in the Swedish case. 

 

                                                           
8
 The attributional life cycle model depicts its actual or forecasted specific or average supply-chain plus its use 

and end-of-life value chain. The existing or forecasted system is embedded into a static technosphere (EUR 

24708 EN, 2010). 
9
 The consequential life cycle model depicts the generic supply-chain as it is theoretically expected in 

consequence of the analyzed decision. The system interacts with the markets and those changes are depicted 

that an additional demand for the analyzed system is expected to have in a dynamic technosphere that is 

reacting to this additional demand (EUR 24708 EN, 2010). 
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Figure 8. BIO and BAU system considered in the Paper III (MSW and energy) and Paper 

IV (MSW, energy and plastics). The functional unit is based on 1 MJ of products and 

services from the advanced WtE plant (output). In both BAU and BIO systems same 

amount of MSW refuse is processed and the same amount of products and services are 

generated. 

 

4.2. Static GHG emission assessment 

4.2.1. GHG balance and saving in the advanced WtE plant (unit) 

The methodology for the calculation of the GHG balance and saving has been previously 

discussed using lignocellulosic biomass (i.e., thermochemical biorefinery) and the 

standard LCA characterization method, i.e., GWP (100), and characterization factors 

defined by IPCC AR5 (Haro et al., 2015). The previous methodology was adapted for the 

production of biofuels and services with the option of Bio-CCS incorporation to the 

thermochemical biorefinery. However, when using MSW refuse, it needs to be extended to 
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include the fossil fraction in the feedstock and the production of renewable-derived plastics 

along with the temporal storage of biogenic carbon in renewable-derived plastics (as a 

negative contribution to GHG emissions). Figure 9 shows the carbon flows and pools 

considered in the calculation of the GHG balance. The carbon flows are emissions to the 

atmosphere and the carbon pools are the two alternatives of carbon storage considered in 

this thesis (renewable-derived plastics and Bio-CCS). The biogenic emissions are CO2 

emissions from the biogenic fraction of the MSW refuse and anthropogenic emissions are 

fossil emissions and non-CO2 GHG emissions from the biogenic fraction.  

Equation (1) shows how to calculate the global GHG balance for the advanced WtE plant 

(EWtE). In the thesis, two drop-in chemicals have been modeled for the production of 

renewable-derived plastics: dimethyl-ether (DME), which is used to produce both biofuels 

(fbiofuel) and renewable-derived plastics (fplast), and methyl acetate (MA), which is fully used 

for the production of renewable-derived plastics. 

EWtE=ept+ep+et+𝑒𝑎𝑠ℎ+ (xDME·fbiofuel (ed+eu)+xDME·fplast (ed+eu+�̅�𝑝𝑜𝑜𝑙)) +xMA(ed+eu) + xelect(ed+eu) + xheat(ed+eu ) (1) 

where fi is the fraction of product i produced from DME (in %); xi is the fraction of product i 

in the system (%); and α is the biogenic fraction in the feedstock. 

 

RED Directive regulates the certification of energy carriers (biofuels and bioliquids) 

imposing a minimum GHG saving. According to RED, the saving is calculated regarding 

the final use of the energy carrier as a transportation fuel (biofuel), or for the generation of 

electricity or heat (bioliquids) (Haro et al., 2015). The GHG saving is calculated for the 

production of biofuel (compared to emissions from transportation fuels) using the 

guidelines from RED. Equation (2) is used in the calculation of the GHG saving from the 

production of biofuels as indicated in the European regulation (Directive 2009/28/EC). 

Saving (%)=
EFbiofuel-EWtE

EFbiofuel
                                                                                                       (2) 
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4.2.2. Differential GHG impact comparing BIO and BAU systems 

The differential GHG impact (Equation 3) compares, in terms of GHG emissions reduction, 

the use of MSW refuse in advanced WtE plants producing products and services (BIO 

system) with the BAU system (Gaudreault, et al. 2015). It differs from the GHG balance in 

the consideration of the displaced and/or avoided emissions due to both material and 

energy substitution (i.e., it includes the burdens by means of system expansion and 

substitution for the BIO and BAU systems). The GHG impact of the BIO (EBIO) and BAU 

(EBAU) systems are calculated using Equation (4) and (5), respectively. Avoided emissions 

are represented by a fossil reference value (EF) according to the mix of products from the 

advanced WtE plant (Table 5). For heat, a conservative value is taken for the Swedish 

heat mix based on the production of district heating using waste and biomass CHP plants 

and from industrial excess heating (Systems Perspectives on Biorefineries, 2014). 

 

Table 5. Fossil references for products of the advanced WtE plant. 

 Spain Sweden 

EFfuel
 (Directive 2015/1513/CE) (g CO2 eq.∙MJ-1 ) 90.3 

EFolefins (Eco-profiles-PP, 2014) (g CO2 eq.∙MJ-1 ) 38 

EFPVC (Eco-profiles, PVC, 2005) (g CO2 eq.∙MJ-1 ) 94 

EFelectricity
 (EUR 27215 EN) (g CO2 eq.∙MJ-1 )1 110.7 17.5 

EFheat (Systems Perspectives on Biorefineries, 2014) (g CO2 eq.∙MJ-1 ) - -68 
1
In Sweden the average CO2 emissions per MWh of electricity is 0.063 t fossil CO2/MWhe) (EUR 27215 EN) 

and 0.398 t fossil CO2/MWhe in Spain (EUR 27215 EN). 

 

Differential GHG impact=EBIO-EBAU                                      (3) 

EBIO=EWtE·(y
4
+z2+w2+x2)+EFelectricity·y

3
+EFheat·x3                                                           (4) 

EBAU=EFfuel·z1+ EFplast∙w1+( ∑ Ei∙rii )·(y
1
+y

2
+x1)                                                                (5) 

where i is landfill and/or incineration. 

 

Elandfill represents the GHG emissions from the landfill, which depends on the behavior of 

landfilled materials. Although IPCC and EPA establish default values, some parameters 

are country-specific and even vary between regions. Eincineration represents the GHG 

emissions from MSW refuse incineration. The results in terms of grams of CO2 equivalent 

per ton of MSW refuse are corrected by the unit efficiency (Equation 6) to use the same 

functional unit in both systems: 1 MJ of total products and services from the advanced WtE 
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plant. The purpose of this correction factor is to include the impact of the different 

conversion efficiencies in the BAU system compared with the BIO system. 

Ei=
g CO2 eq

t MSW refuse
·

t MSW refuse/year

(MJoutput/year)*(
 ƞi

ƞ biorefinery
)
                                                                                (6) 

where i is landfill or incineration 

 

Figure 10 shows the how the main parameters used in the static assessment are 

interconnected. 

 

 

Figure 10. Overview of the differential GHG impact for the BIO and BAU systems in terms 

of the GHG balances for each unit. 

 

4.3. Dynamic GHG emission assessment 

4.3.1. AGWP and AGTP in the BIO and BAU systems 

This methodology has been applied to each unit of the BIO and BAU systems, i.e., 

landfilling, incineration plant, advanced WtE plant and fossil references (fossil fuels, fossil-

derived plastics and electricity and heat mix) and further integrated in four parameters 

(AGWP and AGTP for both systems). The calculations are carried out per year (t) up to a 

time horizon of 100 years (T).  
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To calculate the time-dependent climate mitigation potential, each individual Well Mixed 

Greenhouse gas (WMGHG), i.e., CO2, CH4 and N2O, has been modelled in each unit. The 

WMGHG have lifetimes long enough to be (relatively) homogeneously mixed in the 

troposphere. The emissions to the atmosphere of each individual WMGHG from the 

management of the MSW refuse produced in a year are called pulse emissions (E) (g CO2 

eq.∙MJ-1) (IPCC, 2013, Sathre and Gustavsson, 2012). The pulse emissions undergo an 

atmospheric decay (R) over time (calculated up to year 100) due to the natural dynamic of 

the atmosphere (C and N cycles) called in this thesis the GHG remaining (rGHG) (g CO2 

eq.∙MJ-1) (Equations 7-10, Table 6) (IPCC, 2013, Sathre and Gustavsson, 2012). The sum 

of the pulse emissions in year i and the GHG remaining in the atmosphere from year 1 to 

(i-1) is the cumulative GHG (GHGc) (g CO2 eq.∙MJ-1) (Equation 11). 

RCO2  (t) = a0+ ∑ ai
3
i=1 ·e-t/τi                                                                                                 (7) 

RCH4  (t) = e-t/τCH4                                                                                                                 (8) 

RN2O (t) = e−t/τN2O                                                                                                            (9) 

 

Table 6. Parameters used for the calculation of R in Equations 8 to 10 (IPCC; 2013, 

Giuntoli et al., 2015b). 

a
0
 a

1
 a

2
 a

3
 τ

1
 τ

2
 τ

3
 τ

CH4
 τ

N2O
 

0.2173 0.224 0.2824 0.2763 394.4 36.54 4.304 12.4 121 

 

rGHG(t) = ∑ E(t-1)·R(t)t
1                                                                                                     (10) 

GHGc = E(t)+rGHG(t)                                                                                                       (11) 

 

The CO2 concentration (ppmv in the atmosphere (Equation 1210, Table 7) and cumulative 

CH4 and N2O are used to calculate the Radiative Forcing (RF) (W∙m-2∙kg MSW refuse-1) 

(Equations 13-15, Table 8) (IPCC; 2013, Giuntoli et al., 2015b). RF is a simple measure 

for both quantifying and ranking the many different influences on climate change (natural 

and anthropogenic). RF is divided by the kilograms of MSW refuse per year. The 

                                                           
10

 In order to calculate AGTP, the CO2 concentration is obtained from the pulse emission and not from the 

cumulative CO2, i.e., in equation 13 (CO2)t is replaced by Ei. 
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cumulative Radiative Forcing or Absolute Global Warming Potential (AGWP) (W∙year∙m-

2∙kg MSW refuse-1) is calculated integrating the RF over a defined time horizon (IPCC; 

2013, Giuntoli et al., 2015b, Pingoud et al., 2012) (Equation 16). Absolute Global surface 

Temperature change Potential (AGTP) (K∙kg MSW refuse-1) is the global mean surface 

temperature change at a chosen point in time in response to an emission pulse (Equations 

17 and 18, Table 9) (Giuntoli et al., 2015b). According to IPPC, the uncertainty range for 

RF and AGWP is ±24% and ±26% respectively (IPCC, 2013, Joos et al., 2013). Final 

AGWP and AGTP are obtained for the BIO and BAU system considering the share of 

energy of each unit into each system. 

 

[CO2]=
(CO2)c·10E3

atmosphere mass
·

dry air molecular mass

CO2molecular mass
                                                                            (12) 

 

Table 7. Parameters used in the calculation of [CO2] in Equation 12. 

Atmosphere mass (kg) 5.14E+18 

Dry air molecular mass (g∙mol-1) 28.97 

CO2 molecular mass (g∙mol-1) 44.01 

 

RFCO2
=5.35·ln(1+

[CO2]

C0
)                                                                                                     (13) 

RFCH4  =(1+f1+f2)·ACH4·CH4c                                                                                                (14) 

RFN2O=(1-0.36·(1+f1+f2)·
RECH4

REN2O
)·AN2O·N2Oc                                                                       (15) 

where 

C0: CO2 concentration in the atmosphere (ppmv) (IPCC, 2013) 

f1 and f2: correction factor due to effects on ozone and stratospheric H2O respectively 

(IPCC, 2013) 

Ai: radiative forcing per unit mass (W∙m-2∙kg MSW refuse-1) (IPCC, 2013) 

REi: radiative efficiency of gas I on volume basis (W∙m-2·ppb-1) (IPCC, 2013) 
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Table 8. Parameters used for the calculation of RF in Equations 13-15 (IPCC; 2013, 

Giuntoli et al., 2015b). 

Parameter Value Unit 

ACH4 1.28E-13 W∙m-2·ppb-1 

RE CH4 3.63E-4 W∙m-2·kg-1 

A N2O 3.85E-13 W∙m-2·ppb-1 

RE N2O 3.00E-3 W∙m-2·kg-1 

f1 0.5 - 

f2 0.15 - 

 

AGWP(t)= ∫ RF
t

0
(t')dt'                                                                                              (16) 

AGTP(t)= ∫ RF
t

0
(t

')· δT(t-t
')dt

'
                                                                                   (17) 

𝛿T= ∑
ci

di

2
i=1 · exp (-

t

di
)                                                                                                  (18) 

 

Table 9. Parameters used for the calculation of AGTP in Equation 18 (IPCC; 2013, Giuntoli 

et al.,2015b). 

Parameter 1st term 2nd term unit 

ci 0.631 0.429 K∙W-1·m-2) 

di 8.4 409.5 years 

 

4.3.2. CMI and DCI comparing BIO and BAU systems 

In this thesis, two parameters are proposed and designed in the dynamic assessment: 

climate mitigation index (CMI) and differential climate impact (DCI). Table 10 gives a 

comparison between the CMI and the DCI. 

 



 

27 
 

Table 10. Comparison between the parameters used in the dynamic GHG emission 

assessment: CMI and DCI. 

 Climate Mitigation Index (CMI) Differential Climate Impact (DCI) 

Based on AGWP (cumulative) AGTP (instantaneous) 

Units -- K∙kg-1 MSW refuse 

Emissions 

included 

Biogenic and anthropogenic 

emissions 

Anthropogenic and non-CO2 

biogenic emissions 

Comparison 
BIO and BAU system for the same 

region 

Different regions and GGR 

technologies 

Result 
Cumulative climate mitigation for a 

specific region 
Climate benefit at a specific time 

Used in this 

thesis 
Paper III and VI Paper III, IV and VI 

 

4.3.2.1. Climate mitigation impact (CMI) 

The climate mitigation index (CMI) assesses the mitigation potential of producing products 

and services from MSW refuse instead of following current MSW management schemes. 

The CMI is dimensionless. For each region assessed (Spain or Sweden), the feedstock is 

identical independently of how the MSW refuse is disposed of. Therefore, since the re-

absorption factor is equal in both systems, all GHG emissions (CO2 included) are counted 

from the MSW refuse for both biogenic and fossil origin. The CMI is calculated according 

to Equation 19 (Pingoud et al., 2012, IEA, 2012). The values of AGWP for BIO and BAU 

systems are calculated from the annual emissions of each WMGHG as explained 

elsewhere (Giuntoli et al., 2015a, IPCC, 2013, Sathre and Gustavsson, 2012). 

Regarding CMI values, it is possible to compare the behavior of the BIO system with the 

current MSW management, and production of products and services (i.e., the BAU 

system) for a specific region (Scheme 1, Figure 11). Since the CMI is based on the AGWP 

values, this comparison gives the cumulative climate mitigation of producing products and 

services. Therefore, if the CMI reaches a positive value at a certain time, it means at this 

time there will be no accumulated climate benefit, i.e., the BIO system becomes worse 
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than the BAU system. For negative CMI values, there is an accumulated climate benefit, 

until the CMI reaches -1 when then the BIO system has no emissions of WMGHG. 

 

CMI=
(AGWPBIO-AGWPBAU)

AGWPBAU 
               (19) 

 
CMI>0 →AGWPBIO>AGWPBAU → Climate worsening 

CMI=0 →AGWPBIO=AGWPBAU → Climate neutral 

-1<CMI<0 →AGWPBIO<AGWPBAU → Climate mitigation 

CMI=-1 →AGWPBIO=0 → BIO is climate neutral 

(Scheme 1) 

 

 

Figure 11. Graphical explanation of a time-integrated GHG emission profile using the CMI 

indicator. 

 

4.3.2.2. Differential climate impact (DCI) 

The differential climate impact (DCI) measures the climate benefit in the production of 

products and services from MSW refuse in order to compare the results of regions with 

different waste management schemes. The units of DCI are K·kg MSW refuse-1. In 

different regions, feedstock composition differs and therefore the biogenic emissions 

cannot be modelled as for the CMI (Giuntoli et al., 2015a). As mentioned above, in this 
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case it is only possible to account for fossil carbon and biogenic non-CO2 emissions. In the 

same way, the biogenic carbon stored in landfill and plastics; and from Bio-CCS 

incorporation are modelled as negative contributions. The DCI is based on the AGTP 

metric as the surface temperature response to the replacement of BAU by BIO (Equation 

20). The values of AGTP for BIO and BAU systems are calculated from the annual 

emissions of each WMGHG as explained elsewhere (Giuntoli et al., 2015a, IPCC, 2013, 

Sathre and Gustavsson, 2012). 

Regarding the values of the DCI, a direct comparison of two different regions can be 

made. Since the DCI is based on AGTP values, the comparison gives the climate benefit 

at a specific time; an instantaneous comparison that is not biased by the accumulated 

effect of previous WMGHG emissions. Therefore, if the DCI of one region is lower than in 

another region, it means that there is a larger climate benefit in the production of biofuels 

and/or renewable-derived drop-in chemicals in this region at a specific time. 

DCI=AGTPBIO-AGTPBAU                                                                                       (20) 
 

 

4.4. Scenarios 

Two scenarios for the evolution of the BAU system (MSW refuse management, product 

and services production) are considered.  

 Scenario 1. The production in the advanced WtE plant (unit) is continuous. In this 

scenario, we assume that the MSW management scheme and products (including 

plastics) and services production do not change for the whole period (for both BIO 

and BAU systems). This scenario applies for both the static and dynamic 

assessments. The aim of this scenario is the comparison between the static and 

the dynamic assessment since the static assessment cannot include any evolution 

of the MSW refuse management or the products and services production. 

 Scenario 2. It considers an evolution of the MSW refuse management to the legal 

targets and recommendations set by the European Commission. This scenario 

applies only for the dynamic. This evolution brings a landfill-banned BAU system 

and would be closer to the future evolution of MSW management in Europe for 

both MSW refuse and plastic waste (Figure 12). Considering the selected regions, 

the targets set in the landfill and the waste framework Directives have been already 

achieved in Sweden but not in Spain. Therefore, Spain should reduce the amount 
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of biodegradable municipal waste in MSW refuse and its landfilling rate (Directive 

2008/98/EC). This scenario also considers an evolution in the energy mix for both 

Spain and Sweden according to forecasts of the European Commission (Figure 

13). 

 

                                                            (1) 

 

                                                             (2) 

 

Figure 12. Targets to be achieve in Scenario 2 in the MSW refuse management (1) for 

Spain and Sweden (Aracil et al., 2017); and in the plastic waste management  (2) for 

Spain. 
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Figure 13. Evolution of emissions from the energy mix (electricity and fuels) in scenario 2 

for both Spain and Sweden. For clarity, the yearly emissions of each WMGHG are 

combined and expressed in g CO2 eq./MJ (Aracil et al., 2017). 

 

4.5. Modeling of biogenic carbon storage in renewable-derived plastics 

The modeling of the storage of biogenic carbon in renewable-derived plastics is carried out 

defining three parameters. The first represents the biogenic carbon captured in products 

still in use and recycled products, i.e. plastic materials in the market (ematerial), the second 

represents the biogenic carbon captured in landfilled products (elandfill). Both ematerial and 

elandfill are an additional carbon pool in the calculations. The last represents the 

anthropogenic emissions to the atmosphere (carbon flow) from the combustion of the 

plastic waste (eenergy). In Figure 14 the evolution along the time of each parameter is 

shown, the impact of the ematerial in the carbon pool is higher than this of elandfill for the first 

15 years in Spain whereas in the case of Sweden ematerial is dominant for 60 years. The 

high Swedish incineration ratio makes epool positive from year 20 whereas this is 

permanently negative in the case of Spain. 

For the modelling of biogenic carbon in renewable-derived plastics, two streams must be 

known, products still in use in the market (P) and plastics becoming waste (W). Short-life 

plastic products (Pshort-life plastics) are considered to become waste in less than a year, 

however, the most of long-life plastics usually remain in the market for more than one year. 

Therefore, Equation (21) gives the fraction of the long-life plastic products becoming waste 
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(Wlong-life plastics) in one year. Long-life plastic products still in use (Plong-life plastics) are 1-Wlong-life 

plastics. 

𝑊𝑙𝑜𝑛𝑔−𝑙𝑖𝑓𝑒 𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑠 =
𝑊−𝑃𝑠ℎ𝑜𝑟𝑡−𝑙𝑖𝑓𝑒 𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑠

𝑃𝑙𝑜𝑛𝑔−𝑙𝑖𝑓𝑒 𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑠
                                                                               (21) 

 

In the year zero, ematerial represents the input of new plastic products in the market in terms 

of g CO2 eq.∙MJ-1 of plastics (C input) whereas elandfill and eenergy have a zero value. From 

year 1 to 100, elandfill and eenergy increase since more and more plastic waste is landfilled or 

energy recovered and, therefore, ematerial decreases. Equations (22) to (25) show the 

calculations: 

 

 Year 0:  

𝑒𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝐶 𝑖𝑛𝑝𝑢𝑡 ∙ 𝛼                                                                                                       (22) 

where α is the biogenic fraction of the MSW refuse (%) 

 Successive years for short-life plastic materials: 

𝑒𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 (𝑦𝑒𝑎𝑟 𝑖) = 𝑒𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 (𝑦𝑒𝑎𝑟 𝑖−1) ∙ 𝑊𝑠ℎ𝑜𝑟𝑡−𝑙𝑖𝑓𝑒 𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑠. 𝑟𝑟𝑒𝑐𝑦𝑐𝑙𝑖𝑛𝑔                                     (23) 

 

The parameter elandfill (year i) is calculated as ematerial (year i) replacing rrecycling by rlandfilling. 

𝑒𝑒𝑛𝑒𝑟𝑔𝑦 (𝑦𝑒𝑎𝑟 𝑖) =  𝑒𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 (𝑦𝑒𝑎𝑟 𝑖−1) ·
 𝛽

𝛼
∙ 𝑊𝑠ℎ𝑜𝑟𝑡−𝑙𝑖𝑓𝑒 𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑠. 𝑟𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦           (24) 

 

 Successive years for long-life plastic materials: 

𝑒𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 (𝑦𝑒𝑎𝑟 𝑖) = 𝑒𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 (𝑦𝑒𝑎𝑟  𝑖−1) ∙ (1 + 𝑊𝑙𝑜𝑛𝑔−𝑙𝑖𝑓𝑒 𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑠 ∙ (𝑟𝑟𝑒𝑐𝑦𝑐𝑙𝑖𝑛𝑔 − 1))                 (25) 

 

The other two equations (elandfill and eenergy) differ from those of short-life plastic materials 

changing Wshort-life plastics by Wlong-life plastics. 

Finally, the parameter epool is calculated (Equation 26): 

𝑒𝑝𝑜𝑜𝑙 (𝑦𝑒𝑎𝑟 𝑖) = (𝑒𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 + 𝑒𝑙𝑎𝑛𝑑𝑓𝑖𝑙𝑙 + 𝑒𝑒𝑛𝑒𝑟𝑔𝑦)𝑦𝑒𝑎𝑟 𝑖                        (26) 
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To introduce these data in a GHG balance is necessary to obtain a single value; therefore, 

all the values are added in the parameter e̅
pool

 defined as the average biogenic carbon 

storage in plastics for 100 years (Equation 27): 

𝑒𝑝𝑜𝑜𝑙 ̅̅ ̅̅ ̅̅ ̅ = �̅� (𝑒𝑝𝑜𝑜𝑙 (𝑓𝑟𝑜𝑚 𝑦𝑒𝑎𝑟 0 𝑡𝑜 100))                                                                                    (27) 

 

 

Figure 14. Evolution of the carbon flow (eenergy) and carbon pools (elandfill and ematerial) for 

100 years in terms of g CO2 eq.∙MJ-1 of plastic in Spain (a) and Sweden (b) from a carbon 

input in the year 0. Blue line represents the net cumulative biogenic carbon pool (epool). 

 

4.6. Techno-economic assessment 

A techno-economic assessment is carried out only for some cases, i.e., comparison of 

conventional and advanced WtE plants using MSW refuse in Andalusia. The advanced 

WtE plant is limited to the production of electricity for the techno-economic assessment. 
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The most extended technologies for both conventional and advanced WtE pants have 

been selected, moving grate and fluidized bed reactors. 

The techno-economic assessment is calculated using common guidelines in process 

engineering. Total Investment Costs (TIC) and Total Operational Costs (TOC) are 

calculated using the parameters in Table 11. Equipment costs are taken from literature but 

updated using CEPCI parameter. In the case of the advanced WtE plant, TOC is 

calculated as the sum of fixed and variable costs. Fixed costs involve maintenance, 

insurance, labor and management, and services. These costs are calculated as a fraction 

of TIC. Variable costs entail RDF production, residues disposal and commodities 

consumption. 

 

Table 11. Parameters used in the techno-economic assessment. 

Inflation 2% 

Capital cost 5.5% 

Hours/year 7500 

Corporation tax 
30% of taxable (incineration) 

25% of taxable (gasification) 

Gate fee Variable 

Scale factor 0.6 

Lang factor 3.1 

Amortization years 
15 years (conventional WtE) 

10 years (advanced WtE) 
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4.7. Software used in the calculations of static and dynamic GHG emission 

assessment 

In this thesis, the calculations and graphs have been run and plotted using a series of 

spreadsheets as shown in Figure 15. Thirty-five spreadsheets were developed in order to 

complete all the calculations required for the achievement of the results. 

 

(1) 

 

(2) 

 

 

Figure 15. Overview of  the spreadsheets made in this thesis for the next calcualtions: 

GHG balance and diffeential GHG impact (a ), AGWP and AGTP (b); differential climate 

impact (c) and modeling of renewable-derived plastics (d).



 

5. Summary of the case studies 

 
Table 12. Definition of the case studies in papers appended. 

PAPER STUDY CASES 

Bio-CCS/ 
RENEWABLE-

DERIVED 
PLASTICS 

PRODUCTS/SERVICES ASSESSMENT SCENARIO 
GEOGRAPHICAL 

SCOPE 
REFERENCE 

SYSTEM 

I 
Thermochemical 

biorefinery 

A -/- Biofuels and electricity 

GHG balance and 
GHG saving 

1 Andalusia -- B -/+ 
Biofuels, renewable-

derived chemicals and 
electricity 

C +/- 
Biofuels and electricity 

+ Bio-CCS 

II Thermochemical biorefinery -/- Ethanol and electricity 
Time-integrated 
GHG emission 

assessment 
1 Andalusia Landfill 

III 
Thermochemical 

biorefinery 

w/- Bio-CCS +/- 
Ethanol, DME, electricity 

and heat 

GHG balance, 
GHG saving and 
time-integrated 
GHG emission 

assessment 

1 and 2 
Spain and 
Sweden 

Complete 
(BAU system) w/o Bio-

CCS 
-/- 

IV 
Thermochemical 

biorefinery 

w/- Bio-CCS +/+ 

DME, olefins, PVC, 
electricity and heat 

GHG balance, 
differential GHG 
impact and time-
integrated GHG 

emission 
assessment 

2 
Spain and 
Sweden 

Complete 
(BAU system) 

w/o Bio-
CCS 

-/+ 

V 

Incineration-
based WtE plant 

GC/SRC
11

 

-/- Electricity 
Techno-economic 

and differential 
GHG impact 

1 Southern Europe Landfill 
Gasification-

based WtE plant 

FBG/ICE 

FBG/ORC 

GG/SRC 

VI 
Advanced WtE 

plant 

FBG/ICE 

-/- Electricity 
Time-integrated 
GHG emission 

assessment 
1 and 2 Southern Europe Landfill FBG/ORC 

GG/SRC 

                                                           
11

 Incineration is considered into the BAU system for Sweden in Paper III and IV but in the paper V is a study case since incineration is negligible in Southern 

Europe, in this case, the impact of the replacement of the landfilling for a incineration and gasification-based WtE plant is assessed. 
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6. Results and discussion 

6.1. Static assessment 

Table 13 shows the results for the GHG balances and GHG saving in the BIO and BAU 

systems. The emissions from the advanced WtE plant (EWtE) decrease when renewable-

derived plastics are produced since these plastics have not associated emissions from 

their use (eu) in comparison with biofuels and they store biogenic carbon (epool). Emissions 

from landfilling and incineration are always higher than those from the advanced WtE 

plant. In the case of the landfill, the methane emissions profile makes the landfill very 

pollutant since methane has a high warming potential (25 times more than CO2, IPCC, 

2015). However, incineration has emissions constant over time and their replacement for 

an advanced WtE plant involves a high climate benefit at a large time. For the storage of 

the biogenic carbon in renewable-derived plastics (�̅�pool), their impact in the static 

assessment is much reduced compared with Bio-CCS. 

Table 14 shows some results of the differential GHG impact. The differential GHG impact 

is always negative revealing the current MSW management scheme releases more GHG 

emissions than any alternative BIO system analyzed in this thesis. The replacement of 

landfilling for WtE plants involves a clear advantage when static GHG emission 

assessment is carried out. However, the replacement of the BAU system for the BIO 

system carries a higher differential GHG impact in dominant-incineration countries, i.e. 

Sweden. This is mainly because of the impact of the landfill for both methane emissions 

and biogenic carbon storage in the landfill.  

The production of renewable-derived plastics (Paper IV) in the advanced WtE plant 

involves a similar or higher differential GHG impact since emissions in the BIO system are 

lower than in the case of biofuel production (Paper III). In Paper V, the BIO system based 

on fluidized-bed gasifier and internal combustion engine (FBG/ICE) achieves the higher 

differential GHG impact. Results are better for advanced BIO system based on gasification 

than for conventional BIO system based on incineration except in the case of the 

configuration FBG/ORC whose result is very similar to incineration. 



 

Table 13. Results of the GHG balance and saving in the case studies. 

 

Paper V (kg CO2 eq./t MSW refuse) 
Paper III 

(g CO2 eq./MJ output) 

Paper IV 
(g CO2 eq./MJ 

output) 

Conventional 
BIO system 

Advanced BIO system w/- Bio-CCS w/o Bio-CCS w/- Bio-CCS 

FBG/ICE FBG/ORC GG/SRC Spain Sweden Spain Sweden Spain Sweden 

ept - (4.9) 
41 75 49 85 41 62 

ep 324 280 270 280 

et 4.1 - - - 2.8 2.7 3.3 

eash 3.2 5 - - - - - - 

ed - - - - 0.5 0.5 0 

eu - - - - 17 22 17 22 8 7 

eBio-CCS - - - - -33 -29 - - -36 -31 

�̅�pool - - - - - - - - -9 2 

EWtE - 287 277 287 28 71 69 110 4 43 

Elandfill 454 261 - 257 - 338 - 

Eincineration 331 - - - 134 220 132 217 173 219 

GHG Saving 
(%) 

- - - - 61 -130 4 -257 - - 
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Table 14. Results of the differential GHG impact in the case studies. 

 

 

Paper V (kg CO2 eq./t MSW refuse) 
Paper III 

(g CO2 eq./MJ output) 

Paper IV 

(g CO2 eq./MJ 

output) 

Conventional 

BIO system 

Advanced BIO system w/- Bio-CCS w/o Bio-CCS w/- Bio-CCS 

FBG/ICE FBG/ORC GG/SRC Spain Sweden Spain Sweden Spain Sweden 

EBIO 331 287 277 287 59 3 85 20 33 -11 

EBAU 454 163 184 161 181 134 183 

Differential GHG 

impact 
-215 -340 -211 -226 -103 -181 -76 -161 -101 -194 
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6.2. Dynamic assessment: CMI and DCI 

6.2.1. Climate mitigation index (Paper III) 

Figure 16 shows the CMI values for the production of electricity (1), biofuels and services 

(2) and biofuels, renewable-derived plastics and services (3) in scenario 2. The results 

improve from 1 to 3 according to the complexity of the mix of products achieving the best 

results when renewable-derived plastics are produced. In the case of Spain, in all cases 

there is a sharp reduction of the index from positive to negative and subsequent 

stabilisation except in the case of the electricity production (1) where the trend increase 

towards the climate worsening (from negative to positive) in the last years. In this case, the 

best configuration is the FBG with ICE and the worst the FBG with ORC option according 

to the efficiency. The highest efficiency, the highest climate mitigation. In all cases, the 

highest climate mitigation is achieved at a short time (first 20 years) since the transient 

emissions from the landfill are concentrated around 20 years after the landfilling of the 

MSW refuse. Considering Sweden (only 2 and 3), the climate change mitigation is 

obtained for the whole period considered, where an almost constantly mitigation is 

achieved. The mitigation for Sweden is higher than for Spain. 
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                                                          (1) 

 

(2) 
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 (3) 

 

Figure 16. Climate mitigation index (CMI) for the production of electricity (1) and biofuels 

(2) and renewable-derived plastics (3) in Spain (a) and Sweden (b) in Scenario 2. 

 

6.2.2. Differential climate impact (Paper III and IV) 

Figure 17 shows the differential climate impact for the production of electricity (1), biofuels 

and services (2) and biofuels, renewable-derived plastics and services (3). The graphs 1 

and 2 show the scenario 1 and the graph 3 the scenario 2 (only scenario 2 is assessed in 

Paper V, see Table 12). As CMI, the results improve from 1 to 3. Comparing these results 

with the static assessment, it is clear that these results could not have been predicted from 

the GHG saving or differential GHG impact. For instance, the differential GHG impact gave 

a higher climate benefit for Sweden. The static assessment gives an underestimation of 

the climate benefit in the production of biofuels in a landfill-dominant region like Spain. The 
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results of incorporating Bio-CCS are also different from the stationary assessment. The 

effect of Bio-CCS incorporation is slightly lower in the time-dependent assessment. 

In Figure 17-3,  both the production of biofuels and the production of biofuels and 

renewable-derived plastics with Bio-CCS incorporation involve a climate benefit respecting 

to the current MSW refuse management scheme (BAU system) (Figure 17). In the case of 

Sweden the climate benefit is practically constant from the year 2030 whereas in the case 

of Spain, the climate benefit is higher in the first 40 years owing to the impact of the landfill 

emissions. The production of renewable-derived drop-in chemicals is a clear advantage 

regarding the production of biofuels in the Swedish case whereas in Spain this advantage 

is produced while the landfill emissions are being avoided. 

 

(1) 

 

(2) 
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Figure 17. (1) Differential climate impact (DCI) for the production of electricity through 

different forms of production in Andalusia (South of Spain). (2) DCI (lines) and sensitivity to 

the biogenic fraction in MSW refuse (areas) for Spain (grey) and Sweden (brown) in 

scenario 1 producing biofuels and electricity. (3) DCI for the sustained production of 

renewable-derived plastics from MSW refuse, Bio-CCS incorporation to an advanced WtE 

plant producing transportation fuels and electricity and an advanced WtE plant producing 

transportation fuels and electricity without any GGR technology  in Spain (a) and in 

Sweden (b) (scenario 2). 

 

6.3. Techno-economic assessment (Paper V) 

The economic comparison is shown in Figure 18, which displays the gate fee necessary to 

achieve 15% of internal return rate (IRR) as a function of plant fuel-input capacity (MWth), 

for the 4 WtE schemes considered. According to the previous discussion, incineration is 

considered for electricity loads higher than 100 MWth, whereas gasification schemes are 
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displayed from small to medium capacities (5-60MWth) in order to adapt these WtE plants 

into existing MBT plants. As expected, the higher size plant allows lower gate fee to 

achieve the same economic feasibility. On the other hand, the impact of the gate fee on 

the feasibility is higher for gasification schemes as compared to incineration, since the 

reduction of the annualized cost of investment of these plants is more sensitive to the plant 

scale than incineration, increasing the cash flow more significantly than the wholesale 

electricity tariff. The FBG/ORC and FBG/IEA are seen to be better choices than GC/SRC 

from the economical point of view. The FBG/ORC configuration gives the lowest gate fee 

at a small-scale plant capacities (<35 MWth) because its lower capital and operational 

costs (Table 6). From 35 MWth, the FBG/ICE obtains the best results but the differences 

between the two technologies are very small, so it should be considered similar for the 

rough estimations considered in this work. However, ORC is a mature and widely spread 

and reliable form of energy production in CHP applications based on biomass (Turboden, 

2016) with lower technical and economic requirements in gas cleaning than ICE option, so 

its suitability for market penetration in the short-term scenarios should be considered in 

terms of higher reliability. 

 

Figure 18. Economic results according to the WtE configuration (a. gasification, b. 

incineration) considering an IRR of 15% in Andalusia. The shaded area indicates the 

range of thermal energy in which the most of the MBT plants are (5-20 MWth) in Andalusia 

(a) and the incineration plant capacities proposed in this study (b). 
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7. Main findings of the thesis 

 The impacts of using MSW refuse as a feedstock for the production of energy products 

are not well evaluated in the current European regulation. For instance, a saving of 

GHG emissions over 60% (according to the objective of the EU for 2018) could be 

achieved in advanced WtE plants producing biofuels and electricity from MSW refuse 

in a landfill-dominant country (Spain) only if Bio-CCS is incorporated. This result could 

be misleading with respect to the climate benefit in the avoidance of current MSW 

refuse management in both landfill- and incineration-dominant regions in Europe. 

 The static GHG emission assessments, such as commonly found in LCA literature, 

cannot properly capture the impact of landfills on the evolution of GHG emissions with 

time and thus are unable to properly assess the climate change mitigation of the BIO 

system. Especially when considering potential dynamic evolution of both energy mix 

and MSW refuse management scheme in a 100-year period, only a time-dependent 

(dynamic) assessment can provide a proper impact assessment. 

 Two parameters have been proposed for the dynamic GHG emission assessment: the 

climate mitigation index (CMI) and the differential climate impact (DCI). Both 

parameters have proven to be very effective and complementary in the evaluation of 

the climate benefit producing products and services from MSW refuse. Whereas the 

CMI allows a comparison of different disposal and conversion technologies for MSW 

refuse, it cannot reveal the actual impact on the average global temperature. 

Conversely, the DCI allows a quantification of the temperature change along with the 

climate impact of the biogenic carbon stored in GGR technologies (renewable-derived 

plastics, Bio-CCS or others) since the biogenic CO2 emissions are excluded and 

carbon captured (in the form of plastic or CO2) are counted. 

 The promotion of landfill banning, despite being a very entrenched practice in Southern 

and Eastern Europe, would equalize the climate mitigation in the production of biofuels 

in Europe regardless their waste management scheme. This result is another example 

of how the contribution of landfills in climate change is still not fully understood. The 

estimated evolution of the waste management and electricity production for Spain and 

Sweden (as case examples) reveals that current landfill-dominant regions can even 

favorably compare with incineration-dominant regions thanks to the storage of biogenic 

carbon in the landfill. 

 The production of renewable-derived plastics compares favorably in terms of climate 

benefit in the short and medium term with Bio-CCS and would even provide a larger 
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climate benefit in incineration-dominant regions in the long term. The results 

encourage the implementation of renewable-derived plastics in Integrated Assessment 

Models (IAMs) to include their global potential in forecasting scenarios to achieve the 2 

ºC target. 

 Both incineration and gasification-based WtE plants producing electricity in Southern 

Europe would allow a reduction of landfill disposal and GHG emissions meeting current 

European targets. The economics of their implementation is favored for gasification-

based WtE plants compared with incineration plants. 

 

8. Proposals for future research 

The research conducted in this doctoral thesis has raised several aspects that are 

considered to be relevant for a future research. In this section, some of them, especially 

those related to the development of a sustainable waste management scheme, are 

highlighted. 

 MSW is composed by different fractions, the biodegradable fraction of MSW or 

biowaste is one of them. Biowaste is the fraction composed by food scraps, gardening 

and pruning residues, cellulose and wood. This fraction is currently separated at 

source or in a MBT plant and used for composting and/or anaerobic digestion. 

Composting is considered a type of recycling; therefore, it fulfills the waste hierarchy 

since recycling must be prioritized against valorization. However, the Waste Directive 

establishes waste hierarchy can be broken from a life cycle thinking. Because of that, 

anaerobic digestion is also very common in the biowaste management and; in the 

same way, advanced WtE plants could use biowaste as feedstock. The advantage of 

biowaste is their consideration as pure biomass according to RED. 

 Landfilling has been being a common practice in Europe, therefore, numerous closed 

landfills can be found in all the European countries. A lot of these landfills sites were 

closured before the recycling promotion, so they contain many recyclable materials. 

Enhanced landfill mining (ELFM) is a process whereby solid wastes, which have 

previously been landfilled, are excavated and processed. It enables the recovery of 

valuable materials that can be brought back into the cycle and also allows for 

recovering land area. Recently, European Parliament has decided to include a specific 

reference to "Enhanced Landfill Mining" in Landfill Directive (EURELCO, 2017) 

proposing a regulatory framework for it to permit the retrieval of these secondary raw 
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materials that are present in existing landfills. Therefore, the assessment of the climate 

mitigation of landfill mining must be carried out. A combination of material and energy 

recovery where the excavated waste can be directly recycled or pre-treated and used 

in the RDF production to feed an advanced WtE plant (gasification-based) is proposed. 

Both material and energy recovery contribute to a circular economy using MSW refuse 

as a secondary raw material. 

 

  



 

List of symbols 

ed  emissions from products distribution (g CO2 eq.∙MJ
-1

) 

eenergy  emissions from energy recovery of plastics (g CO2 eq.∙MJ
-1

) 

emix  emission factor from electricity grid mix (g CO2 eq.∙MJ
-1

) 

elandfill   biogenic carbon storage in landfilled plastics (g CO2 eq.∙MJ
-1

) 

epool  biogenic carbon storage in plastics (g CO2 eq.∙MJ
-1

) 

ep  emissions from processing (g CO2 eq.∙MJ
-1

) 

ept  emissions from pretreatment (g CO2 eq.∙MJ
-1

) 

ematerial biogenic carbon storage in recycled plastics and plastics still in use (g CO2 eq.∙MJ
-1

) 

et  emissions from feedstock transport (g CO2 eq.∙MJ
-1

) 

eu  emissions from the use (g CO2 eq.∙MJ
-1

) 

renergy  fraction of plastics waste going to energy recovery (%) 

rincineration  fraction of MSW refuse going to incineration (%) 

rlandfill  fraction of MSW refuse/plastic waste going to landfill (%) 

rrecycling  fraction of plastics waste going to recycling (%) 

wi  ratio of chemical production (1 BAU system, 2 BIO system) (%) 

xi fraction of heat production (1 BAU system; 2 biorefinery, 3 heat mix in BIO system) (%) 

yi ratio of electricity production (1 landfill, 2 incineration in BAU system; 3 electricity grid, 4 

biorefinery In BIO system) (%) 

zi  ratio of biofuel production (1 fossil fuels in BAU system; 2 biorefinery in BIO system) (%) 

Greek letters 

α  Biogenic fraction  of MSW refuse (%) 

β  Anthropogenic emission factor from MSW refuse incineration (%) 

ηconversion  Conversion efficiency from chemical to plastic (%) 
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Abbreviations 

AGTP   Absolute Global surface Temperature change Potential 

AGWP  Absolute Global Warming Potential 

e  Carbon flows 

BAU  Business as usual 

BIO  Bioenergy 

BECCS/Bio-CCS Carbon capture and storage in bioenergy 

DCI  Differential climate impact 

DME  Dimethyl ether 

EBIO/BAU  GHG impact of the BIO or BAU system 

ETB  Global GHG balance of the thermochemical biorefinery 

EF  Emission factor (fossil comparator) 

EPA  U.S. Environmental Protection Agency 

FBG/ICE Fluidised bed gasifier/internal combustion engine 

FBG/ORC Fluidised bed gasifier/ organic Rankine cycle 

GC/SRC  Grate combustor/steam Rankine cycle 

GG/SRC  Grate gasifier/steam Rankine Cycle 

GGR  Greenhouse gases removal 

GHG  Greenhouse gases 

IPCC  Intergovernmental panel on climate change 

LCA  Life cycle assessment 

LHV  Lower heating value 

MSW  Municipal solid waste 

P  Products still in use 

PVC  Poly vinyl chloride  

RDF  Refuse derived fuel 

SM  Supplementary material 

W  Waste 

WMGHG Well mixed GHG 
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Paper I 

 

GHG Saving in Thermochemical Biorefineries Using Municipal Solid Waste in 

Andalusia 

 

This paper presents the static GHG emission assessment of three configurations of a 

thermochemical biorefinery: a conventional thermochemical biorefinery producing 

biofuels (ethanol and dimethyl ether: DME) and electricity, a thermochemical biorefinery 

with multiproduction producing chemicals (methyl acetate) and a thermochemical 

biorefinery incorporating Bio-CCS (bioenergy with carbon capture and storage). It has 

been published as proceedings in 201412. 

 

 

1. Introduction 

In Andalusia, millions of tonnes of municipal solid waste (MSW) are generated every year 

and only about a half of them are recycled or composted, the rest ends up in the landfills 

(waste incineration is not allowed in Andalusia). However, this waste has an acceptable 

heat value (around 16 MJ/kg) that should be used minimizing the waste volume, 

decreasing the negative impact of landfills, avoiding depletion of fossil fuels and reducing 

greenhouse gases (GHG) emissions to the atmosphere. 

A thermochemical biorefinery is a facility that processes biomass by means of gasification 

to produce biofuels, chemicals and electricity. The use of MSW as feedstock in this kind of 

biorefinery (Figure 1) has the advantage of removing waste that nowadays goes to landfill 

disposal. In addition, the waste is available throughout the year and currently free of 

charge. Moreover, MSW has a 50% renewable fraction according to International Energy 

Agency (IEA, 2012). 

GHG emissions are reduced in biorefineries based on MSW since there are not emissions 

associated with harvest or direct and indirect land-use change, only with the MSW 

                                                           
12

 Aracil C, Haro P, Ollero P, Vidal-Barrero F.  GHG saving in thermochemical biorefineries using municipal 

solid waste in Andalusia. EUBCE 2014, pp 1576-1578 

http://www.etaflorence.it/proceedings/?conference=2014&mode=author&letters=a&items=Aracil%2C+C.&cate

gories=0 

http://www.etaflorence.it/proceedings/?conference=2014&mode=author&letters=a&items=Aracil%2C+C.&categories=0
http://www.etaflorence.it/proceedings/?conference=2014&mode=author&letters=a&items=Aracil%2C+C.&categories=0
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transport to the biorefinery. Even these emissions can be avoided if the biorefinery is next 

to the landfill. This is the assumption made in this study. 

This study is based on a set of twelve configurations (process concepts) of 

thermochemical biorefineries previously published (Haro el at., 2013) that have been 

classified into three categories: conventional biorefinery (A), biorefinery with 

multiproduction (B) and biorefinery with Bio-CCS (C). 

 

 
Figure 1. Visual concept of the study. 

 

 

2. Objectives 

 Assessment of GHG emissions of a plant of 50 MW based on municipal solid waste 

refuse (organic and non-recyclable fraction) with possibility of Bio-CCS (Bioenergy 

with Carbon Capture and Storage) incorporation. 

 Assessment of the impact of co-production of chemicals (non-energy drivers) in the 

GHG balance of thermochemical biorefineries (multiproduction).  

 Assessment of the impact of Bio-CCS incorporation in the GHG balance of 

thermochemical biorefineries. 

 

3. Methodology 

Directive 2009/28/EC (Directive 2009/28/EC) gives a general formula for the calculation of 

GHG emissions of biofuels and bioliquids. This formula considers neither MSW like 

feedstock nor chemicals like potential products, so a modified and/or extended (Figure 2) 

formula is used in this work. Moreover, the value of emissions in the final use of biofuels is 

defined as zero in the Directive (neutral impact of biofuels). However, this is a 
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simplification and we have considered the carbon embodied in the non-renewable MSW 

fraction and the fraction of other gases with global warming potential (GWP) like N2O and 

CH4. 

 

Encab

ezado

Directive 2009/28/ECThermochemical

Biorefinery 

(ep)

BECCS

(-eccs)

Biofuels

(etd)

Biochemicals
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Waste
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Biofuels
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Figure 2. Considered emissions in the GHG calculation. 

 

4. Results 

4.1. Conventional biorefinery 

The first part of the assessment consists in the calculation of GHG saving in a 

conventional biorefinery that only produces biofuels and electricity. We have considered 

four configurations depending on the mix of final products and syngas conditioning 

(identified by the reformer) (Table 1). 

Although the results are discouraging (Figure 3), the best one is obtained in the 

configuration A1 where ethanol and electricity are produced and a steam reformer (SR) is 

used. In this case, GHG saving is just over 20%. The cases A3 y A4 use autothermal 

reformer (ATR) and consume oxygen in the gasifier thereby increasing GHG emissions 

because of the energy consumption of the air separation unit. 

 



 

60 
 

 
 

Figure 3. GHG saving of conventional biorefinery producing biofuels and electricity (A). 

 

Table 1. Configurations of conventional biorefinery (A). 

 
CONVENTIONAL BIOREFINERY (A) 

 
A1 A2 A3 A4 

Ethanol     

DME 
 

 
 

 

Methyl acetate 
    

Hydrogen 
    

Electricity     

Reformer SR SR ATR ATR 

 

 

 

4.2. Biorefinery with multiproduction 

The second part of the assessment consists in the calculation of the GHG saving in a 

thermochemical biorefinery with multiproduction producing biofuels, chemicals and 

electricity. We have considered four configurations of the biorefinery depending on the mix 

of final products and the used reformer in the plant (Table 2). 

The results improve considerably due to the chemical co-production (Figure 4). Even three 

of the configurations exceed the 60% reduction threshold (target for 2018 in EU). The 

worst result is for B1 since it uses an ATR as well as A3 and A4. 
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The benefit of chemical co-production relies on the negative value of the emissions in their 

final use since they are not combusted. Chemicals represent a net storage of carbon for a 

period of time. 

 

 
 

Figure 4. GHG saving of biorefinery with multiproduction producing biofuels, chemicals 

and electricity (B). 

 

Table 2. Configurations of biorefinery with multiproduction (B). 

 
BIOREFINERY WITH MULTIPRODUCTION (B) 

 
B1 B2 B3 B4 

Ethanol 
    

DME     

Methyl acetate     

Hydrogen 
  

 
 

Electricity   
 

 

Reformer SR ATR TR TR 
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4.3. Biorefinery with Bio-CCS 

The third part of the assessment consists in the calculation of GHG saving in a 

thermochemical biorefinery incorporating Bio-CCS. We have considered four configuration 

of the biorefinery depending on the mix of final products (Table 3). 

The results improve drastically (Figure 5). All cases use the same reformer (Tar reformer, 

TR) and are over 90% saving of GHG emissions.  

The CO2 sequestrated via Bio-CCS are considered as a negative contribution in the GHG 

balance, since they constitute a net outlet of CO2 from the atmosphere if renewable 

fraction is considered or avoided emissions if not. 

 

 
Figure 5. GHG saving of thermochemical biorefinery incorporating Bio-CCS (C). 
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Table 3. Configurations of biorefinery with Bio-CCS (C). 

 
BIOREFINERY WITH Bio-CCS (C) 

 
C1 C2 C3 C4 

Ethanol     

DME 
  

  

Methyl acetate 
    

Hydrogen 
 

 
 

 

Electricity    
 

Reformer TR TR TR TR 

 

  

 

 

5. Conclusions 

GHG saving over 60% (target for 2018 in EU) could be achieved in thermochemical 

biorefinery based on MSW with multiproduction and/or Bio-CCS incorporation. Therefore, 

MSW are an alternative feedstock to energy crops for thermochemical biorefineries. In 

addition, the fact that the waste is free or even its management can be charged (extra 

income), allows more affordable plant sizes (50 MW). 

Although thermochemical biorefineries based on MSW can hardly contribute to the 

achievement of the European Union objectives in 2020 because of their status, it could 

play an important role for a long-term sustainability in Europe.  
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Nomenclature  

ATR  autothermal reformer 

Bio-CCS  bioenergy with carbon capture and storage 

CCS  carbon capture and storage 

DME  dimethyl ether 

eccs   emissions saving from carbon capture and geological storage 

eec   emissions from the extraction or cultivation of raw materials 

eno-comb  negative emissions because of no combustion of chemicals 

ep   emissions from processing 

etd   emissions from transport and distribution 

eu   emissions from the final use 

GHG  greenhouse gas 

GWP  global warming potential 

MSW  Municipal solid waste 

SR   Steam reformer 

TR   Tar reformer 
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Paper II 

 

Time-integrated GHG emissions in a thermochemical biorefinery producing ethanol 

from MSW in Andalusia 

 

This paper presents the assessment of the time-integrated GHG emissions of a 

thermochemical biorefinery producing ethanol and electricity. It has been published as 

conference proceedings in 201513. 

 
1. Introduction 

Andalusia is the most populated and the second largest region of Spain occupying 90.000 

km2. Every year, five millions tons of municipal solid waste (MSW) are generated and 

almost the 80% ends up in the landfills (Regional non-dangerous residues management 

Director Plan of Andalusia 2010-2019). The waste management in Andalusia is based on 

sorting plants, recycling plants and landfills; there are no waste-to-energy facilities. 

Landfilling is an environmental problem that can be solved at the same that renewable 

energy is produced since European Commission encourages the use of residues and 

waste to produce bioenergy (Report on the proposal for a directive of the European 

Parliament, 2012). Because of that we propose an energy recovery from MSW in 

Andalusia saving GHG emissions, minimizing landfill disposal and avoiding the negative 

impact of landfills in the soil, the groundwater and biodiversity.  

 

2. Our proposal 

2.1. A new concept of thermochemical biorefinery 

We propose the use of the non-compostable and non-recyclable fraction of the MSW 

(refuse) as feedstock in a thermochemical biorefinery producing an energy carrier 

(ethanol) and electricity by means of gasification. First of all, the refuse has to be 

                                                           
13

 Aracil C, Haro P, Ollero P. Time-integrated GHG emissions in a thermochemical biorefinery producing 

ethanol from MSW in Andalusia. EUBCE 2015, pp 1376-1379. 
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66 
 

converted into refuse derived fuel (RDF) in a process based on size reduction, inerts 

separation, drying and pelletization. This process increases the heat value and the density 

of the fuel improving its quality and making it more manageable. The RDF would be used 

to feed a 100 MWth thermochemical biorefinery producing ethanol and electricity for 20 

years (Table 1). The final products and the plant lifetime have been chosen considering 

the current and the future characteristics of the energy system in Europe but other 

possibilities can be assessed. The chemical route of the thermochemical biorefinery has 

been previously published (Haro et al.,2013). In this study twelve configurations of 

thermochemical biorefinery were techno-economically assessed using poplar chips as 

feedstock. We choose one of the process concepts according to the techno-economic 

results (i.e. TAR-01). 

Three sorting plants have been chosen in Seville, the capital city of Andalusia, since they 

produce enough amount of MSW refuse to feed the thermochemical biorefinery. Figure 1 

shows the location of the three sorting plants and the thermochemical biorefinery.  

 

 

Figure 1. Location of the three sorting plants selected to provide the feedstock to the 

thermochemical biorefinery in Seville (Andalusia, Spain). 

 

Table 1. Technical data about the thermochemical biorefinery. 

Plant capacity 

(MWth) 

Total energy 

efficiency 

Ethanol production 

(t/h) 

Electricity production 

(GWe) 

100 43.6% 4 100 
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2.2. GHG balance 

According to Renewable Energy Directive (RED), we carried out the stationary 

assessment of the GHG emissions called GHG balance (Directive 2009/28/EC). MSW is 

not considered in RED, so an adapted methodology we previously published was used 

(Haro et al., 2015).  

GHG balance is calculated for two scenarios, the reference scenario corresponding to the 

landfill and the use of fossil fuels to produce the same mix of products; and the bioenergy 

system. The fossil reference for transportation fuels is given in RED (83.8 g CO2/MJ). 

Although more recent studies indicate that a higher number would be more accurate 

(Commission staff working document, 2012), we assume the value of the current directive. 

The landfill has been comprehensive assessed since there is scarce information about 

Andalusian landfills. A typical bin in Andalusia contains a 40-50% of organic matter, food 

scraps mainly. This organic matter is recovered and composted. After composting, the 

organic matter content in the refuse is still predominant. Because of that, the production of 

biogas in the Mediterranean landfills is so high that biogas is recovered and used to 

produce electricity or to burn in a flare. However, the recovery is not very efficient and a 

30-50% of the biogas is unrecovered and emitted to the atmosphere as CO2 and CH4. 

Moreover, the biogas combustion also produces non-biogenic CO2 emissions. Considering 

that and the parameters that Intergovernmental Panel on Climate Change (IPCC) and 

Environmental Protection Agency (EPA) published in 2014 and 2006 respectively, we 

obtain a result of 64.4 g CO2/MJ (Figure 2) (Pipatti et al., 2006, EPA, 2014). 

 

 

Figure 2. GHG balance in a landfill. 
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The bioenergy system is also evaluated considering the emissions associated to feedstock 

transport, ethanol distribution, emissions factors of the chemicals and commodities used in 

the thermochemical biorefinery and flue gas; and finally, ethanol combustion. The result is 

a GHG balance of 26.2 g CO2 eq/MJ.  

According to RED, the CO2 emissions from the biogenic fraction of MSW has not been 

considered in the calculations, only the GHG emissions from de fossil fraction and the non-

CO2 GHG emissions from the biogenic fraction (Figure 3).  

 

 

Figure 3. GHG balance in the BIO system. 

 

Finally, at the end of the GHG balance calculations we have a value for every system. The 

bioenergy system and the fossil reference are represented by a plant producing the same 

mix of products, but in the bioenergy system the feedstock is the RDF from MSW and in 

the fossil reference is fossil fuels. Then, the value obtained in the GHG balance is constant 

during the 20-year lifetime. However, the landfill reference is completely different; the 

result of the GHG balance is an average. The way in which the biodegradable fraction of 

the MSW is degraded is slow and no constant. During 40 years more or less, a ton of 

MSW disposed in the landfill in year 0 can produce emissions, the first and the last years 

the emissions are lower and in the intermediate years the emissions are higher and also 

emitted GHG are different in each step. Figure 4 shows the GHG emissions distribution of 

each system per year. 
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Figure 4. GHG emissions per year in the three assessed systems. 

 

3. Time integrated GHG emissions 

 

After the GHG balance, we are ready to assess the impact of these GHG emissions in the 

atmosphere. 

The assessment of the time-integrated GHG emissions is the newest and most important 

part of this study. This part consists in the integration of the natural dynamics of the 

atmosphere using Pulse emission (PE) and Radiative Forcing (RF) according to IPCC 

(Myrhe et al., 2013, Solomon et al., 2007). The objective is the determination of the time 

horizon in which GHG emissions have an impact in the atmosphere carbon balance. 

 

3.1. Methodology 

The pulse emission is the sum of all the emissions produced during every year. We use 

the GHG balance previously calculated as pulse emissions (Figure 4). Then, the first step 

is the calculation of the CO2 remaining in the atmosphere per year by multiplying the GHG 

balance by the natural decay of the pulse emission (Equation 1).  

                                                                              (1) 
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where 

PE: natural decay of pulse emissions. 

t: year in which emissions are produced 

 

The Table II shows the values of the rest of parameters. 

Table 2. Values of the pulse emissions parameters. 

a
0
 a

1
 a

2
 a

3
 τ

1
 τ

2
 τ

3
 

0.217 0.259 0.338 0.186 172.9 18.51 1.186 

 

 

The second step is the calculation of the cumulative CO2 as grams of CO2 equivalent per 

mega joule of output and that as CO2 concentration in the atmosphere in ppmv. 

The CO2 concentration is used to calculate instantaneous radiative forcing (Equation 2) 

and then cumulative radiative forcing multiplying by the seconds in a year (Sathre et al., 

2011). 

                                                                             (2) 
 

where 

IRF: Instantaneous Radiative Forcing (W/m2) 

[CO2]: change in the CO2 concentration in the atmosphere 

C0: CO2 concentration in the atmosphere 

 

4. Results 

4.1. Cumulative CO2 

Cumulative CO2 measures the grams of equivalent CO2 per mega joule of output 

accumulated in the atmosphere during 100 years contributing to the intensification of the 

greenhouse effect. In year 20, the thermochemical biorefinery stops the production, that 

implies the end of the emissions, because of that the CO2 accumulation in the atmosphere 
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starts to decrease. This situation is identical in the fossil reference (a petrochemical 

refinery producing the same mix of products). However, the situation is different in the 

landfill, the disposal stops in year 20 but not the emissions because the waste continues 

degrading for 20 years more producing and emitting biogas. The Figure 5 shows the 

turnaround in the year 20. 

At the end of the proposed time horizon (100 years), there is CO2 remaining in the 

atmosphere in the three systems, although it is five times higher in the case of the landfill 

than in the bioenergy system (Figure 6). 

 

 

Figure 5. Time-integrated GHG emissions of the three studied systems for 40 years. 

 

 

Figure 6. Time- integrated GHG emissions of the three studied systems for 100 years. 
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4.2. Cumulative Radiative Forcing (CRF) 

Radiative Forcing is a measure of the GHG induced imbalance between incoming and 

outgoing radiation in the earth system (W/m2). When Radiative Forcing is multiplied by the 

seconds of a year, Cumulative Radiative Forcing (CRF) is obtained (W·s/m2). Figure 6 

shows the results of this parameter for the reference system (landfill and fossil reference) 

and bioenergy system. The area between the curves represents net emissions. In the case 

of using MSW as feedstock the net emissions are avoided, then a lower global warming is 

produced. 

 

 

Figure 7. CRF of the two scenarios. The area between the curves represents net 

emissions to the atmosphere. 

 

5. Conclusions  

MSW landfilled degrades producing emissions for 40 years or more, their impact in the 

atmosphere is still considerable in the year 100 (1 kg CO2 eq./MJ of output) and higher 

than those of the fossil and bioenergy system.  

Our proposal of assessment of time-integrated GHG emissions allows to assess the size 

of the impact of a energy system in the atmosphere, particularly important in the case of 

MSW landfills where the emissions are slowly produced. 

MSW as feedstock can play an important role in the future of the bioenergy saving GHG 

emissions, minimizing landfill disposal in regions as Andalusia. 
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Paper III 

 

Proving the climate benefit in the production of biofuels from municipal solid waste 

refuse in Europe 

 

This paper aims to properly assess the impact of the production of biofuels from MSW 

refuse on climate change by applying several methodological improvements in a time-

dependent assessment, i.e., an explicit consideration of biogenic carbon flows using a 

dynamic LCA and an absolute formulation of the cumulative and instantaneous climate 

metrics. It has been published as paper in 201714. 

 

1. Introduction 

The impact of anthropogenic greenhouse gases (GHG) emissions on climate change is a 

subject of growing public concern. From 1972 to the present, numerous Climate Change 

Summits have joined scientists from nations around the world to analyse the increasing 

concentration of CO2 in the atmosphere and its consequences on the climate. The Kyoto 

Protocol was the first international agreement aiming at curbing GHG emissions, but its 

implementation has been only partially successful. The first-ever universal, legally binding 

global climate post-Kyoto deal has been adopted in Paris in December 2015. This 

agreement relies on pledges from signatory countries to drastically reduce GHG emissions 

from transport and industry sectors by 2030 in order to maintain the temperature anomaly 

below 2 °C, or even 1.5 °C, compared to the pre-industrial period (Adoption of the Paris 

Agreement, 2015). 

The International Energy Agency (IEA) stated that the world cannot emit more than around 

1000 Gt of CO2 from 2011 onwards in order to achieve a 2 °C target (ETP, 2012, WEO, 

2014). According to the IEA BLUE map scenario, 3,000 Mtoe of biomass and waste (8% of 

the energy mix for 2050) will be demanded as primary energy to achieve this objective 

(ETP, 2010). However, the IEA claims that, along with bioenergy production, it will also be 

                                                           
14

 Aracil C, Haro P, Giuntoli J, Ollero P. Proving the climate benefit in the production of biofuels from municipal 

solid waste refuse in Europe. J Clean Prod 2017;142:2887-2900. 

Article and Supplementary data in https://doi.org/10.1016/j.jclepro.2016.10.181 
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crucial to incorporate negative-carbon technologies, such as biogenic carbon capture and 

storage (Bio-CCS) (ETP, 2010). Bio-CCS is said to have a potential for carbon abatement 

ranging from 3 to 10 Gt of CO2 equivalent per year according to Fifth Assessment Report 

of the International Panel of Climate Change (IPPC, 2014, Lomax et al., 2015a). 

In Europe, the Renewable Energy Directive (RED) incentivises the production of bioenergy 

from different types of biomass sources allowing the EU Member States to support 

biofuels production, e.g. tax exemptions or quotas (Directive 2009/28/EC). However, the 

use of food crops for biofuel production has created a controversy since GHG emissions 

linked to indirect land-use change have been shown to be significant, in many cases 

actually making biofuels more GHG intensive than fossil fuels (ILUC, 2015, Lapola et al., 

2010). Consequently, the recent RED amendment imposes a cap on the use of food crops 

and clearly promotes the use of waste and residue feedstocks (Directive 2015/1513). 

Nonetheless, potential environmental risks associated to biofuels production from wastes 

and residues have been raised in the literature (Giuntoli et al., 2015, Niziolec et al., 2015, 

Onel et al., 2014, Rada, 2014, Samer, 2015, Schmitt et al., 2012, Stichnothe and 

Azapagic, 2009, Wang et al., 2012,). Regarding GHG emissions, literature is still scarce 

(Niziolec et al., 2015, Onel et al., 2014, Schmitt et al., 2012, Stichnothe and Azapagic, 

2009, Wang et al., 2012). 

Municipal Solid Waste (MSW) is one of the waste materials considered as a possible 

source for biofuels production in both the RED and the literature. The use of MSW in 

production processes is in agreement with the principles of the Circular Economy, where 

fossil fuel extraction and waste generation are their key drivers. MSW also compares 

favourably with other waste and residue feedstocks since it is available throughout the 

year, it is concentrated (supply locations), and it is costless or even a direct source of 

revenues due to the negative cost paid for its disposal, e.g. landfill gate fee (Arena et al., 

2015, Manfredi et al., 2015). MSW is a heterogeneous mixture of different waste materials, 

such as food scraps, plastics, paper and cardboard, wood, textiles and inert materials. The 

composition of MSW depends on the waste management system, feeding habits and 

economic development of the region considered (Rada, 2014). In accordance with the 

European waste hierarchy, only the non-recyclable fraction of MSW, called MSW refuse, 

can be directly used for energy recovery, including electricity and fuel production; while the 

use of other waste fractions must be justified by a life-cycle thinking (Directive 
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2008/98/EC). The MSW refuse can be identified in Europe by the codes shown in Table 

S1 of the Supplementary Material (SM) (Commission Decision 2000/532/EC). 

In 2013, 242 million tons of MSW were generated in Europe and the 57% of them, i.e., the 

MSW refuse, were incinerated or landfilled (Eurostat). Considering a lower heating value  

between 8 and 12 MJ/kg (Boesch et al., 2014, Consonni and Viganò, 2012, Yassin et al., 

2009), the MSW refuse generated in Europe would be equivalent to 1,250 PJ/year. 

Therefore, MSW refuse is an energy source similar to agricultural residues in Europe 

(Biomass futures). However, as it has been proved for first generation biofuels (indirect 

land-use change) (Directive 2009/28/EC), it is mandatory to avoid a shifting of 

environmental burdens if a change in MSW refuse management is going to be promoted. 

Currently, MSW refuse is either disposed in landfills or incinerated, in both cases with 

partial energy recovery. However, the situation is not even throughout the continent. In 

Northern and Central Europe, MSW refuse is mainly incinerated with energy recovery in 

waste-to-energy plants and landfill disposal is limited or even banned whereas in Southern 

and Eastern Europe, the MSW refuse is mainly landfilled with partial biogas recovery and 

used for electricity production, and only to a lesser extent incinerated (Figure 1) (Eurostat).  

 

Figure 1. Landfilling and incineration ratios of MSW refuse in Europe (elaborated from 

Eurostat). 
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In a thermochemical biorefinery producing biofuels from MSW refuse, the Refuse Derived 

Fuel (RDF) can be produced and processed with the same processing technologies used 

for the production of biofuels from lignocellulosic biomass: pyrolysis and gasification. 

Considering RDF, gasification offers a higher adaptability and versatility (it allows the co-

production of fuels and electricity) (Adefeso et al., 2015, Couto et al., 2015, Niziolec et al., 

2015, Onel et al., 2014,). The main drawback is the technical limitations of syngas 

cleaning (e.g. removal of tars, heavy metals and inorganic compounds) (Panepinto et al., 

2014, Prabhansu et al., 2015). Another option is to consider a biochemical biorefinery for 

the production of biofuels from MSW refuse. The heterogeneity of MSW refuse and the 

high concentration of heavy metals make their biochemical conversion difficult (Ballesteros 

et al., 2010, Mu et al., 2010) and therefore, this option is not considered as feasible for 

biofuel production. However, biochemical conversion is usually associated to the organic 

sorted fraction of MSW (Ballesteros et al., 2010, Colón et al., 2012). 

 

2. Goal and scope of the study 

Despite the support to MSW refuse for the production of biofuels, to the authors’ 

knowledge, a comprehensive study analysing the actual climate benefit from the shift of 

MSW refuse management system in different European regions is still missing. This study 

aims to cover this gap by analysing the climate benefit in the production of biofuels from 

MSW refuse in Europe looking for possible climate burdens. 

Firstly, the emissions associated to the different MSW refuse management alternatives 

(landfilling, incineration and production of biofuels) are assessed separately. Then, we 

calculate the GHG balance, saving and differential impact of biofuels production as 

indicated in our previous studies based on European regulation (static assessment). We 

analyse two EU member states (Spain and Sweden), considering two scenarios: one in 

which the current MSW management has been extended, unchanged, for the next 100 

years, and one where it varies to follow EU Directives (phasing landfill disposal out) 

together with an evolution of emissions from the electricity mix and transportation fuels. 

Because the release of GHG emissions in landfills is dynamic, time-dependent parameters 

are necessary to provide a complete impact assessment. We assess two combinations: 

the climate change mitigation potential of different MSW refuse management options and 

the climate change mitigation achievable in the two member states. 
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Finally, we test the sensitivity to the main parameters in the study, such as biofuel 

production efficiency, biogas collection efficiency in the landfill, fraction of carbon captured 

by Bio-CCS and biogenic fraction in the MSW refuse. 

 

3. Materials and methods 

The recent debate concerning the proper assessment of the climate impact of bioenergy 

has highlighted that attributional Life Cycle Assessment (LCA) studies can incur significant 

shortfalls (Plevin et al., 2014). The latest LCA literature on bioenergy systems has seen 

the implementation of methodological improvements to provide a more complete impact 

assessment (Giuntoli et al., 2015), which are used in this study. 

Firstly, ignoring biogenic-CO2 flows and considering biomass as inherently and 

instantaneously carbon neutral lead to erroneous results (Agostini et al., 2015, Giuntoli et 

al., 2015a, Giuntoli et al., 2015b). Consequently, two different approaches are followed for 

the modelling of biogenic GHG emissions. If the mitigation potential of alternative 

management options were aimed, starting feedstock and re-absorption would be the same 

for both the reference and the bioenergy system (cancelling out). In this case, all CO2 

emissions are counted, irrespective of their biogenic or fossil origin. If the climate change 

mitigation for different countries is aimed, the feedstock changes. In this second case, we 

have to exclude biogenic-CO2 emissions from the model. This is equivalent to implicitly 

assume that either all the biomass in the MSW has an annual growth cycle or it has spent 

sufficient time in the products pool so that the original biomass plant has fully regrown. 

Figure 2 gives a summary of all carbon fluxes in the production of biofuels and current 

MSW refuse management. 

Secondly, many studies and current European methodology calculate the climate 

mitigation potential of biofuels and bioenergy by comparing the supply chain impact of 

biofuels production with the supply chain impact of a fossil comparator. This is not 

appropriate since, besides the fossil comparator, the reference system should also include 

the current uses of the feedstock (in this case MSW refuse). 

Finally, since biomass decomposition in the landfill is a dynamic process (EUR 27215 EN, 

2015), a dynamic LCA assessment is also required. This is similar to what has been done 

for forest residues degradation (Giuntoli et al., 2015b, IPCC, 2013, Pingoud et al., 2012, 

Sathre and Gustavsson, 2012 ). The standard, normalised characterisation factors applied 
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in LCA analysis, Global Warming Potential (GWP 100), are not appropriate to capture 

these transient phenomena (Giuntoli et al., 2015b). Therefore, firstly we apply  the absolute 

formulation of the climate metric, Absolute Global Warming Potential (AGWP) to capture 

the dynamic trends. Secondly, we use two different types of metric: i) the AGWP is a 

cumulative metric that relates to certain climate change impacts such as sea level rise; ii) 

the Absolute Global surface Temperature change Potential (AGTP), which is an 

instantaneous metric and more appropriate to represent climate impacts associated to the 

temperature anomaly, such as extreme weather events. 

In this study, only Well Mixed GHG (WMGHG) including CO2, CH4 and N2O are 

considered. However, Near Term Climate Forcers (NTCF) such as aerosols and ozone 

precursors may have an important influence on climate, although this often results in a net 

cooling. Since most of the NTCFs are also local, air pollutants and future strategies will 

likely limit their emissions. Consequently, by excluding their impact we are applying a 

conservative assumption for the production of biofuels from MSW refuse. Construction and 

dismantling of the thermochemical biorefinery and the ashes management from biofuel 

production and incineration are not included in the assessment and they are assumed to 

contribute equally for all regions in Europe. The modeling and calculation of the results is 

done using spreadsheets. 
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Figure 2. Carbon fluxes associated to the production of biofuels from MSW refuse 

(included in the bioenergy, BIO, system), the landfill disposal and the incineration with 

energy recovery (included in business as usual, BAU, system). 

 

3.1. Definition of the bioenergy (BIO) and business as usual (BAU) systems 

Two systems are defined in this study: the bioenergy system (BIO) and the business as 

usual system (BAU). Both systems are based on the same amount of MSW refuse and an 

equal amount of all products is generated (Figure 3). The business as usual system (BAU) 

includes the current management of MSW refuse through landfilling and/or incineration 

and the production of transportation fuels from fossil fuels. Both landfill and incineration 

options include energy recovery (via biogas combustion in an engine and a boiler 

respectively). However, only incineration provides heat for district heating if necessary 

(common practice in Northern Europe). In the bioenergy system, the MSW refuse is used 

to produce biofuels and electricity, and district heating if necessary (using waste heat from 
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the biorefinery). Since there is a deficit of electricity compared to the amount produced in 

the BAU system, this has to be balanced from the electricity grid. 

In the modelling of the BAU system, a fraction of the generated biogas leaves out 

contributing to climate change and the rest is used as fuel to generate electricity or burned 

in a flare. The guidelines for the assessment of the timing of GHG emissions have been 

provided by the IPCC (IPCC, 2013). For incineration, however, the emissions are evenly 

produced, as well as in the thermochemical biorefinery. Further details are given in the 

SM. 

 

3.2. Geographical scope of the assessment 

In order to help decision-makers to analyse the environmental risks and benefits of 

biofuels production from MSW refuse, two extreme examples of current MSW 

management systems in Europe are assessed: Spain, where landfilling is dominant and 

incineration is below European average levels; and Sweden, where landfilling is negligible 

and incineration is dominant (Figure 4). In both Spanish and Swedish cases, the 

incorporation of Bio-CCS is assessed. 

Table 1 shows the typical composition of the MSW refuse in Spain and Sweden. It can be 

seen that the content of biogenic carbon depends on the waste composition and the 

collection system, having Spanish MSW refuse a higher biogenic fraction than Sweden. 

Therefore, the biogenic content is, together with MSW management systems, an important 

parameter in the assessment. 
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Figure 3. Definition of the bioenergy and business as usual systems in the study. The 

same mix of fuels (z1=z2), electricity (y1+y2=y3+y4) and district heating (x1=x2) are produced 

in both systems. The xi, yi and zi values represent the shares in LHV basis. 

 

 

Figure 4. Typical management of unsorted waste in Europe along with the proposed 

production of biofuels in this study. The given values (mass basis “as received”) represent 

the Spanish and Swedish management systems respectively. 
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Table 1. Composition of MSW refuse in Spain and Sweden in % mass basis. The values 

in brackets are expressed in % carbon basis (Jones et al., 2013, IEA, 2012). 

 
Total 

carbon 

Biogenic 

fraction 

MSW refuse 

composition 
Biogenic carbon 

Spain Sweden Spain Sweden 

Organic 

matter 
48 (100) 49 31 20 15 

Paper-

cardboard 
44 (99) 19 23 6 10 

Plastics 60 (0) 12 14 0 - 

Textiles 55 (50) 4 12 2 3 

Wood 50 (100) 1 - 1  

Hygiene 

products 
50 (36) - 12 - 2 

Inert waste 3 (0) 16 8 0 - 

Total     29 (76) 31 (66) 
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Table 2. Energy and material balance of the thermochemical biorefinery producing 

biofuels from RDF. 

Inputa Process Output 

RDF 

(MWth) 
100 Net efficiency 35% b 

Ethanol 

(Mt/yr) 
23.7 

RDF (t/h) 22.5 

Electricity 

consumption in 

RDF production 

(GWh/yr) 

8.2 DME (Mt/yr) 6.6 

LHV 

(MJ/kg) 
16 

Waste heat 

available for 

district heating 

(GWh/yr) 

105.5 

Net 

electricity 

(GWh/yr) 

34.8 

TOTAL 

(TJ/yr) 
2843 

TOTAL 

(TJ/yr) 
995 

Incorporation of Bio-CCS 

Process Output 

Electricity consumption in the Bio-

CCS process (GWh/yr) 
4.6   

Carbon captured in the Bio-CCS 

process (t carbon/h) 
1.5 

Net electricity 

(GWh/yr) 
30.2 

Carbon captured relative to emitted 

in the thermochemical biorefinery 
25% TOTAL (TJ/yr) 978 

a The efficiency in the conversion of MSW refuse in RDF is assumed to be 70% (Arena et 

al., 2015, Yassin et al., 2009). 

b The net efficiency increases up to 40% if district heating is produced. 

 

3.3. Modelling of the thermochemical biorefinery 

For the life cycle inventory of the biorefinery, we rely on a previous work where we 

modelled a thermochemical biorefinery producing dimethyl ether (DME) and ethanol from 

lignocellulosic biomass (Haro et al., 2013a and 2013b). In the same work, we explored the 

potential of CO2 capture and storage (i.e., Bio-CCS). For the production of biofuels, the 

MSW refuse has to be pre-treated and converted into a solid fuel, called either refuse 

derived fuel (RDF) or solid recovered fuels (SRF), which is then further processed in a 
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thermochemical biorefinery. In this study, the term RDF is preferred to SRF, since the 

latter applies to a European Standard for the use of the fuel in conventional energy 

applications, e.g. co-firing in power plants (EN 15357:2012). The pre-treatment of MSW 

refuse consists of a shredder to reduce the particle size, a trommel to separate small 

particles, and a magnetic separator and an eddy current separator for ferrous and non-

ferrous metals recovery. Finally, the RDF is pelletised to increase the density in order to 

allow a better handling (Caputo and Pelagagge, 2002a and 2002b). RDF from MSW 

refuse usually has a heating value of about 16 MJ/kg (Arena et al., 2015, Onel et al., 2014, 

Yassin et al., 2009). Table 2 shows the energy and material balance of the biorefinery. 

Electricity surplus is available as a co-product in the process. The difference between the 

thermochemical biorefinery with and without Bio-CCS incorporation is in the total net 

electricity production since some of the produced electricity is consumed in the 

conditioning of CO2 capture (Boot-Handford et al., 2014, Von Der Assen et al., 2013). 

 

3.4. Static LCA assessment: GHG balance and differential GHG impact 

3.4.1. GHG balance and saving 

The GHG balance (Ebiofuel) is defined as an annual average of all anthropogenic cradle-to-

grave GHG emissions in the production of biofuels using MSW refuse. The biogenic 

carbon stored in landfill and from Bio-CCS incorporation is modelled as a negative 

contribution. The methodology for the calculation has been previously discussed by the 

authors using lignocellulosic biomass (Haro et al., 2015), using the standard LCA 

characterization method, GWP(100), and characterisation factors defined by IPCC AR5 

(see part 2 in SM). However, when using MSW refuse, it needs to be extended to include 

the fossil fraction in MSW refuse (IEA, 2012, Jones et al., 2013) (see part 3.1 in SM). The 

saving of GHG in the production of biofuel (compared to emissions from transportation 

fuels) is calculated using the guidelines from RED (see part 3.1 in SM). 

3.4.2. Differential GHG impact 

The differential GHG impact (Equation 1) compares, in terms of GHG emissions reduction, 

the use of MSW refuse for the production of biofuels with the reference system (BAU) 

(Gaudreault and Miner, 2015). It differs from the GHG balance in the consideration of the 

displaced and/or avoided emissions due to both material and energy substitution (i.e., it 

includes the burdens). The GHG impact of the BIO (EBIO) and BAU (EBAU) systems are 

calculated using Equations 2 and 3 respectively. Moreover, the standard LCA 
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characterisation method, GWP(100), and characterisation factors defined by IPCC AR5 

(see part 3.2. and 3.3. in SM) are also used. Avoided emissions are represented by a 

fossil reference value (EF) according to the mix of products from the biorefinery. The EF 

value for fossil transportation fuels is 90.3 g CO2/MJ according to the latest 

recommendation from the Joint Research Centre (JRC) (Directive 2015/1513). For 

electricity, the fossil reference is the average GHG emissions of the grid mix of the 

assessed country (CO2 Score card, EUR 27215 EN, Spanish Electric Net) (Table 3). The 

EF value for electricity is used in the bioenergy system to calculate the fossil emissions 

from the electricity grid to balance the electricity production in the BAU system (y3). The EF 

value for transportation fuels allows calculating the GHG emissions from the production of 

fossil transportation fuels (z1). 

Differential GHG impact=EBIO-EBAU                            (1) 
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Table 3. Fossil references for fuel and electricity production and shares of electricity and 

biofuel production (LHV basis) in BIO and BAU systems from Figure 3. 

 Spain Sweden 

EFfuel (Directive 2015/1513)(g CO2 eq./MJ) 90.3 

EFelectricity (EUR 27215 EN, 2015) (g CO2 eq./MJ) 110.7 17.5 

EFheat
 (System perpectives on biorefineries, 2014) (g CO2 eq./MJ) - -68 

x1 0 52% 

x2 0 9% 

x3 0 43% 

y1 10% 0% 

y2 37% 47% 

y3 38% 15% 

y4 9% 5% 

z1,2 53% 28% 

 

EBIO=Ebiofuel·(z2+y4+x2) +EFelectricity·y3+EFheat·x3                                (2) 

EBAU=EFfuel·z1 +(Elandfill·rlandfill+Eincineration·rincineration)·(x1+y
1
+y

2
)             (3) 

 

Elandfill represents the GHG emissions from the landfill, which depend on the behaviour of 

landfilled materials. Figure S1 in the SM shows the parameters assumed in this study. 

Although IPCC and EPA establish default values, some parameters are country-specific 

and even vary between regions (see part 3.2 in SM) (EPA, 2014, EUR 24708 EN, 2010, 

IPCC, 2006). Eincineration represents the GHG emissions from MSW refuse incineration (see 

part 3.3 in SM). The results in terms of grams of CO2 equivalent per ton of MSW refuse are 

corrected by the system efficiency (Equation 4) to use the same functional unit in both 

systems: 1 MJ of total products from the biorefinery. The purpose of this correction factor 
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is to include the impact of the different conversion efficiencies in the BAU system 

compared with the BIO system. 

 

Ei=
g CO2 eq

t MSW refuse
·

t MSW refuse/year

(MJoutput/year)·(
 ƞi

ƞ biorefinery
)
                                                                                  (4) 

where i is landfill or incineration 

 

3.5. Dynamic assessment: CMI and DCI 

To calculate the time-dependent climate mitigation potential, each individual WMGHG has 

been modelled in BIO and BAU systems. The calculation is based on two climate metrics: 

AGWP and AGTP. IPCC methodology is used and parameters for each individual 

WMGHG are taken from IPCC AR5. 

3.5.1. CMI 

The climate mitigation index (CMI) assesses the mitigation potential of producing biofuels 

from MSW refuse instead of following current MSW management systems. The CMI is 

dimensionless. For each region assessed (Spain or Sweden), the feedstock is identical 

independently of how the MSW refuse is disposed of. Therefore, since the re-absorption 

factor is equal in both systems, all GHG emissions (CO2 included) are counted from the 

MSW refuse for both biogenic and fossil origin. The CMI is calculated according to 

Equation 5 (Pingoud et al., 2012, IEA 2012). The values of AGWP for BIO and BAU 

systems are calculated from the annual emissions of each WMGHG as explained 

elsewhere (Giuntoli et al., 2015b, IPCC, 2013, Sathre and Gustavsson, 2012) (see part 4 

in SM). 

Regarding the values of CMI, it is possible to compare the behaviour of the BIO system 

with the current MSW management, and electricity and transportation fuels (i.e., the BAU 

system) for a specific region (Scheme 1). Since the CMI is based on the AGWP values, 

this comparison gives the cumulative climate mitigation of producing biofuels. Therefore, if 

the CMI reaches a positive value at a certain time, it means that at this time there is no 

accumulated climate benefit, i.e., the BIO system starts to be worse than the BAU system. 

For negative CMI values, there is an accumulated climate benefit, until the CMI reaches -1 

when then the BIO system has no emissions of WMGHG. 
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CMI=
(AGWPBIO-AGWPBAU)

AGWPBAU 
                  (5) 

 

CMI>0 → AGWPBIO>AGWPBAU→ Climate worsening 

CMI=0 → AGWPBIO=AGWPBAU→ Climate neutral 

-1<CMI<0 → AGWPBIO<AGWPBAU→ Climate mitigation 

CMI=-1 → AGWPBIO=0→ BIO is climate neutral 

(Scheme 1) 

 

3.5.2. DCI 

The differential climate impact (DCI) measures the climate benefit in the production of 

biofuels from MSW refuse in order to compare the results of regions with different waste 

management systems. The units of DCI are K·kg MSW refuse-1. In different regions, 

feedstock composition differs and therefore the biogenic emissions cannot be modelled as 

for the CMI (Giuntoli et al., 2015a). As mentioned above, in this case it is only possible to 

account for fossil carbon and biogenic non-CO2 emissions. In the same way, the biogenic 

carbon stored in landfill and from Bio-CCS incorporation are modelled as negative 

contributions. The DCI is based on the AGTP metric as the surface temperature response 

to the replacement of BAU by BIO (Equation 6). The values of AGTP for BIO and BAU 

systems are calculated from the annual emissions of each WMGHG as explained 

elsewhere (Giuntoli et al., 2015b, IPCC, 2013, Sathre and Gustavsson, 2012) (see part 4 

in SM). 

Regarding the values of the DCI, a direct comparison of two different regions can be 

made. Since the DCI is based on AGTP values, the comparison gives the climate benefit 

at a specific time; an instantaneous comparison that is not influenced by the accumulated 

effect of previous WMGHG emissions. Therefore, if the DCI of one region is lower than in 

another region, it means that there is a larger climate benefit in the production of biofuels 

in this region at a specific time. 
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Differential climate impact = AGTPBIO - AGTPBAU                                                              (6) 

 

3.6. Scenarios modelled 

Two scenarios for current MSW refuse management, transportation fuels and power 

sector are considered (i.e., BAU system). In both scenarios, the production of biofuels in 

the BIO system is considered to be continuous; that is 1 MJ of products (biofuels and 

electricity) is produced every year. 

For the two BAU systems, we consider two hypothetical future evolutions: 

 Scenario 1. The production of biofuels is continuous. In this scenario, we assume that 

the BAU system, i.e., MSW management system and energy mix (transportation fuels 

and electricity) do not change for the whole period. This scenario applies for both the 

static and dynamic assessments. For further details, see part 3 in SM. 

 Scenario 2. It considers an evolution of the BAU system according to the legal targets 

and recommendations set by the European Commission. This scenario applies only for 

the time-dependent assessment since it involves an evolution of the BAU system. This 

evolution brings a landfill-banned BAU system and would also be closer to the future 

evolution of MSW management in Europe (ETP, 2010, ETP, 2012, Slade et al., 2011 

WEO, 2014). Considering the selected regions, the targets set in the landfill and the 

waste framework Directives have been already achieved in Sweden but not in Spain 

(Council Directive 1999/31/EC, Directive 2008/98/EC). Therefore, Spain should reduce 

the amount of biodegradable municipal waste in MSW refuse and its landfilling rate 

(Council Directive 1999/31/EC). The Spanish National Framework Plan for Waste 

Management 2015-2020 establishes the baselines for the future MSW management in 

an attempt to meet the European targets (State Framework Plan 2015-2020). We 

assume a delay of 5 years in fulfilling these requirements (Figure 5 and part 5 in SM). 

Therefore, the targets set in the national plan are used to define the evolution of the 

MSW management system in Spain for the first 5 years, e.g. 50% of recycling, 35% of 

landfilling and 15% of energy recovery. From year 2025 to 2120, we propose 1% of 

landfilling, 65% of recycling and 34% of energy recovery. As Sweden is closer to the 

European targets than Spain, we consider an objective of 1% of landfilling, 65% of 

recycling and 34% of energy recovery in the year 2120. In both countries, the increase 
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of recycling rates is expected with the introduction of new technologies improving 

efficiency and sorting capacity. Therefore, we assumed the same MSW management 

system for both countries in the long term. 

Although only a time-dependent assessment can include the impact of scenario 2, it is 

necessary to adapt the data used in a conventional stationary assessment to get the 

annual emissions of each WMGHG. In Figure 6, it can be seen that landfilling emissions 

decrease progressively due to the increase of incineration and recycling rates. Because of 

this, incineration and biofuel production emissions rise in Spain, whereas they keep 

practically stable in Sweden. In relation to the energy mix, in Sweden the average CO2 

emissions per MWh of electricity has been practically constant in the last decades (0.063 t 

fossil CO2/MWhe) (EUR 27215 EN). This value is much lower than the emissions in Spain 

(0.398 t fossil CO2/MWhe) (EUR 27215 EN) because of the larger share of nuclear and 

renewable energy in Sweden. Therefore, we assumed Sweden would keep constant 

emissions and Spain would gradually reduce its emissions until both countries reach the 

same level in 2120. Likewise, GHG emissions from district heating in Sweden would also 

keep constant. 

 

4. Results 

4.1. Static assessment 

4.1.1. GHG balance and saving 

Table 4 shows the results of GHG balance (Ebiofuel) and saving achieved according to the 

current European regulation. The individual contribution of each parameter to the results is 

shown in Table S13 and Figure S3 in SM. The GHG balance is lower for Spain due to the 

lower carbon content and the higher biogenic content in MSW refuse, achieving a saving 

of GHG emissions compared with the fossil reference. If Bio-CCS was incorporated, the 

saving would be above the target for biofuels in 2018 (60%) (Directive 2015/1513). For 

Sweden, there would not be any saving even if Bio-CCS was incorporated. 
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Figure 5. Forecast for the Spanish and Swedish MSW management systems in scenario 

2. Data are expressed in terms of the main WMGHG released. 

 

Table 4. Results of the GHG balance and saving in the production of biofuels, calculated 

according to EU regulation. 

Parameters 
Without Bio-CCS With Bio-CCS 

Spain Sweden Spain Sweden 

Ebiofuel (g CO2 eq./MJ) 69 110 28 71 

Saving (%) 4 -257 61 -130 
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Figure 6. Evolution of emissions from the BAU system in scenario 2. For clarity, the yearly 

emissions of each WMGHG are combined and expressed in g CO2 eq./MJ. For a detailed 

evolution of each WMGHG, see Tables S11 and S12 in SM. 

 

 

Figure 7. Results of the differential GHG impact in the production of biofuel from MSW 

refuse (scenario 1). 
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4.1.2. Differential GHG impact 

Figure 7 shows the results for the differential GHG impact, which includes the comparison 

with the BAU system. It can be seen that the GHG impact of the bioenergy system is 

higher in Spain than in Sweden since the lower emissions in the production of the biofuel 

in Spain (where there is a higher biogenic fraction in the MSW refuse) cannot balance the 

lower emission factor for the Swedish electricity grid and the negative emission factor for 

the Swedish heat mix (see Table 3). The GHG impact of the BAU system is higher for 

Sweden because of the higher fossil fraction of the MSW refuse. The differential GHG 

impact is negative for both countries (i.e., a positive climate impact) but higher in the case 

of Sweden (-161 g CO2 eq./MJ) than in Spain (-76 g CO2 eq./MJ) since district heating 

producing results in a clear advantage from the point of view of GHG reduction. In both 

cases, Bio-CCS incorporation involves a similar reduction (around 40 g CO2 eq./MJ) of the 

climate impact. 

 

4.2. Time-dependent assessment: CMI 

4.2.1. Scenario 1 

Figure 8 shows the CMI values for scenario 1. In the case of Spain, there is a sharp 

reduction of the index from positive to negative and subsequent stabilisation. There is no 

mitigation until 5 years after the beginning of biofuels production, when up to 45% 

mitigation is achieved in 2040. Since the transient emissions from the landfill are 

concentrated around 20 years after the landfilling of the MSW refuse (landfill memory, see 

part 3 in SM), this behaviour was already expected. The mitigation is then reduced until 

2120, when the CMI would be slightly positive (4% worse than the BAU system). 

Therefore, there is no long-term climate benefit in the production of biofuels from MSW 

refuse in Spain. Considering Sweden, the climate change mitigation is obtained for the 

whole period considered, where an almost constantly mitigation of 41% is achieved. The 

mitigation for Sweden is higher than the Spanish one in the first 12 years and after year 

2050. Therefore, the production of biofuels would only achieve a larger climate mitigation 

compared with the BAU system in Spain in the medium term. 

Comparing these results with the static assessment, it is clear that these results could not 

have been predicted from the GHG saving or differential impact. For instance, the 

differential GHG impact gave a higher climate benefit for Sweden. The static assessment 

gives an underestimation of the climate benefit in the production of biofuels in a landfill-
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dominant region like Spain. The results of incorporating Bio-CCS are also different from 

the stationary assessment. The effect of Bio-CCS incorporation is slightly lower in the 

time-dependent assessment. 

 

 

Figure 8. Climate mitigation index for Spain (a) and Sweden (b) with and without Bio-CCS 

incorporation in scenario 1 where y-axis is CMI, x-axis is year. For clarity, the year 0 is not 

represented. 
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Figure 9. Climate mitigation index in Spain (a) and Sweden (b) with and without Bio-CCS 

incorporation for scenario 2 where y-axis is CMI, x-axis is year. For clarity, the year 0 is not 

represented. 

 

4.2.2. Scenario 2 

Figure 9 shows the CMI values for scenario 2. For Sweden, the differences between 

scenario 1 and 2 are minimal. This was expected since Sweden is already close to 

achieve the proposed targets for MSW management and electricity production, so only the 

evolution in the emissions from fossil transportation fuels is affecting the results (with a 

minor impact). However, for Spain, an important difference can be seen in the trend from 

the beginning because of this evolution of the BAU system. Compared with scenario 1, 

Spain faces a landfill banning that has a larger impact on the results. Since the landfilling 

rate is drastically reduced at an early stage, the sharp decrease of the index values is less 

than in scenario 1 (over half). However, the climate mitigation only occurs after 5 years as 

in scenario 1. The mitigation reaches a maximum of 51% in 2040, slightly above scenario 

1. Later, the impact of higher emissions from incineration, which increases its share in 
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Spanish MSW management, balances the mitigation reduction and in 2090, the mitigation 

starts to increase again. In 2010, 40% mitigation is achieved for Spain with a positive 

trend. Not surprisingly, since both countries meet the same targets for the BAU system in 

this scenario and their climate benefits are equal after the analysed period. The effect of 

Bio-CCS incorporation is similar to scenario 1. 

 

4.2.3. Sensitivity analysis 

There are several parameters affecting the calculation of the CMI, i.e., the fraction of 

carbon storage when Bio-CCS is incorporated, the efficiency in biofuel production 

(thermochemical biorefinery) and the efficiency in the collection of biogas from the landfill. 

For the sake of clarity, only scenario 1 is used in the analysis, although similar trends are 

expected for scenario 2. 

In the selected configuration of thermochemical biorefinery, the available CO2 for 

permanent storage is approximately 25% of the total carbon emitted in the plant (Haro et 

al., 2013a). This amount corresponds to the already captured pure CO2 from the syngas in 

the original thermochemical biorefinery (due to process requirements of the biofuel 

synthesis catalyst) using pre-combustion technologies. However, it is possible to capture 

almost all CO2 from the flue gases by increasing both plant complexity and capital and 

operating costs. Figure 10 shows that the impact of Bio-CCS incorporation is similar in 

both assessed regions regardless of the MSW management. By increasing the capture 

rate from 0 to 100% of the total carbon emitted in the thermochemical biorefinery, the 

climate mitigation also increases greatly. Maximum mitigations of 60 and 97% can be 

achieved for complete capture in Spain and Sweden respectively in 2120. The 

incorporation of Bio-CCS at large capture levels would be then a clear option to obtain 

long-term climate change mitigation irrespective of the MSW management system. 

However, it would involve the capture of CO2 from flue gases, using post-combustion 

technologies, which is currently only considered for large power plants. 
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Figure 10. Sensitivity of the climate mitigation index to the carbon captured in the plant for 

Spain (a) Sweden (b) in scenario 1 where y-axis is CMI, x-axis is year. For clarity, the year 

0 is not represented. 

 



 

100 
 

 

Figure 11. Sensitivity analysis of the mitigation climate index to the energy efficiency of 

the thermochemical biorefinery for Spain (a) and Sweden (b) in scenario 1 (HHV basis) 

where y-axis is CMI, x-axis is year. For clarity, the year 0 is not represented. 

 

The efficiency in the production of biofuels (35%, HHV basis, in the selected configuration 

of thermochemical biorefinery and 40% if district heating is produced) could affect the 

results. Although it is not the aim of this study to assess technical aspects of 

thermochemical biorefineries, Figure 11 shows the impact of efficiency on climate 

mitigation. The impact of the energy efficiency is similar for both countries, as it was 

expected since the efficiency is proportional to the MSW refuse input to the BIO system 

(see Eq. 4). Considering the values of efficiency analysed, in the production of liquid 

biofuels (transportation fuels) typical values range from 35 to 45% (Fernández-Nava et al., 

2014). Therefore, the impact of efficiency on the potential climate benefit of producing 

biofuels from MSW refuse is limited. However, considering the case of Spain, the climate 

mitigation could be 14% in 2120 (-4% in the base case). 
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The efficiency in biogas collection in the landfill is the last parameter affecting the CMI 

results, although only for regions with landfilling, since it is an attribute of the BAU system. 

A higher collection of biogas in the landfill involves less biogas emissions to the 

atmosphere. Therefore, it is important to assess the impact of biogas collection (70% in 

our study). As estimated by the EPA, from 55 to 95% of the biogas produced is collected in 

modern landfills (EPA, 2014). Figure 12 shows the impact of this variation for Spain, where 

in case of a very efficient biogas collection (95%), the mitigation potential decreases 

greatly being zero in 2080 and reaching a worsening of 25% in 2120, which is the worst 

case in this study for Spain. However, considering specific references for biogas collection 

in current landfills from Southern and Eastern Europe, no more than 50-55% is actually 

collected (Aronica et al., 2009, Eriksson and Finnveden, 2009, Fernández-Nava et al., 

2014). Considering this, climate mitigation would be 10% in 2120. This value is, however, 

less than the potential climate benefit considering a reasonable improvement of the energy 

efficiency in the thermochemical biorefinery, as mentioned above. 

 

 

Figure 12. Sensitivity analysis of the climate mitigation index to the biogas collection from 

the landfill for Spain in scenario 1 where y-axis is CMI, x-axis is year. For clarity, the year 0 

is not represented. 
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4.3. Time-dependent assessment: DCI 

4.3.1. Scenario 1 

Figure 13a shows the results for the DCI in scenario 1. As opposed to the CMI, the DCI 

represents an instantaneous metric, so methane impact is rapidly balanced as previously 

mentioned. The results are in agreement with those of CMI, although some extra 

information can be obtained here. In the short term, Spain has a potential climate benefit 

of -6.5·10-16 K·kg of MSW refuse-1 in 2040, whereas Sweden achieves only -2·10-16 K·kg-1. 

This makes it even more evident that avoided methane emissions from the landfill only 

have a short-term impact. Compared with the results for the CMI in scenario 1, the 

Spanish climate benefit becomes zero in 2080, 30 years before. The reason is the 

comparison of an instantaneous (DCI) and a cumulative (CMI) metric, where 30 years is 

the time required to overcome the cumulative climate benefit in the production of biofuels 

in Spain (the bottom peak). In the long term, biofuel production shows a climate worsening 

for Spain (0.6·10-16 K·kg-1), whereas for Sweden it is still -1.3·10-16 K·kg-1. For instance, 

only the production of biofuels in Sweden would have a climate benefit in the long term. 

 

4.3.2. Sensitivity analysis 

The impact of Bio-CCS incorporation, efficiency in biofuel production and biogas collection 

efficiency in the calculation of the DCI follow the same trend as in the sensitivity analysis of 

the CMI (see SM). However, the biogenic fraction in the MSW refuse has an impact on the 

DCI that cannot be seen in the CMI, since all emissions were equally treated. Therefore, a 

sensitivity analysis varying the biogenic fraction in MSW refuse from 50 to 100% is 

presented in Figure 13a. The results are converse depending on the country. For Sweden, 

the higher the renewable fraction is, the less positive climate impact, since BAU system 

fossil emissions (incineration) also decrease. Therefore, the use of wastes with high 

biogenic fraction, e.g. compost, would be discouraged. For Spain, if the renewable fraction 

increases, so do the landfill emissions, since biogas comes from the biodegradable 

fraction. The decrease of incineration emissions is not enough to balance the net BAU 

system emissions (Figure 13b). Therefore, the use of wastes with high biogenic fraction, 

e.g. compost, would have a positive impact. If the MSW refuse has a large fraction of non-

biogenic carbon, e.g. plastics, the permanent storage of this carbon in the landfill balances 

the climate benefit of producing biofuels. 
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Figure 13. a) Differential climate impact (lines) and sensitivity to the biogenic fraction in 

MSW refuse (areas) for Spain (grey) and Sweden (brown) in scenario 1 where y-axis is 

DCI (K·kg-1), x-axis is year. The lines represent the base cases and areas of the results of 

the sensitivity analysis. The dash line represents the Spanish base case if the biogenic 

fraction was the same than the Swedish. For clarity, the year 0 is not represented. b) 

Sensitivity of the emissions in BAU and BIO systems to the biogenic fraction (%). The 

emissions are expressed in terms of the main WMGHG released. 

4.3.3. Scenario 2 

Figure 14 shows the results for scenario 2 where Spanish BAU system evolves to become 

the same as the Swedish beyond 2120. The results are in agreement with those of CMI. In 

Spain, the landfill banning becomes important after 20 years due to landfill disposal 

decreases until the half of current levels is reached. Moreover, the emissions from the 

electricity mix are lower than the emissions from incineration, making the total emissions in 

the BAU system increase. Hence, the maximum climate benefit for Spain is reduced in a 
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57% compared with scenario 1 in 2037 (2.84 and 6.58·10-16 K·kg-1 respectively), but it is 

enhanced in the long term since the DCI never becomes positive. At the end of the 

considered period (2120), the DCI reveals a climate benefit of -1·10-16 K·kg-1. As it 

happened before, the results for Sweden are the same as in scenario 1. 

 

Figure 14. Differential climate impact for Spain (red) and Sweden (yellow) when an 

evolution of BAU system is considered (scenario 2) where y-axis is DCI (K·kg-1), x-axis is 

year.  

 

5. Discussion 

This study offers indications of the potential climate change mitigation provided by using 

MSW refuse as a feedstock for the production of transportation biofuels. In order to 

provide a complete analysis, both static and time-dependent assessments are illustrated. 

The static assessment (GHG balance, saving and differential impact) offers clear 

quantitative results, such as the GHG savings indicator which is currently used in Europe 

for the certification of biofuels. However, the drawbacks of static life cycle assessments 

have become apparent in the last years. Static assessments, such as commonly found in 

the literature, cannot properly capture the impact of landfills in the evolution of GHG 

emissions with time and thus are unable to properly assess the climate change mitigation 

of the bioenergy system. Especially when considering potential dynamic evolution of both 

energy mix and MSW management system in a 100-years period, only the time-dependent 

assessment can provide a proper impact assessment. This is less evident for the case of a 
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region with current negligible landfilling where the systems considered do not change in 

time and where the main WMGHG is CO2 and not a short-lived GHG such as methane. 

It is relevant that the climate mitigation achieved by the production of biofuels is similar in 

the first 30 years for both countries studied, but it diverges in the long term. In regions with 

current dominant landfilling, in fact, the climate impact after 100 years is equal or slightly 

worse for the bioenergy system compared to the continuation of the BAU system. 

However, other relevant impacts and risks associated to the BAU system should be 

assessed in order to avoid a shift of environmental burdens different from climate change 

in the production of biofuels from MSW refuse. 

We have considered a conservative value for the share of MSW disposal in modern 

landfills (70%) in Spain (Chacartegui et al., 2015) in order to compare processes at a 

similar readiness level. The production of biofuels would result even more advantageous if 

the substitution of the landfills with the worst biogas collection efficiencies in Europe was 

prioritised. For the incineration, conservative efficiency values for new incineration plants 

with energy recovery have also been used. The capture efficiency for Bio-CCS 

incorporation in this study is 25%; this value corresponds to the amount of pure CO2 that 

needs to be captured in the biorefinery to guarantee proper functioning of the catalytic 

synthesis downstream (Haro et al., 2013a). This capture efficiency is above typical values 

in biochemical production of ethanol (11-13%) (Bio-CCS, IEA-GHG, 2011). A higher 

capture efficiency would require an increase of both investment and operational costs to 

capture the carbon present in flue gases (i.e., post-combustion technologies), increasing 

process complexity and worsening its economy (Haro et al., 2014, Lomax et al., 2015b). 

Therefore, the impact of Bio-CCS incorporation would be limited in the production of 

biofuels from MSW refuse. When the impact of the biogenic fraction of MSW refuse was 

analysed, the results for 100% biogenic fraction are indirectly related with the use of the 

organic sorted fraction of MSW (usually converted into compost). However, this fraction is 

currently not promoted for biofuel production (Directive 2008/98/EC). 

Finally, some authors consider that the carbon from wood and paper requires a specific 

treatment for the counting of GHG emissions (Guest et al., 2013 and 2014), and therefore, 

distinguish them from food waste. However, in this study we consider that this carbon has 

spent sufficient time in the products pool so that the original biomass plant has fully 

regrown. 
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We considered multiple system configurations so to highlight potential improvements and 

additional risks. This sensitivity analysis shows that the climate mitigation for Spain is 

uncertain in the long term (ranging from -4 to 14%). Therefore, climate benefit cannot be 

claimed in the production of biofuels in a current landfill-dominant country, but, and this is 

crucial, neither a significant climate worsening. The only case providing a clear climate 

benefit would be in a country with current negligible landfilling coinciding in Europe with 

countries requiring district heating production, where the climate mitigation could represent 

41% (constant for the whole period) compared with the BAU system. However, these 

results are derived from scenario 1, where the MSW management system of the countries 

is supposed to keep unchanged for 100 years. 

Scenario 2 has analysed an evolution of the BAU system on the assumption of a stable 

policy strategy for MSW management throughout Europe according to the European 

targets and in line with the principles of the Circular Economy. The banning of landfilling 

has revealed as the most significant change. The promotion of landfill banning, despite 

being a very entrenched practice in Southern and Eastern Europe (Cherubini et al., 2008, 

Clausen et al., 2016, Fiorentino et al., 2015), would equalise the climate mitigation in the 

production of biofuels in Spain and Sweden. This result is another example of how the 

contribution of landfills in climate change is still not fully understood. Instead of being a 

climate burden because of their methane emissions, it favourably compares with the 

alternative disposal of MSW refuse (i.e., incineration) because of the storage of biogenic 

carbon in the landfill. Moreover, the decarbonisation of the transport sector suffers from a 

lack of alternatives compared with the power sector. The favourable comparison of 

biofuels production from MSW refuse in a progressively decarbonised BAU system proves 

that MSW refuse should not be considered as a priority source for electricity production. 

 

6. Conclusions 

The production of biofuels from MSW refuse would achieve climate change mitigation in 

Europe in the medium term. Hence, the substitution of current MSW management (landfill 

and/or incineration) for the production of biofuels would likely not cause a negative burden 

for climate change. However, there are important differences for the two extreme 

examples of current MSW management and electricity pool analysed, Spain (landfilling is 

dominant, high emissions) and Sweden (landfilling is negligible, low emissions). In Spain, 

the impact of landfill emissions prevents a climate benefit in the long term, although it does 
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not represent a climate worsening. Therefore, a strategic decision on the MSW 

management change would mainly rely on avoiding the environmental impacts of 

landfilling, which are different from those of climate change. In Sweden, the climate benefit 

is present at all times. Only in the case of landfills with a low biogas collection efficiency, 

the substitution of the landfill by biofuel production would be clearly positive for the climate 

in both medium and long terms. 

Considering an evolution of the reference system for MSW refuse in Europe (including 

MSW management, but also electricity and transport sectors), the results become similar 

for Spain and Sweden in the long term. For instance, in the case of Spain, a clear climate 

benefit appears. The analysed evolution assumes a progressive banning of landfilling in 

Europe, decarbonisation of the electricity sector and increase of the emissions from fossil 

transportation fuels. The favourable comparison of biofuels production from MSW refuse in 

a progressively decarbonised BAU system proves that MSW refuse should not be 

considered as a priority source for electricity production but for biofuel production. These 

results provide policy makers with a scientific basis for the encouragement of MSW refuse 

in the production of biofuels in Europe. 
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Abbreviations 

BAU  business as usual (reference system) 

BIO  bioenergy 

Bio-CCS  carbon capture and storage in bioenergy 

DME  dimethyl ether 

DOC  degradable organic carbon 

EPA  Environmental Protection Agency (USA) 

GGR  greenhouse gases removal 

GHG  greenhouse gases 

IEA  International Energy Agency 

IPCC  Intergovernmental Panel on Climate Change 

JRC  Joint Research Centre 

LCA  Life Cycle Assessment 

LHV  Lower Heating Value 

MSW  municipal solid waste 

RDF  refuse derived fuel 

RED  Renewable Energy Directive 

SRF  solid recovered fuel 

WMGHG Well-Mixed greenhouse gases 

Nomenclature 
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AGTP  Absolute Global surface Temperature change Potential, K·kg
-1

 

AGWP  Absolute Global Warming Potential, W·year·m
-2

·kg
-1

 

CMI  climate mitigation index, — 

DCI  differential climate impact, K·kg of MSW refuse
-1

 

EFi  emissions from the fossil reference for i (transportation fuels or electricity), g CO2 eq. per MJ 

Ei emissions from MSW refuse in i (landfilling, incineration, BAU system, biofuel production or 

BIO system), g CO2 eq. per MJ of product from the biorefinery (biofuel and electricity) 

GTP  Global surface Temperature change Potential, — 

GWP  Global Warming Potential, — 

R  atmospheric decay of a gas, — 

RF  Radiative Forcing, W·m
-2

·kg
-1

 

rincineration  fraction of MSW refuse incinerated in the region assessed, % 

rlandfill  fraction of MSW refuse landfilled in the region assessed, % 

xi  ratio of heat production (1 BAU system, 2 BIO system) 

yi ratio of electricity production (1 landfill, 2 incineration in BAU system; 3 electricity mix, 4 

biorefinery in BIO system) 

zi  ratio of fuel production (1 BAU system, 2 BIO system) 

𝜂𝑏𝑖𝑜𝑟𝑒𝑓𝑖𝑛𝑒𝑟𝑦 efficiency of the thermochemical biorefinery producing biofuels, % LHV 

𝜂𝑖  efficiency of the electricity generation in landfill or incineration, % LHV 
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Paper IV 

 

Contrasting the Greenhouse Gas Removal Potential of CCS and Renewable-Derived 

Plastics in Advanced Waste-to-Energy Plants 

 

In this paper, the climate mitigation potential of a novel greenhouse gas removal (GGR) 

technology consisting in the production of renewable-derived plastics from municipal solid 

waste (MSW) refuse has been evaluated and compared with the option of incorporating 

Bio-CCS into advanced waste-to-energy (WtE) plants (pre-combustion). It has been 

submitted for publication to the International Journal of Greenhouse Gas Control. A 

previous work inspiring this paper was published as conference proceedings in 201615. 

 

1. Introduction 

Greenhouse gas removal (GGR) technologies are a type of climate engineering aiming to 

remove greenhouse gases (GHG) from the atmosphere, and thus tackling the root cause 

of global warming. These techniques either directly remove GHG, typically CO2, or 

alternatively seek to influence natural processes to remove GHG indirectly. Integrated 

Assessment Models (IAMs) are employed to forecast the impact of mitigation technologies 

on global warming in the next decades (Canadell and Schulze, 2014, Creutzig, 2016, Fuss 

et al., 2016, Jones et al., 2016, Muratori et al., 2016, Smith et al., 2016, Tokarska and 

Zickfeld, 2015, Vaughan and Gough, 2016). Several GGR technologies (see Table 1) are 

being developed aiming to stabilize at 450 ppm CO2 equivalent concentration (Kriegler et 

al., 2013). However, IAMs currently mainly focus on Bio-CCS assuming a massive 

development of this technology in order to achieve the 2 ºC target by 2100 (Kriegler et al., 

2013, ETP, 2010). 

Bioenergy combined with carbon capture and storage (usually referred as Bio-CCS or 

BECCS in the literature) can be considered a GGR technology since it allows capturing the 

biogenic CO2 produced in industrial processes using biomass or wastes and avoiding its 

emission to the atmosphere, yielding a net removal of CO2 from the atmosphere 

                                                           
15
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(Koornneef et al., 2012). The IPCC considers this technology to be essential in achieving 

the 2 ºC target by 2100 (IPCC, 2014). Besides, Bio-CCS has the ability to compensate 

past and distant emissions and that is why it might be deployed strategically to alleviate 

the most costly mitigation constraints (Kriegler et al., 2013). However, technical (e.g. the 

need of a deeper characterization of CO2 storage sites) and financial limitations are 

seriously hindering the deployment and implementation of Bio-CCS (Kemper, 2015, ETP, 

2015, Lomax et al., 2015, Sigurjonsson et al., 2015), especially at the scales projected in 

the Representative Concentration Pathways (RCP) scenarios (IPCC, 2013). In line with 

this, an important concern with Bio-CCS is its dependence on large-scale bioenergy use, 

which can have adverse impacts on land use and biodiversity (IPCC, 2012). In addition, a 

debate is ongoing on the excessive reliance of most IAMs in the implementation of Bio-

CCS in the short term as the main solution considered to achieve the 2 ºC target by 2100 

(Anderson and Peters, 2016a and b, Lackner, 2016). Therefore, it seems appropriate to 

investigate for alternative GGR technologies able to be implemented in industrial 

processes using renewable feedstock like biorefineries or advanced waste-to-energy 

(WtE) plants (plants processing biomass or wastes to produce electricity, heat, fuels 

and/or chemicals). The production of renewable-derived plastics is proposed in this study 

as an alternative GGR technology to Bio-CCS. Since biomass cultivation (impacts on land 

use and biodiversity) might involve uncertainty on the evaluation of the proposed GGR 

technology, only the use of wastes as feedstock is analyzed. 

Renewable-derived plastics, i.e., plastics made from biomass or wastes, represent a 

biogenic carbon storage in stable chemical structures. Similarly to biochar, which is used 

as a soil amendment with the intention to improve soil functions while contributing to 

climate mitigation due to its long-term storage of biogenic carbon in the soil (Sigurjonsson, 

2015), renewable-derived plastics can offer a temporary carbon storage thus forming an 

additional carbon pool (Mclaren, 2012, Shackley and Sohi, 2011). The storage period for a 

renewable-derived plastic depends not only on the type of plastic, but also on country-

specific conditions such as consumer behavior (e.g., lifetime) and the waste management 

strategy and recycling rates related to the plastic waste (Guest et al., 2013a, Levasseur et 

al., 2013, Pawelzik et al., 2013, Vogtländer et al., 2014, Wang et al., 2014). Although the 

carbon storage in renewable-derived plastic materials is not regulated, it can be equated to 

the carbon storage function of biochar that is already included in the European regulation 

(Guest et al., 2013a, Von Der Assen et al., 2013, Wang et al., 2014). The storage of 
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biogenic carbon in renewable-derived plastics has been scarcely discussed in the 

literature (Chen et al., 2016, Haro et al., 2015). 

 

Table 1. List of main available and potential GGR technologies in the literature (Lomax et 

al., 2015, Smith et al., 2016,). The proposed GGR technology in this study is indicated in 

bold. 

Afforestation and reforestation 

Wetland restoration 

Agricultural soil sequestration 

Biochar 

Bio-CCS /BECCS 

Direct air capture 

Renewable-derived plastics 

 

Renewable-derived plastic materials represent today less than 1% of total plastic 

consumption in Europe (BIO intelligence service, 2013), but this value is expected to 

increase at a rate of 20% per year in the next years (Plastics Europe, Plastic waste in the 

environment, 2011). For instance, the European chemical industry has committed to a 

gradual increase in the utilization of renewable feedstocks, achieving 25% of renewable-

derived chemicals in 2030 (Sustainable biomass in the chemical industry, 2012). This 

estimation may be reinforced by the fact that the Circular Economy Package adopted by 

the European Commission foresees, through a revised legislative proposal on waste, the 

creation of economic incentives for producers to put greener products on the market (e.g. 

green public procurement and financial instruments such as environmental taxes) 

(COM(2015) 614 final). However, up to now, most of the renewable-derived chemicals in 

the market are specialty chemicals (e.g. lactic acid, succinic acid or propanediol based on 

commodity agricultural products such as sugars and vegetable oils (BIO-TIC project, 

2014), but not suitable for massive plastic production (Corma Canos et al., 2007, 

Fiorentino et al., 2016). There are only a few cases of substitution of fossil plastics by 

renewable-derived plastics (e.g. starch-based plastic bags, polylactic acid bottles, etc.) 
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(Dornburg et al., 2004, Piemonte and Gironi, 2011, Yano et al., 2014, Yu and Chen, 2008) 

and only some attempts at standardization (CEN/TC 411). The reasons for the scarce 

introduction of renewable-derived plastics are the cost and the security of supply for these 

new plastic materials. Many technical challenges, especially related to downstream 

processing, need to be overcome to help promote the use of alternative feedstock streams 

and reduce processing costs (BIO-TIC project, 2014). Alternatively to the use of new 

plastic materials, the drop-in approach involves the production of renewable-derived 

chemicals that can directly substitute the fossil-based chemical equivalent in the 

production of current plastic materials. Renewable-derived drop-in chemicals can thus be 

directly introduced into existing and established value chains, infrastructure and markets 

(Arvidsson, 2016, Haro et al., 2014). 

Plastic materials are increasingly widespread in our lives. The use of plastics contributes 

to societal and economic development reducing transport costs, replacing less safe 

materials or improving food conservation among others (Plastics Europe, 2015). 

Nevertheless, the durability, understood as effective use, of plastic materials is variable, 

depending on the material characteristics and consumers' behavior, e.g. a bottle might be 

used for a few days while a water supply pipe might be in service for dozens years. The 

world production of plastics has increased by 30% in the last ten years and Europe is the 

second largest producer after China. In Europe, 59 million tonnes of plastics were 

produced and 47.8 million tonnes were consumed in 2014 (Plastics Europe, 2015). 

Recycling of waste plastics becomes crucial to extend plastics lifetime, reducing the 

consumption of fossil fuels and the environmental footprint. As an example, in 2010 there 

were 95.5 billion plastic carrier bags (1.42 Mt) placed on the EU market, most of them 

(92%) being for single use (COM (2013) 123 final). Depending on the plastic material, 

there is a maximum number of recycling cycles and therefore a limit to their overall 

lifetime. However, not all plastic materials are recycled and each recycling cycle generates 

a waste refuse that cannot be further recycled. Hence, every year around 70% of post-

consumer plastics waste is either landfilled or incinerated (with energy recovery) in Europe 

(Plastics Europe, 2015). These figures do not include the million tonnes of plastic entering 

the oceans yearly worldwide due to mismanagement of plastic waste disposal (for the EU 

this value ranges between 0.05 and 0.12 million tonnes per year) (Jambeck et al., 2015). 

However, plastic pollution on marine ecosystems has detrimental environmental 

consequences whose extent is still subject of research (Thompson et al., 2009). Therefore, 

in this study, it is considered that the totality of plastic waste is managed or recycled. 



 

119 
 

In the evaluation of renewable-derived plastics production as a GGR technology, the 

impact of the renewable feedstock on climate change needs to be clarified. As mentioned 

before, the impact of land-use change (both direct and indirect) may have a dramatic 

impact on the cradle-to-grave GHG emissions of biomass-derived products, as it has also 

been described for biofuel production (Directive 2015/1513). Wastes are an alternative 

renewable feedstock to biomass. However, wastes are not always fully biogenic as in the 

case of industrial and urban wastes. In this study, we consider municipal solid waste 

(MSW), which is a cheap and widely available source in Europe. MSW is a heterogeneous 

mix of different biogenic and fossil fractions, which can be separated at source and/or in a 

mechanical and biological treatment plant. In this study, the fraction evaluated is the MSW 

refuse, i.e., the unsorted fraction of MSW that cannot be further processed and goes to 

energy recovery or landfilling (Commission Decision 2000/532/EC). In 2014, 138 million 

tonnes of MSW refuse were generated in Europe representing the 55% of total MSW 

production (Eurostat). The MSW refuse generated in Europe has an energy potential 

similar to agricultural residues (1,250 PJ/year) (Biomass Futures D3.3 report). MSW refuse 

contains around 10-15% of plastic waste so if MSW refuse was pretreated and used as 

feedstock to produce more plastics, the loop on plastic recycling would be closed. 

 

2. Goal and scope of this study 

The aim of this work is to assess the climate benefit of renewable-derived plastics as a 

GGR technology and to provide a comparison with CCS incorporation. The selected 

conversion process is an advanced WtE plant processing MSW refuse. Since MSW refuse 

is not fully biogenic, i.e., there is a fraction of fossil carbon, the share of fossil carbon in the 

renewable-derived plastics needs to be properly accounted for. The resulting climate 

benefit is dynamically assessed considering the waste management schemes in Europe 

(incineration vs. landfilling) for a period of 100 years and the emissions from the 

substituted production and disposal of fossil plastics (from crude oil). It is important to 

remark that renewable-derived plastics (drop-in approach) are disposed at the end of their 

lifetime following the same path as fossil (conventional) plastics in the waste management 

scheme. Therefore, the different final disposal techniques of waste plastics have an impact 

on both the climate impact of the reference case of MSW refuse management and the 

effective biogenic carbon storage of renewable-derived plastics. This double impact makes 

it even more important to avoid double counting in the assessment of a GGR technology. 
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For instance, from a cradle-to-gate point of view, the production of renewable-derived 

plastics involves a biogenic carbon storage contributing to climate mitigation that does not 

depend on the timing and technique of its disposal. However, if cradle-to-grave emissions 

are considered (as they are in this study) the climate mitigation will depend on the final 

disposal of the plastic waste (timing and technique). In the case of incineration disposal 

the effective GHG removal of the renewable-derived plastic will depend on its lifetime. In 

the case of using a partly biogenic feedstock, e.g. MSW reuse, the effective GHG removal 

is even more dependent on the timing since fossil GHG emissions would be also released 

during incineration. Therefore, the uncertainties associated with the timing of biogenic 

carbon storage must be tackled with a time-dependent (dynamic) perspective in order to 

determine the potential climate change mitigation from renewable-derived plastics. 

The production of renewable-derived plastics is an alternative GGR technology never 

analyzed to date. The idea of rewarding extra-avoided emissions from renewable-derived 

plastic materials was tentatively assessed in a previous work of the authors (Haro et al., 

2015b). In another work (Aracil et al., 2017), the use of MSW refuse in thermochemical 

biorefineries producing biofuels was shown to have a positive climate impact compared 

with conventional waste management and disposal in Europe. In this study, the previous 

works are expanded by analyzing the time-dependent climate impact of renewable-derived 

plastic production as a GGR technology. In order to give a fair figure of the potential 

climate impact of renewable-derived plastics, the incorporation of Bio-CCS to the same 

advanced WtE plants processing MSW refuse is assessed and compared. 

Firstly, a comprehensive description of the methods used in the study is provided. A 

business as usual (BAU) system is defined, where a conventional waste management 

scheme is described for Europe (Spain and Sweden as case studies) along with the 

production of transportation fuels and plastics. A bioenergy (BIO) system is described for 

the production of renewable-derived plastics in an advanced WtE plant (thermochemical 

biorefinery) using MSW refuse and balancing electricity and heat production from the BAU 

system. The dynamic modeling of biogenic carbon storage is described accordingly. 

Secondly, the differential GHG impact of the production of renewable-derived plastics from 

MSW in an advanced WtE plant is carried out (i.e., integrating the emissions from the 

different processes involved in both systems) including the option of incorporating Bio-

CCS into the plant. Thirdly, the dynamic assessment is carried out including the impact of 

different waste management schemes and its evolution, biogenic fraction in MSW refuse 
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and Bio-CCS incorporation. Finally, the impact of transportation fuel co-production in the 

advanced WtE plant is analyzed. 

 

3. Methodology and definition of the systems 

3.1. Definition of the Bioenergy (BIO) and Business as Usual (BAU) systems 

Figure 1 shows the system boundaries for the BIO and BAU systems analyzed in this 

study. Both systems are sized to treat the same flow of MSW refuse and produce the 

same functions (energy products and plastics). The BAU system includes the conventional 

MSW refuse management scheme in which MSW refuse is landfilled or incinerated to 

produce district heating and/or electricity (to the grid). It also includes the production of 

transportation fuels and plastics from fossil fuels. In the BIO system, MSW refuse is used 

in an advanced WtE plant (a thermochemical biorefinery in this study) to produce 

renewable-derived plastics (drop-in approach), fuels, electricity and district heating. The 

configuration of the thermochemical biorefinery is independent of the region assessed. 

However, since the impacts associated to the production of heat and electricity in the BAU 

system (y1, y2 and x1) depend on the region assessed, it is necessary to balance the deficit 

of electricity production from the regional grid and the deficit of heat from the heat mix. 
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Figure 1. Systems boundaries for the BAU (conventional waste management, and 

fossil chemicals and transportation fuels production) and the BIO (production of 

renewable-derived plastics from MSW refuse and balance of electricity and heat, 

district heating, production from conventional waste management) systems. 

 

3.2. Modeling of the BAU system 

Two European countries (Spain and Sweden) have been selected as representative of the 

two main waste management schemes in Europe. Sweden represents the case of 

Northern and Central Europe, where incineration with energy recovery (heat and 

electricity) is dominant and landfilling is negligible. Spain is representative of the Southern 

and Eastern European case, where landfilling is dominant and energy recovery is focused 

on electricity production using landfill gas. Figure 2 shows a comparison of the 

conventional waste management scheme of the MSW refuse in both countries. In Spain, a 

higher fraction of MSW refuse is produced since the recycling ratio is lower than in 
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Sweden (Almasi and Milios, 2013, Milios, 2013, Organic resources and biological 

treatment, 2010, Vandecasteele et al., 2016). 

 

 

Figure 2. Conventional management of MSW refuse for the selected countries in the study 

(Spain and Sweden). Final products are shown in bold. Values are in dry mass basis 

considering 1 kg of MSW refuse as input (Almasi and Milios, 2013, Milios, 2013, Organic 

resources and biological treatment, 2010). 

 

For the substitution of plastic materials analyzed in this study, the four more demanded 

plastics in Europe are selected: low-density polyethylene (LDPE), high-density 

polyethylene (HDPE), polypropylene (PP) and poly-vinyl chloride (PVC). These polymers 

represent almost 60% of the European plastics net consumption (Plastics Europe, 2015). 

LDPE is used in food packaging and in light and flexible products like plastics bags; HDPE 

is used in the production of more resistant materials like house pipes or plastic toys; PP is 

present in durable products like car bumpers or office folders; finally, PVC can be found in 

window frames or wellington boots (Plastics Europe, 2015). 

The GHG impact of the BAU system (EBAU) is calculated by integrating the emissions from 

the different processes involved (cradle-to-grave) in g of CO2 eq. MJ-1 of total products, 

see Equation 1. EBAU is calculated from emissions associated with landfilling and 

incineration (waste management) and the impact of the background processes (emission 

factors, see Table 3) for transportation fossil fuels (EFfuel) and plastics (EFPE/PP and EFPVC). 

Elandfill represents the GHG emissions from the landfill, which depend on the behavior of 

landfilled materials. Although IPCC and EPA establish default values, some parameters 

are country-specific and even vary between regions (see the Supplementary Material 
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(SM)) (EPA, 2014, IPCC 2006). Eincineration represents the GHG emissions from MSW refuse 

incineration with energy recovery (see the SM). The current EF value for fossil 

transportation fuels in Europe is used even though it is expected to increase in the short 

term (COM/2016/0767, Directive 2015/1513). 

EBAU = (Elandfill·rlandfill + Eincineration·rincineration)·(x1+y
1
+y

2
) + EFfuel·z + (EFPE/PP·p

PE
 + EFPE/PP·p

PP
 + EFPVC·p

PVC
)·w    (1) 

 

3.3. Modeling of the BIO system 

For the production of renewable-derived drop-in plastics, the MSW refuse has to be 

pretreated and converted into refuse derived fuel (RDF) which is then further processed in 

the thermochemical biorefinery (Aracil et al., 2017). This pretreatment can vary depending 

on the characteristics of the MSW refuse. In spite of this, RDF production increases the 

lower heating value (LHV) of MSW refuse up to around 16 MJ kg-1 (Arena et al., 2015, 

Onel et al., 2014, Patel et al., 2012, Yassin et al., 2009). Like for other assessments of 

biomass residues, there are no upstream emissions (e.g. associated with cultivation, 

harvesting and direct and indirect land-use change) to be allocated to the MSW refuse 

(Directive 2015/1513). 

The production of drop-in chemicals from RDF is modeled according to a previous work of 

the authors where a thermochemical biorefinery producing dimethyl ether (DME) and 

methyl acetate (MA) from lignocellulosic biomass was technically, economically and 

environmentally assessed (Haro et al., 2015a, Haro et al., 2013b). In this study (Figure 3), 

DME is used as a substitute for fossil diesel and as a drop-in chemical for plastics 

production (PP and PE). It is assumed for a base case scenario that half of the DME 

produced in the biorefinery will be used as a fuel and the other half as a drop-in chemical. 

MA is used as a drop-in chemical for the production of PVC. The conversion efficiency 

from chemical to plastic (mass basis) and the energy and material balance of the 

biorefinery, which also produces biofuels and heat and/or electricity, are shown in Table 2. 

The share of LDPE and HDPE is assumed to be equal to the demand of LDPE and HDPE 

in Europe (see Table S5 in the SM). 

For the incorporation of Bio-CCS, the capture efficiency is assumed to be 25% 

corresponding to the amount of pure CO2 that needs to be captured in the biorefinery (pre-

combustion CO2 capture) to guarantee proper functioning of the downstream catalytic 

synthesis (Haro et al., 2013b). The capture efficiency is defined as the carbon captured in 
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Bio-CCS relative to the total carbon emitted by the biorefinery. However, larger fractions of 

carbon capture are possible if the flue gases are also treated (post-combustion CO2 

capture). 

 

Table 2. Energy and material balance of the thermochemical biorefinery producing 

chemicals from MSW refuse and conversion efficiencies (LHV basis) from drop-in 

chemicals to renewable-derived plastics (adapted from Haro et al., 2013a, Haro et al., 

2013c). 

Input 

(Biorefinery)
 

Biorefinery Output (biorefinery) 

Conversion efficiency 

from drop-in 

chemical (pi) (LHV 

basis) 

RDF 

(MWth) 
100 

Net efficiency (LHV 

basis) 
41% DME (Mt/yr) 24.1 pPE 39% 

RDF 

(t/h) 
22.5 

Electricity 

consumption in RDF 

production (GWh/yr) 

8.2 

Methyl 

acetate 

(Mt/yr) 

14.9 pPP 34% 

LHV 

(MJ/kg) 
16 

Bio-CCS (t of 

carbon/h) 
1.5 

Net 

electricity 

(GWh/yr) 

57.1 

pPVC 67% 

Total 

(TJ/yr) 
2,880 

Capture efficiency in 

Bio-CCS (pre-

combustion) 

25% Total (TJ/yr) 1,173 
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Figure 3. Description of the thermochemical biorefinery as a part of the BIO system. Final 

products are shown in bold. Values are in dry mass basis considering 1 kg of MSW as 

input for Spain and Sweden. The conversion efficiencies for renewable-derived plastics 

are in Table 2 and the shares of renewable-derived plastics, fuel, electricity and heat 

(district heating) in Table 4. 

 

The GHG impact of the BIO system (EBIO) is calculated by adding up the emissions from 

the different processes involved (cradle-to-grave) in Equation 2. 

EBIO = ETB·(y
4
+ z + w + x2) + EFelectricity·y

3
 + EFheat·x3              (2) 

 

The GHG balance of the biorefinery (ETB) measures the average cradle-to-grave GHG 

emissions, in g of CO2 eq. MJ-1 of total products, associated with the life cycle of the 

products from the thermochemical biorefinery. A methodology for the GHG balance in the 

production of biofuels was previously published based on an attributional LCA, and using 

the standard LCA characterization method, GWP(100), and characterization factors 

defined by IPCC AR5 (Aracil et al., 2017, Haro et al., 2015a). In this study, the production 

of plastics from renewable-derived drop-in chemicals entails some changes in the cradle-

to-grave carbon flows (e) compared to the previous work: 

MSW refuse

0.75 / 0.53 

RDF production
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Electricity (y4)Fuel (DME) (z)
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0.04 / 0.02
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 In the GHG emissions from the thermochemical biorefinery (ep), the anthropogenic 

emissions in the transformation of the drop-in chemical into renewable-derived plastics 

are incorporated. 

 The average biogenic carbon storage in renewable-derived plastic materials (e̅pool) is 

introduced in the equation as a negative term since it represents a GHG removal from 

the atmosphere (see Appendix A for the modeling of average biogenic carbon storage 

in renewable-derived plastics). 

Figure 4 shows the carbon flows and pools considered in the calculation of ETB. The 

carbon flows are emissions to the atmosphere and the carbon pools are the two 

alternatives of carbon storage considered in this study (renewable-derived plastics and 

Bio-CCS). The biogenic emissions are CO2 emissions from the biogenic fraction of the 

MSW refuse (usually more than 50% (IEA, 2012)) and anthropogenic emissions are fossil 

emissions and non-CO2 GHG emissions from the biogenic fraction. For more information, 

see the SM. 

 

Figure 4. Carbon flows (biogenic and anthropogenic) in the production of 

renewable-derived plastics from MSW refuse. 

 

Figure 5 shows the carbon balance in the production of renewable-derived plastics from 

MSW refuse. Around a third of the total carbon accumulated in MSW refuse is stored in 

the final products (fuels and renewable derived plastics) whereas the rest of the carbon is 

emitted in the flue gas. Considering CCS incorporation to the plant, an additional 17% of 

the total carbon would be captured. Therefore, just over 50% of the carbon is emitted to 

the atmosphere during the processing. Therefore, there is a fraction of the biogenic carbon 

in biofuels, in renewable derived plastics, in captured CO2 in the CCS process and in the 
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CO2 emitted to the atmosphere. The biogenic carbon stored in fuels is totally emitted to the 

atmosphere after it has been used (combustion) whereas there is a variable biogenic 

carbon stored in renewable-derived plastics. When the renewable-derived plastics become 

waste, they can be recycled, incinerated or landfilled. If they are recycled, the carbon 

remains stored for at least one more life cycle. However, after a number of recycling cycles 

the plastic material will be eventually incinerated or landfilled. In the case of incineration 

with energy recovery, the carbon stored is totally emitted to the atmosphere whereas in the 

case of the landfilling, the carbon is permanently stored since degradability of plastic waste 

is very low. Hence, there are three types of carbon storage: carbon stored through the Bio-

CCS process, carbon stored in plastics still in use in the market (original and recycled 

plastics) and carbon stored in plastic waste landfilled. The fraction of total carbon stored 

after 100 years is higher in the case of Spain (8.0%), where landfilling is dominant, than in 

the case of Sweden (2.3%), where landfilling is negligible. The biogenic carbon stored by 

Bio-CCS incorporation would be about twice as the biogenic carbon stored in the 

renewable-derived plastics in the Spanish case whereas seven times in the Swedish one. 

 

 

Figure 5. Carbon balance in the production of renewable-derived plastics from MSW 

refuse in Spain and Sweden. 
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For the electricity balance, the EF (Table 3) depends on the selected country and, 

therefore, the average values from the grid mix are used (EUR 27215 EN, 2015). For the 

heat balance, a conservative value is taken from the Swedish heat mix based on heat 

production from waste and biomass combined heat and power plants, as well as from 

industrial excess heating (Systems Perspectives on Biorefineries, 2014). There is no heat 

demand in the Spanish case. 

 

3.3.1. Dynamic modeling of the biogenic carbon storage in renewable 

derived-plastics 

The climate impact of the temporary storage of biogenic carbon in woody structures has 

been described in some LCA studies (EUR 24708 EN, Pawelzick et al., 2013). 

Considering renewable-derived plastics, the storage of biogenic carbon depends on the 

type of plastic material and its disposal. Whereas landfilled plastic waste will form, for all 

intents and purposes in this study, a permanent carbon pool, plastics waste recycled will 

be a temporary carbon pool whose permanence will depend on the lifetime of the plastic 

material and the number of recycling cycles achieved. In the case of energy recovery, 

there is only a carbon flow to the atmosphere. For the selected plastic materials, LDPE 

and HDPE are used in the production of short-time products whose lifetime is under 1 

year, e.g. plastic bottles. However, PP and PVC present a longer durability and resistance 

and they are considered to be used mostly in the production of long-life products (over 1 

year). In Europe, 60% of plastics materials are long-life plastics whereas a 40% are short-

life plastics. Moreover, in 2012, a 44% of plastics became waste whereas 56% of them 

were still in use (Plastics Europe, 2015). Therefore, applying Eq. A1, 6.7% of long-life 

plastics and 100% of short-life plastics become waste every year. Once plastic materials 

become waste, the final disposal depends on the region considered. In Spain, 33% of the 

plastic waste is recycled, whereas 50% is landfilled and 17% incinerated with energy 

recovery. In Sweden, 38% is recycled, whereas 59% is incinerated with energy recovery 

and only 3% landfilled (Eurostat, Plastics Europe, 2015). Recycled plastics retain an 

important fraction of the carbon stored in the original plastic material. Plastic waste going 

to incineration releases the carbon stored as both CO2 and non-CO2 GHG to the 

atmosphere (IPCC, 2006). Plastic waste going to landfill disposal retains all the carbon 

(Plastics Europe, Plastics Europe, 2015). Since two alternative schemes of MSW 

management are considered for the biogenic carbon in MSW refuse (BIO and BAU), the 
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differential result would cancel out the absorption of CO2 in the original biomass (within the 

MSW refuse). Emissions of biogenic CO2 are considered for all the systems but they are 

also largely in balance cancel out the between the BIO and BAU systems, except for the 

differences in the amounts of carbon stored in landfills, plastic products still in use and 

recycled plastics. 

In order to calculate the equivalent storage of biogenic carbon in 1 MJ of renewable-

derived plastic produced in one year (epool), three parameters are defined (Figure 6): the 

biogenic carbon captured in products still in use and in recycled products, i.e., plastic 

materials in the market (ematerial); the biogenic carbon captured in plastic waste landfilled 

(elandfill); and the anthropogenic emissions (carbon flow) from incineration (eenergy). In Figure 

7, the evolution of each parameter from a single carbon input in the year 0 is shown (i.e., 

not a sustained production). The carbon input is higher in the case of Spain due to the 

higher biogenic fraction in the Spanish MSW refuse. The impact of the ematerial in the carbon 

pool is higher than the impact of elandfill for the first 15 years in Spain whereas in the case of 

Sweden, ematerial is dominant for 60 years. The high Swedish incineration ratio makes epool 

positive from year 20 whereas this is permanently negative in the case of Spain. 
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Figure 6. Representation of the three parameters defined to calculate the dynamic 

biogenic carbon storage in renewable-derived plastics. 
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Figure 7. Evolution of the biogenic carbon pool for a single 1 MJ of renewable-derived 

plastic produced in year 0 (epool), as a function of the carbon flow (eenergy) and pools (elandfill 

and ematerial) for 100 years in g of CO2 eq.∙MJ-1 of renewable-derived plastics. For the 

representation specific data for Spanish (a) and Swedish (b) waste management schemes 

are used. 

 

3.4. Differential GHG impact (BIO-BAU) 

The differential GHG impact in the case of using MSW refuse as feedstock (Equation 3) 

determines whether climate change mitigation would be higher if the fraction of the MSW 

went to landfilling and incineration or to the thermochemical biorefinery. The differential 

GHG impact is expressed in terms of g CO2 eq.∙MJ-1 of output for a 100 years period. For 

more information see the SM. 

Differential GHG balance = EBIO - EBAU               (3) 

 

The functions represented need to be the same in all the systems considered. In order to 

compensate for the deficit in energy functions (i.e., heat and electricity) in the BIO system 

and the substitution of transportation fuels and plastics in the BAU system, we use 
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background processes (emission factors). For the calculation of the differential GHG 

impact, the BAU system is considered to be unchanged for the 100 years period (static 

model). Table 3 and Table 4 present the emission factors and the shares of renewable-

derived plastics, drop-in chemicals, fuels, heat and electricity in the BAU and BIO systems, 

respectively. 

 

Table 3. Emission factors for transportation fuel and electricity production (biogenic-CO2 

emissions are excluded). 

Emission factors (g CO2 eq.∙MJ
-1) Spain Sweden 

BAU system 
EFfuel

 (Directive 2015/1513) 90.3 
EFPE/PP (Plastics Europe, 2014) 38 

EFPVC (ECVM and Plastics Europe, 2005) 94 
BIO system 

EFelectricity
 (EUR 27215 EN, 2015) 110.7 17.5 

EFheat (Systems Perpectives on Biorefineries, 2014) - -68 

 

Table 4. Shares of renewable-derived plastics, drop-in chemicals, fuels, heat and 

electricity in the BAU and BIO systems (LHV basis), as defined in Figure 2 and 4. 

Share (LHV basis) Spain Sweden 
w 24% 13% 
x1 0% 54% 
x2 0% 10% 
x3 0% 44% 
y1 14% 0% 
y2 39% 21% 
y3 40% 13% 
y4 13% 8% 
z 23% 12% 

 

3.5. Time-dependent assessment of GHG emissions 

Unlike in the differential GHG impact, in the assessment of dynamic GHG emissions an 

evolution of the BAU and BIO systems is considered. For the BAU system, the evolution 

follows legal targets and recommendations set by the EU regulation (COM (2014) 397 final 

Directive 1999/31/EC, Williams, 2016). The analyzed evolution assumes a progressive 

banning of landfilling in Europe, a decarbonization of the electricity sector and an increase 

in the emissions from fossil transportation fuels. For Spain, the targets set in the national 

plan are used to define the evolution of the MSW management system for the first 5 years 

of the period analyzed, i.e., 50% of recycling, 35% of landfilling and 15% of energy 
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recovery (State Framework Plan for waste management 2015-2020). From the year 2025 

to 2120, the management is considered to be split into: 1% of landfilling, 65% of recycling 

and 34% of energy recovery. As Sweden is closer to the European targets than Spain, an 

objective of 1% of landfilling, 65% of recycling and 34% of energy recovery are assumed in 

the year 2120. Therefore, the same MSW management scheme for both countries in the 

long term (including plastic waste management) is assumed. The time-dependent 

assessment also takes into account the carbon stored in plastic materials (see Figure S1 

and S2 in the SM). In relation to the electricity mix, it is assumed that Sweden would keep 

constant emissions and Spain would gradually reduce its emissions until both countries 

reach the same level in 2120. Likewise, GHG emissions from district heating in Sweden 

would also remain constant. For the BIO system, the dynamic storage of biogenic carbon 

is incorporated considering the evolution of the waste management scheme as has been 

done for the BAU system. 

The choice of the climate change metric depends on the aim of the research. Absolute 

Global Warming Potential (AGWP) is a cumulative formulation keeping the GHG emission 

memory from early years, whereas Absolute Global surface Temperature change Potential 

(AGTP) provides an indication of the actual surface temperature change at a given time 

after a GHG emission. AGTP is considered to be more transparent than AGWP (Guest et 

al., 2013b, Guest and Strømman, 2014). Therefore, in this study the AGTP parameter is 

used. To compare different regions where the feedstock composition differs, the biogenic 

emissions cannot be modeled. It is only possible to account for fossil carbon and biogenic 

non-CO2 emissions. Therefore, the biogenic carbon stored in renewable-derived plastics 

(epool) and from Bio-CCS (eBio-CCS) are modeled as negative contributions. Only Well Mixed 

GHG (WMGHG) including CO2, CH4 and N2O are considered. The values of AGTP for BIO 

and BAU systems are calculated from the annual emissions of each WMGHG (see the 

SM). The Differential Climate Impact (DCI) is based on AGTP values (Equation 4) giving a 

direct comparison of the climate benefit in the considered region at a specific time. 

Differential climate impact = AGTPBIO - AGTPBAU                                                          (4) 
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4. Results and discussion 

4.1. Differential GHG impact (BIO-BAU) 

The differential GHG impact does not consider the evolution of MSW management in 

Europe nor the dynamic storage of biogenic carbon in renewable-derived plastics (i.e., 

only the average biogenic storage is considered assuming current waste management, 

e̅pool). Thus, it cannot give an accurate comparison of the two GGR technologies 

(renewable-derived plastics and Bio-CCS). However, it serves to understand the behavior 

of the BAU and BIO system and the relative impact of the main parameters on the study. 

Prior to directly compare the production of renewable-derived plastics and the Bio-CCS 

incorporation, the emissions in the BAU and BIO system are presented (Figure 8). The 

emissions associated with the BIO system (EBIO) are higher in Spain than in Sweden (68 

and 15 g CO2 eq.∙MJ-1, respectively). Therefore, the balance of electricity and heat has a 

larger impact than the higher biogenic fraction of MSW refuse in Spain. Sweden has a very 

low-carbon electricity grid and heat mix. Conversely, the comparison of the emission 

associated with the BAU system (EBAU) (134 and 183 g CO2 eq.∙MJ-1 for Spain and 

Sweden, respectively) reveals the impact of the larger biogenic fraction in Spain and high 

landfilling rate. It is clear that there is little impact of renewable-derived plastics (-7 and +1 

g CO2 eq.∙MJ-1 for Spain and Sweden, respectively –orange dotted area in Figure 8–). The 

e̅pool is positive for Sweden due to the low biogenic fraction in MSW refuse and the high 

incineration rate. The impact of renewable-derived plastics production is less significant 

than for Bio-CCS (-27 and -28 g CO2 eq.∙MJ-1 for Spain and Sweden, respectively –blue 

dotted area in Figure 8–). Therefore, Bio-CCS would seem to be a more appropriate GGR 

technology using a static assessment. Anyway, the differential GHG impact is negative in 

all cases, i.e., there is a climate benefit considering a static assessment. 
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Figure 8. Differential GHG impact based on the emissions from the BIO and BAU 

systems. The impact of renewable-derived plastics and Bio-CCS is disaggregated. The 

numbers refer to net values including both renewable-derived plastics and Bio-CCS. 

 

4.2. Differential climate impact (DCI) 

For a comprehensive analysis of the production of renewable-derived plastics as a GGR 

technology, the DCI is an appropriate indicator since it includes the dynamic biogenic 

carbon storage alongside with the evolution in the BAU system. For a first comparison of 

the production of renewable-derived plastics and Bio-CCS incorporation, it is convenient 

not to combine both GGR technologies into the same system. Therefore, Figure 9 shows 

the DCI of the production of renewable-derived plastics (solid orange line) as modeled in 

this study along with the DCI of Bio-CCS incorporation into a BIO system producing 

transportation fuels and electricity from MSW refuse (solid blue line) and the DCI of the 

same system without any GGR technology (i.e., producing transportation fuels and 

electricity from MSW refuse, dashed grey line). The last two DCI were calculated in a 

previous study (Aracil et al., 2017). In Figure 9, the x-axis corresponds to the GHG 

emissions of the BAU system. Therefore, if the lines are over the x-axis, there is a climate 

worsening with respect to BAU system, but if they are below the x-axis, a climate benefit is 

achieved. Moreover, if the lines are within the shaped green area, it means that the climate 

benefit involves a lower warming than for the BAU system. Below the shaped green area, 
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a net cooling of the atmosphere is achieved. In both countries, there is a climate benefit 

after the 100 years period, i.e., there is a negative DCI, considering either renewable-

derived plastic production or Bio-CCS incorporation. The trend of the DCI curves is similar 

for all cases, which reflects the large impact of the waste management scheme on the 

application of the analyzed GGR technologies. For the first 30 years, the production of 

renewable-derived plastics and Bio-CCS incorporation have a similar DCI, which is also 

lower than for the BIO system without any GGR technology. Therefore, both GGR 

technologies are comparable in the medium term. In Spain, there is a minimum for the DCI 

in year 17 because of the impact of avoided emissions (especially methane) from the 

landfill (Cherubini et al., 2008, Clausen and Pretz, 2016, Fiorentino et al., 2015). However, 

since methane emissions have a short term impact on climate change, the DCI of plastic 

production is reduced after the first 30 years. This increase is later balanced since the 

landfill share is drastically reduced over time, similarly as previously indicated in biofuel 

production (Aracil et al., 2017). The increase of the incineration share has a negative 

impact on Spanish results, making the Bio-CCS a better option (even though the recycling 

ratio also increases) since it does not rely so heavily on the waste management scheme. 

In Sweden, since the incineration share decreases over time, there is a larger storage of 

biogenic carbon in plastic materials. Hence, the production of renewable-derived plastics 

compares favorably with Bio-CCS incorporation in the long term (year 2120), which could 

not have been anticipated by the differential GHG impact. 

 



 

138 
 

 

Figure 9. Differential climate impact for the sustained production of renewable-derived 

plastics from MSW refuse, Bio-CCS incorporation to an advanced WtE plant producing 

transportation fuels and electricity and an advanced WtE plant producing transportation 

fuels and electricity without any GGR technology in Spain (a) and Sweden (b). 

 

To understand the potential of renewable-derived plastic production compared with Bio-

CCS incorporation in the same advanced WtE plant, a sensitivity analysis is performed 

based on the capture efficiency (Bio-CCS) and the ratio of DME (drop-in chemical) used in 

the production of plastics in the biorefinery. Figure 10 presents the results, where the base 

case assumes an advanced WtE plant incorporating both renewable-derived plastics 

production and Bio-CCS. For the base case, the fraction of DME used for the production of 

plastics is assumed to be 50% and the fraction of carbon captured by the Bio-CCS is 25% 

(reflecting actual requirements for syngas conditioning for drop-in chemical synthesis 

(Haro et al., 2013b)). As commented before, the trend of the curves is similar for both 

GGR technologies, although now the sensitivity of the DCI for the renewable-derived 

plastics is reduced compared with the Bio-CCS. Only for the first 30 years in Spain, there 

is a comparable impact of the share of plastic production and capture efficiency. A plastic 

share of 100% would be equivalent to increasing the capture efficiency up to 40% for the 
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first 25 years. Therefore, the production of renewable-derived plastics has a considerable 

climate benefit in the medium-term in landfill-dominant regions. In the case of Sweden, it is 

possible to achieve a net cooling of the atmosphere if more than 50% of the DME is used 

for renewable-derived plastic production. For the case of Spain, it would never be possible 

to achieve a net cooling even for the maximum production of plastics. In both countries, a 

net cooling is possible if the fraction of captured carbon in the Bio-CCS is larger than 50% 

in the case of Spain and 25% in the case of Sweden. However, here it is important to 

distinguish between the feasibility of varying the share of plastic production and the 

capture efficiency. The use of more or less DME in the production of plastics (instead of 

being used as a transportation fuel) depends on the market and does not involve any 

technical constraint. However, a higher capture efficiency (Bio-CCS) would require an 

increase in both investment and operational costs to capture the carbon present in flue 

gases and not only the CO2 available in the syngas (pre-combustion) (Chen et al., 2006) 

and would increase the process complexity (Aracil et al., 2017, Oreggioni et al., 2017). 

Therefore, it is not likely to have larger capture efficiency for Spain. 
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Figure 10. Sensitivity analysis of the DCI to the share of drop-in chemical used for 

renewable-derived plastic production and the capture efficiency (Bio-CCS) in the advanced 

WtE plant for Spain and Sweden. 

 

4.3. Potential of renewable-derived plastics versus Bio-CCS 

As shown above, the potential of carbon capture using renewable-derived plastics is 

similar to the one of Bio-CCS incorporation. Unlike other GGR technologies, the specific 

climate benefit of renewable-derived plastics and Bio-CCS does not involve a response of 

the earth system to their implementation (Smith et al., 2016). However, Bio-CCS presents 

significant challenges compared with the production of renewable-derived plastics; the 

latter involving only existing and well-known systems (waste management schemes). 

Certainly, the largest challenges for CCS deployment are the lack of policy and economic 

drivers as well as the integration of the component technologies into large-scale 

demonstration projects (all the individual component technologies are generally well 

understood and technologically mature but expensive, albeit CO2 storage still needs 

further experience at scale: assessing, conditioning and controlling geological reservoirs 

for the long-term storage and the risk of uncontrolled leakages). Besides, the lack of 
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understanding and acceptance of the technology by the public and some stakeholders 

also contributes to delays in CCS deployment (IEA, 2013). 

On the other hand, the limited deployment of renewable-derived plastics into the market 

might be due to the difficulty in achieving a complete substitution of current fossil-derived 

plastics. An important challenge is to widen the range of renewable-derived plastics types 

and possible applications so that they become functionally equivalent to fossil-derived 

plastics (Plastic waste in the environment, 2011). Other challenges for the deployment of 

renewable-derived plastics are their right integration into current waste management and 

the adaptation of manufacturing producers and systems. Only renewable-derived plastic 

that can be directly introduced into existing and established value chains, infrastructure 

and markets have been assessed in the study. Considering regulation issues, the 

deployment of renewable-derived plastics as a GGR technology may benefit from the EU 

action plan for the circular economy which foresees economic incentives for packaging 

producers to put greener products on the market. One of the main obstacles is the lack of 

a mechanism to differentiate between fossil-derived and renewable-derived plastics, since 

their composition would be identical. As well as Bio-CCS, the promotion of renewable-

derived plastics will provide a platform for the future development of thermochemical 

biorefineries. 

Recently, Fridahl performed a mapping of how investments in Bio-CCS are prioritized for 

the long-term transition to low-carbon electricity generation systems and concluded that 

Bio-CCS is given a lower priority than renewables but a greater one than conventional 

CCS (Fridahl, 2017). This low preference can be linked to carbon price policy design that 

incentivizes Bio-CCS and consequently leads to a lack of substantial deployment of this 

technology. Considering the techno-economic and socio-political uncertainties in the 

deployment of Bio-CCS, the role of renewable-derived plastics, currently not represented 

in the IAMs, should be assessed in attempts to meet the 2 ºC goal. The results shown in 

this paper concerning the climate benefit of renewable-derived plastics as an alternative 

GGR technology are promising. IAMs could prove the real impact of a substitution of Bio-

CCS by renewable-derived plastics in the assessment of future scenarios of climate 

warming. For the IAMs to include the production of renewable-derived plastics as a GRR, 

the results presented in this paper need to be complemented with its potential at a global 

scale. In the case of using MSW refuse as feedstock, there would be a large impact in 
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landfill-dominant regions where the potential to avoid methane emissions gives an intense, 

albeit limited to the first 30 years, climate benefit. 

 

5. Conclusions 

The production of renewable-derived plastics proves to be an effective technology for 

greenhouse gas removal similar to bioenergy with carbon capture and storage. For the 

case of advanced waste-to-energy plants considered in this study, there would be a 

positive climate benefit compared with current and future waste management schemes in 

both landfill-dominant and incineration-dominant regions in Europe. The implementation of 

advanced waste-to-energy plants producing renewable-derived plastics would have less 

technical and societal limitations than for Bio-CCS incorporation, would compare favorably 

in terms of climate benefit in the short- and medium-term and would even provide a larger 

climate benefit in incineration-dominant regions in the long-term. The results encourage 

the implementation of renewable-derived plastics in Integrated Assessment Models to 

include their global potential in forecasting scenarios to achieve the 2 ºC target. 
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Appendix A. Modeling of biogenic carbon in renewable-derived plastics 

For the modeling of biogenic carbon in renewable-derived plastics, products still in use in the 

market (P) and plastics becoming waste (W) are distinguished. Short-life plastic products (Pshort-life 

plastics) are considered to become waste in less than a year. However, most of long-life plastics 

usually remain in the market for more than one year. Therefore, Equation A1 gives the fraction of 

the long-life plastic products becoming waste (W long-life plastics) in one year. Long-life plastic products 

still in use (Plong-life plastics) are 1-W long-life plastics.  

 

𝑊𝑙𝑜𝑛𝑔−𝑙𝑖𝑓𝑒 𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑠 =
𝑊−𝑃𝑠ℎ𝑜𝑟𝑡−𝑙𝑖𝑓𝑒 𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑠

𝑃𝑙𝑜𝑛𝑔−𝑙𝑖𝑓𝑒 𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑠
                                                                          (A1) 

 

The horizon for this study is 100 years as recommended by the Intergovernmental Panel on Climate 

Change (IPCC) (IPCC, 2014). In the year 0, ematerial represents the input of new plastic products in 

the market in terms of g CO2 eq.∙MJ
-1

 of plastics (C input) whereas elandfill and eenergy have a zero 

value. From year 1 to 100, elandfill and eenergy increase since more and more plastic waste is landfilled 

or energy recovered and, therefore, ematerial decreases. Equations A2-A5 show the calculations: 

 Year 0:  

𝑒𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 = 𝐶 𝑖𝑛𝑝𝑢𝑡 ∙ 𝛼                                                                                              (A2) 

where α is the biogenic fraction of the MSW refuse (%) 

 Successive years for short-life plastic materials: 

𝑒𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 (𝑦𝑒𝑎𝑟 𝑖) = 𝑒𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 (𝑦𝑒𝑎𝑟 𝑖−1) ∙ 𝑊𝑠ℎ𝑜𝑟𝑡−𝑙𝑖𝑓𝑒 𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑠 . 𝑟𝑟𝑒𝑐𝑦𝑐𝑙𝑖𝑛𝑔                                     (A3) 

The parameter elandfill (year i) is calculated as ematerial (year i) replacing rrecycling by rlandfilling. 

 

𝑒𝑒𝑛𝑒𝑟𝑔𝑦 (𝑦𝑒𝑎𝑟 𝑖) =  𝑒𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 (𝑦𝑒𝑎𝑟 𝑖−1) ·
 𝛽

𝛼
∙ 𝑊𝑠ℎ𝑜𝑟𝑡−𝑙𝑖𝑓𝑒 𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑠 . 𝑟𝑒𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦            (A4) 
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 Successive years for long-life plastic materials: 

 

𝑒𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 (𝑦𝑒𝑎𝑟 𝑖) = 𝑒𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 (𝑦𝑒𝑎𝑟  𝑖−1) ∙ (1 + 𝑊𝑙𝑜𝑛𝑔−𝑙𝑖𝑓𝑒 𝑝𝑙𝑎𝑠𝑡𝑖𝑐𝑠 ∙ (𝑟𝑟𝑒𝑐𝑦𝑐𝑙𝑖𝑛𝑔 − 1))                 (A5) 

 

The other two equations (elandfill and eenergy) differ from those of short-life plastic materials changing 

Wshort-life plastics by W long-life plastics. Finally, the parameter epool is calculated (Equation A6). 

 

𝑒𝑝𝑜𝑜𝑙 (𝑦𝑒𝑎𝑟 𝑖) = (𝑒𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 + 𝑒𝑙𝑎𝑛𝑑𝑓𝑖𝑙𝑙 + 𝑒𝑒𝑛𝑒𝑟𝑔𝑦)𝑦𝑒𝑎𝑟 𝑖                        (A6) 

 

Equation A7 is used to calculate the average biogenic carbon storage in renewable-derived plastics 

for the differential GHG impact. 

 

𝑒𝑝𝑜𝑜𝑙 ̅̅ ̅̅ ̅̅ ̅ =
∑ 𝑒𝑝𝑜𝑜𝑙 (𝑓𝑟𝑜𝑚 𝑦𝑒𝑎𝑟 0 𝑡𝑜 100) 

100
                                                                                          (A7) 

 

List of symbols 

ed  emissions from products distribution (g CO2 eq.∙MJ
-1

) 

eenergy  emissions from energy recovery of plastics (g CO2 eq.∙MJ
-1

) 

emix  emission factor from electricity grid mix (g CO2 eq.∙MJ
-1

) 

elandfill  biogenic carbon storage in landfilled plastics (g CO2 eq.∙MJ
-1

) 

epool  biogenic carbon storage in plastics (g CO2 eq.∙MJ
-1

) 

ep  emissions from processing (g CO2 eq.∙MJ
-1

) 

ept  emissions from pretreatment (g CO2 eq.∙MJ
-1

) 

ematerial  biogenic carbon storage in recycled plastics and plastics still in use (g CO2 eq.∙MJ
-1

) 

et  emissions from feedstock transport (g CO2 eq.∙MJ
-1

) 

eu  emissions from the use (g CO2 eq.∙MJ
-1

) 

renergy  fraction of plastics waste going to energy recovery (%) 

rincineration  fraction of MSW refuse going to incineration (%) 

rlandfill  fraction of MSW refuse/plastic waste going to landfill (%) 

rrecycling  fraction of plastics waste going to recycling (%) 

wi  ratio of chemical production (1 BAU system, 2 BIO system) (%) 
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xi  fraction of heat production (1 BAU system; 2 biorefinery, 3 heat mix in BIO system) (%) 

yi  ratio of electricity production (1 landfill, 2 incineration in BAU system; 3 electricity grid, 4 

biorefinery In BIO system) (%) 

zi   ratio of biofuel production (1 fossil fuels in BAU system; 2 biorefinery in BIO system) (%) 

Greek letters 

α  Biogenic fraction  of MSW refuse (%) 

β  Anthropogenic emission factor from MSW refuse incineration (%) 

ηconversion Conversion efficiency from chemical to plastic (%) 

Abbreviations 

AGTP   Absolute Global surface Temperature change Potential 

AGWP  Absolute Global Warming Potential 

e  Carbon flows 

BAU  Business as usual 

BIO  Bioenergy 

BECCS/Bio-CCS Carbon capture and storage in bioenergy 

DCI  Differential Climate Impact 

DME  Dimethyl ether 

EBIO/BAU  GHG impact of the BIO or BAU system 

ETB  Global GHG balance of the thermochemical biorefinery 

EF  Emission factor (fossil comparator) 

EPA  U.S. Environmental Protection Agency 

GGR  Greenhouse gases removal 

GHG  Greenhouse gases 

HDPE  High-density poly-ethylene 

IPCC  Intergovernmental Panel on Climate Change 

LCA  Life cycle assessment 

LDPE  Low-density poly-ethylene 

LHV  Lower heating value 

MA  Methyl acetate 

MSW  Municipal solid waste 
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P  Products still in use 

PP  Polypropylene 

PVC  Poly vinyl chloride  

RDF  Refuse derived fuel 

SM  Supplementary Material 

W  Waste 

WMGHG Well Mixed GHG 
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Paper V 

 

Implementation of waste-to-energy options in landfill-dominated countries: 

Economic evaluation and GHG impact 

 

In this paper, the economic and environmental impact of various Waste-to-Energy (WtE) 

schemes to produce electricity from MSW refuse is evaluated and compared with landfill 

disposal. Both incineration and gasification alternatives are considered. Gasification option 

includes three different configurations: 1) FBG with internal combustion engine (ICE) 2) 

fluidized bed gasifier (FBG) with Organic Rankine Cycle (ORC) and 3) grate gasifier with 

steam Rankine cycle (SRC). It is a manuscript. A previous work inspiring this paper has 

been published as conference proceedings in 201616. 

 

1. Introduction 

Waste management remains nowadays as an environmental, technical and economic 

challenge. The development of integral worldwide solutions is deterred by the constraint of 

national, regional and local regulation. Large differences in waste management schemes 

are found around the world according to their level of economic development, climate 

conditions and historical regulation. Figure 1 (a) shows the share of recycling, incineration 

and landfilling for the average EU countries, and for Northern and Southern European 

countries (Eurostat, 2014). Landfilling requires the use of extensive land and can lead to 

several environmental impacts over land, atmosphere, hydrosphere and biosphere. The 

European Union is encouraging landfill-dominant countries to find alternative waste 

managing strategies, being incineration with energy recovery the most common (Eurostat, 

2014). Among the management options in Europe (Figure 1 (a)), landfilling is the most 

popular in Southern Europe countries, since it has a lower cost compared to incineration 

plants. In Northern Europe, the landfilling ratio is below incineration and recycling ratios, 

being even negligible in some countries like Germany. The differences between regions of 

                                                           
16

 Aracil C, Haro P, Fuentes-Cano D and Gómez-Barea A. Implementation of waste-to-energy options in 

landfill-dominated countries: Economic evaluation and GHG impact.
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a country can be as significant as those between different countries, as it comes from the 

differences between The Basque Country (North Spain) and Andalusia (South Spain) 

shown in Figure1 (a). Although 55% of the generated MSW is landfilled in Spain every 

year, landfill sites are more concentrated in the South, whereas incineration plants are 

mostly located in North. Figure 1 (b) shows the ratios of recycling, incineration and 

landfilling for the Southern European countries other than Spain, which will be compared 

with Spain throughout this study (Italy, Portugal, Greece, Cyprus, Croatia, Malta and 

Romania).  

Regarding the situation of incineration plants in Europe, Sweden, Denmark, Netherlands, 

Luxembourg and Finland achieve the highest waste incineration ratios with values ranging 

from 217 to 412 kg of MSW per capita (Eurostat, 2014). These countries are among the 

twelve countries with the highest Gross domestic product (GDP) per capita, that is, among 

the ten most developed countries in Europe and they are located in Northern. 

 

 

(a) 
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(b) 

Figure 1. Current situation of MSW management in Europe and selected Spanish regions. 

The percentages represent the fraction of MSW incinerated, recycled or landfilled. 

Adapted from Eurostat (2014). 

 

The European waste hierarchy establishes that only MSW refuse can be used as 

feedstock in WtE plants, and that the use of any other fraction must be justified from the 

life cycle thinking (Directive 98/2008). MSW refuse is the unsorted fraction of MSW that 

cannot be further processed (for recycling) and therefore goes into incineration or 

landfilling. This MSW refuse comes either from separated waste collection (as the non-

recyclable fraction) or from mechanical and biological treatment (MBT) plants (a fraction 

separated from the compostable fraction). The MSW refuse from a MBT plant is a 

heterogeneous and site-specific stream although analysis of various refuse fractions from 

different configurations MBT plants in Spain showed that all of them fulfilled requirements 

for standardized solid recovered fuel (SRF) (Edo-Alcón et al., 2016, EN 15357:2012). In 

Europe, the SRF/Refuse Derived Fuel (RDF) production and consumption have been 

increasing over the last years, reaching the highest values in Northern Europe. There is 

also a great potential to produce RDF in Southern Europe such as in Spain, where only 1 

Mt of SRF/RDF (but the production potential estimated is higher than 6 Mt per year) is 

produced and consumed in the cement industry and incinerators (mainly fluidized bed 

reactors) (ISR, 2006, AEVERSU, 2016). 
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A rational transformation of the waste management scheme in Southern Europe requires 

understanding the WtE schemes and the inherent differences between the North and the 

South. In Central and Northern Europe, medium or lower scale CHP plants (up to 50 kt 

RDF/y) can be efficiently implemented provided the heat demand is high enough. These 

CHP plants are mainly optimized to satisfy the heat demand with minimum costs, being 

electricity share generally low, typically below 10% (EUR 26729 EN). However, in 

Southern Europe, electricity is the desired product in CHP plants, since heat demand is 

generally low, so high electrical efficiency is required. To produce electricity with a 

reasonable efficiency (>20%) large scale is necessary (>0.5 Gt RDF/y) (Consonni and 

Viganò, 2012). Therefore, large scale WtE plants are required in Southern Europe, 

meaning that current MTB plants generating limited amount of MSW refuse (typically less 

than 300 kt/y (Arena et al., 2015) will need to produce and send the RDF to a centralized 

plant. To minimize transport costs, advanced WtE plants using gasification can be 

integrated with existing MBT plant. Gasification technologies can be adapted to the volume 

of waste available in most of existing MBT plants (medium scale, i.e. lower than 100 kt/y) 

to produce mainly electricity as required in Southern Europe. There is enough industrial 

experience in gasification plants to consider its penetration in the short and medium term. 

For instance, the company Energos has built eight gasification plants in Europe settled in 

Norway, Germany and the UK, seven of which are operational (Energos, 2017). The plants 

process between 30 and 78 kt RDF/year, only one producing electricity (through a Steam 

Rankine Cycle, SRC) and heat (CHP) and the rest producing steam for heat applications 

(low or medium-pressure steam). A large fluidized bed gasification (FBG) plant was came 

in operation in 2012 by Valmet in Lahti (Finland) processing 250 kt SRF/ y (Valmet, 2013). 

The produced gas is burned to produce electricity through a SRC. 

This study assesses the techno-economic and GHG impact of implementing incineration 

and gasification-based WtE technologies in Southern European countries, using as a case 

study the Spanish region of Andalusia. 

 

2. Methodology 

2.1. Definition of the systems  

Three systems are considered; a reference system representing current MSW refuse 

management system in a landfill-dominant region and two bioenergy systems where MSW 

refuse is used as feedstock in incineration or gasification WtE plants. Figure 2 depicts the 
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three systems considered. The functional input unit is 1 ton of MSW refuse and the 

product output is electricity, to focus the analysis on regions of Southern Europe where 

electricity is the main product because heat demand is low, whereas the outputs yi 

(i=1,2,3) are the electricity production from 1 t MSW refuse (MWhe/t MSW refuse). The 

assumption to consider only electricity as valuable output is consistent with the fact that 

WtE plants in these regions are designed and operated to reach the so-called R1 

threshold, established by EUR 26720 EN (R1 formula was amended to incorporate the 

climate correction factor, CCF, defined in Commission Directive 2015/1127/EU). 

Therefore, heat is not considered as valuable outcome in this study. 

 

 

Figure 2. Definition of the reference (landfill) and bioenergy (incineration and 

gasification) systems in the study. 

 

2.2. Definition of the WtE systems 

Incineration is the complete combustion of the MSW refuse to produce heat that is used 

directly or converted into electricity in a power plant. Gasification is the partial combustion 

to produce a syngas, which in the context of the present study is further combusted to 

produce electricity. The incineration and gasification technologies considered here are: 

i) Incineration system: The technology selected is a moving grate allowing the use 

of MSW refuse without pretreatment. This enables avoiding GHG emissions and costs 

associated to MSW refuse pretreatment but the heating value of the feedstock to the 

hearth decreases, and pollutants formation during burning increases (8-13 MJ/kg, Boesch 

et al., 2014; Consonni and Viganò, 2012; Yassin et al., 2009), leading to a more expensive 
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equipment and gas treatment. A low heating value of 11 MJ/kg is considered in this study. 

The MSW refuse is transported from several MBT plants to a centralized large-scale 

incineration plant. Once defined the region under consideration, a decision of one or 

various incineration plants is to be made, as discussed below. Figure 3 (a) shows a 

simplified incineration plant diagram with a post-combustion system of syngas cleaning. 

The overall system efficiency is 21%, calculated assuming an overall boiler efficiency (from 

feedstock to steam) of 63% (Yassin et al., 2009) and a steam turbine efficiency of 33% 

(Consonni and Viganò, 2012). Figure 3 (b) shows the energy balance of the incineration 

process. 

ii) Gasification system: Several technologies are considered for the production of 

syngas (moving grate and fluidized bed gasifiers) and to convert the syngas into electricity 

(internal combustion engine (ICE), organic Rankine cycle (ORC) and steam Rankine Cycle 

(SRC)). FB gasification technologies require a homogeneous fuel, so that the MSW refuse 

has to be pretreated. Moving-grate gasifiers can generally be operated with direct MSW 

refuse but the lower technical development of gasification compared to incineration makes 

to pretreat the refuse better, in order to improve the availability of the gasification process 

and the increase of the heating value of the feedstock to the range of 16-20 MJ/kg (Arena 

et al., 2015; Edo-Alcón et al., 2016; Onel et al., 2014; Yassin et al., 2009). A low heating 

value of 18 MJ/kg is assumed in this study. Then, in all gasification systems considered in 

this study the MSW refuse is converted into RDF (Figure 4 (a)). The size of the plants is 

adapted to the amount of MSW refuse in each MBT plant, taking advantage of the ability of 

gasification to produce electricity at high efficiency at small/medium-scale. 

For RDF production in current MBT facilities some additional equipment is necessary. 

Existing MBT plants are usually equipped with various sorting for separation: manual for 

separate bulky items, trommel for the finest fraction, and magnetic and eddy current 

separators for ferrous and non-ferrous metals, respectively, as well as density separator to 

separate different kinds of plastics (Edo-Alcón, 2016). Additional equipment to produce 

high-densified RDF should incorporate shredder, dryer and pelletizer (Caputo et al., 2002a 

and 2002b). Heat recovery and integration is possible in schemes with RDF production by 

using heat from the gasifier increasing the total energy efficiency.  

In the two first configurations the syngas is produced in fluidized beds. The electrical 

efficiency using an ICE to generate electricity is 23.8% (assuming efficiencies of 61 and 

39% for gasification (cold) and engine, respectively, Di Gregorio et al., 2012). Using an 
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FBG in an ORC to produce electricity, the estimated electric efficiency drop to 11% 

(assuming a cold gas efficiency of 61% and a net electric efficiency of the ORC cycle, 

including the oil-gas heat exchanger, of 17.7%, Arena et al., 2015). In a GG/SRC 

configuration the efficiency is 13.3% (Energos, 2012) assuming a feedstock-to-steam 

efficiency of 44.3% and a steam turbine efficiency of 30% (Energos, 2012, Patel et al., 

2012). These electrical efficiencies (from RDF to electricity) increase when RDF 

production is considered being the total energy efficiencies (from MSW refuse to 

electricity) of 31, 11 and 15% respectively (Figure 4 (b)).  

Table 1 summarizes the electricity ratios (yi) resulting from the proposed schemes: 

incineration (y2) and in the three gasification-based systems of Figure 2 (y3), defined as 

MWhe per t of MSW refuse. The ratio generated in the landfill (y1) is also included and will 

be discussed later. 

 

 

(a) 

 

(b) 

Figure 3. Simplified diagram of the incineration (a) and energy balance (based on % of 

energy of the input fuel) (b). 
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(a) 
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(b) 

Figure 4. Simplified diagrams (a) and energy balances (based on % of energy of the 

input fuel) (b) of the WtE based on gasification plants proposed according to the 

gasification technology, showing the net global electric efficiency of the systems.  
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Table 1. Shares of electricity production using 1 ton of MSW refuse (yi) defined as MWhe 

per t of MSW refuse for the systems considered in Figure 2: landfill (1) and WtE 

(incineration (2) and gasification (3)) of. (Data for the estimation based on: Arena et al., 

2015; Di Gregorio et al., 2012; Energos, 2012; IPCC, 2006; Patel et al., 2012; Yassin et 

al., 2009 as explained in the text). 

 
Landfill 

(y1) 

Incineration 

(y2) 

Gasification 

(y3) 

FBG/ICE FBG/ORC GG/SRC 

MWhe/t MSW refuse 0.18 0.64 0.9 0.34 0.46 

 

2.3. The region of Andalusia as reference case of a dominant-landfill region 

Andalusia is a Spanish region where around five millions tons of MSW are generated 

every year. In this region, there are no WtE plants and all the unsorted MSW is processed 

in MBT plants in which compostable and recyclable fractions are separated. The fraction 

generated at the end of the process, the so-called MSW refuse, representing about 80% of 

the total MSW generated per year, is landfilled, being well above the Spanish and 

European average. This fraction is a heterogeneous feedstock with 76% content of 

biomass (renewable fraction) (IEA, 2012). The Spanish Waste Framework 2016-2022 

(State Framework Plan, 2016-2022) enforces: (i) the increase of energy recovery from the 

refuse from MBT facilities, either directly or by RDF production; (ii) the increase of the 

share of recovery up to 15% of MSW, either by incineration or co-incineration, and (iii) the 

decrease of the landfill share below 35%. It is concluded that the use of the MSW refuse 

as feedstock in WtE facilities is an interesting option in Spain, particularly, in regions like 

Andalusia. Figure 5 depicts a conceptual flowsheet with the current MSW management 

system in Andalusia, showing the WtE alternatives proposed in this study. This waste 

management system in Andalusia is similar to that of other countries in Southern Europe, 

like regions of Cyprus, Greece, Croatia, Malta, Romania (Figure1). 

A study was carried out to estimate the production of MSW refuse of the 23 MBT plants 

currently running in Andalusia. The MBT plants can be considered individually in order to 

set up a small-scale WtE plants (gasification) o grouped to achieve higher plant energy 

capacities (incineration). An electricity potential of a standalone-WtE plant integrated in 

each MBT plant was estimated for each plant applying the efficiencies calculated for the 

various gasification technologies. In the case of considering the MBT plants grouped, the 
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transport costs must be taken into account as well several criteria to find the number and 

size of the incineration plant for a given region. The following method is applied: (i) the 

incineration plants should be set up next to the MBT plants with the highest capacities; (ii) 

a maximum radius of 250 km is drawn around the incineration plant locations since the 

transport costs increase considerably beyond this distance (ISR, 2006).The MBT plants 

falling within the above distance feed the nearest incineration plant; (iii) a dispersion factor 

is used to allocate every plant according to the real distance from the incineration plant, 

considering 0 the location of the incineration plant and 1 the most disperse MBT plant, and 

assuming a linear relation with the distance for the plants between those two extremes. 

The size (energy potential) of the incineration plant is determined by accounting for the 

energy potential of the MBT plants grouped within the considered ratio; (iv) a minimum 

capacity of 100 MWthis considered in order to set up incineration plant with high enough 

electricity capacities (>20% net efficiency).  

 

 

Figure 5. Current and proposed MSW management scheme in Andalusia. Dashed line 

shows the alternative WtE management systems proposed in this study (incineration and 

gasification). The values indicate the mass fraction (%) for the mass fuel input. 

 

2.4. Techno-economic assessment 

Table 2 shows the main assumptions for the techno-economic assessment. Total 

Investment Cost (TIC), Total Operational Cost (TOC) and Internal Rate of Return (IRR) are 

calculated as follow. Equipment costs are taken from literature (Arena et al., 2015; Di 

Gregorio and Zaccariello, 2012; Patel et al, 2012; Yassin et al., 2009) but updated to 2015 

(CEPCI, 2015). The incineration plant is centralized; therefore, it has an extra cost 

compared with gasification plant, the MSW refuse transport from the MBT plant to the 
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incineration plant. A cost of 20 €/t MSW refuse has been considered for a transport by 

truck up to 250 km of distance (ISR, 2006). In order to adapt the transport costs to the real 

distance between the MBT plants and the WtE plant, the dispersion factor discussed 

above is used. In the case of the gasification technology, TOC is calculated as the sum of 

fixed and variable costs. Fixed costs involve maintenance, insurance, labor and 

management and services. These costs are calculated as a fraction of TIC (Table 3). 

Variable costs entail RDF production, residues disposal and commodities consumption 

(Table 4). The revenue to the plant depends on the wholesale electricity tariff, the landfill 

gate fee, and the bottom ash and the recovered material sale (Table 5). These aspects are 

taken into account for the different countries and regions analyzed here. Since the landfill 

gate fee varies greatly from country to country (and even from region to region in the same 

country) the techno-economic assessment will be made by considering a range of this 

value and making a sensitivity analysis of the assumed values for different regions. An 

incineration plant has usually a lower TIC per ton of MSW refuse than gasification plant 

except for the case of a FBG/ORC WtE plant but TOC is usually higher in incineration 

(Table 6). 

 

Table 2. Assumptions and parameters used in the techno-economic assessment. 

Inflation 2% 

Capital cost 5.5% 

Hours/year 7500 

Corporation tax 
30% of taxable (incineration) 

25% of taxable (gasification) 

Scale factor 0.6 (Di Gregorio and Zacariello,2012) 

Lang factor 3.1 

Amortization years 
15 years (incineration) 

10 years (gasification) 

 

As it was discussed, in gasification plants densified RDF is required and it is not 

considered in the literature used for the economic estimations made in the present study; 

therefore it must be added for the economic analysis of gasification plants. Table 8 gives 

the economic cost associated to the MBT plant modification required to produce RDF. 

Dryer is the most expensive equipment achieving 9.6 €/t RDF; however, the operational 
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costs are higher in the pelletizer, almost 1 €/t RDF (Table 7) (Caputo el al., 2002; 

Holmberg et al., 2004). 

 
 

Table 3. Fixed costs in the gasification plants (Arena et al., 2015; Haro et al., 2012). 

 
%TIC 

Maintenance 1.5% 

Insurance 0.5% 

Labor 6% 

Management and services 2% 

 

Table 4. Variable costs in the gasification plants (Arena et al., 2015; Di Gregorio and 

Zaccariello, 2012). 

 

FBG/ICE 

GG/SRC 
FBG/ORC unit 

Residues disposal 10 €/ton RDF 

RDF 2 €/ton RDF 

Chemicals and additives 5 8 €/ton RDF 

 

Table 5. Data for the calculation of the revenue in incineration and gasification plants 

considering Andalusia. 

Electricity sale (€∙GJ-1) 16 

Gate fee (€∙t MSW-1) Variable 

Bottom ash sale (c€∙ton bottom ash-1) 
15 (AEVERSU, 2016) 

 

Recovered material sale in RDF production 

(€∙ton metals-1) 

59 (ferrous) (ISR, 2006) 

102 (non-ferrous) (ISR, 2006) 
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Table 6. Calculated TIC and TOC per ton of MSW refuse in Andalusia. 

 Incineration Gasification 

 
 FBG/ICE FBG/ORC GG/SRC 

TIC (€2015∙ton MSW refuse-1) 211 332 197 383 

TOC (€∙ton MSW refuse-1 ∙year-1) 72 58 33 52 

 

Table 7. Economic cost associated to the TMB plant modification (Caputo et al., 2002a 

and 2002b). 

 
Shredder Dryer Pelletizer 

TIC (€/t RDF) 1.2  9.6  6.8  

TOC (€/t RDF) 0.3  0.8  0.9  

 

 

2.5. Method for estimation of GHG emissions  

GHG balance is a stationary assessment of the cradle-to-grave GHG emissions 

associated to the life cycle of a process and their products (E). A methodology, initially 

developed by the authors to calculate the GHG balance in the production of biofuels 

and/or drop-in chemicals from MSW refuse (Aracil et al. 2017), has been adapted to the 

production of electricity in this study. The main difference for the application of GHG 

balance to MSW with respect to biomass is that the fossil fraction of the MSW has to be 

taken into account. Hence, we distinguish between biogenic and anthropogenic emissions. 

Biogenic emissions is the renewable fraction contained in the MSW refuse released as 

CO2, having a neutral impact on climate change, whereas anthropogenic emissions is the 

fossil fraction in MSW refuse released as Well-Mixed GHG emissions (WMGHG). In 

anthropogenic emissions, biogenic non-CO2 GHG emissions (CH4) are also included 

(Aracil et al., 2017). 

The Equation 1 is used to estimate the GHG emissions in the production of electricity from 

MSW refuse (total =processing + transport + ash treatment):  

EWtE=ep+ et + eash                                                                                                                (1)  

where  



 

167 
 

• ep: takes into account the emissions from the WtE plant, including all process units 

processing MSW refuse or RDF into electricity (conversion, gas cleaning and electricity 

production). There are three main contributors: emissions from MSW refuse pretreatment 

(RDF production), the upstream emissions associated to consumables used in the process 

and the combustion emissions from the fossil fraction (Ecoinvent).  

• et: takes into account the emissions from transport of the MSW refuse to the WtE plant. 

An emission factor of 4.1 kg CO2/t MSW refuse was used considering a maximum distance 

of 250 km by truck (European Commission, 2015).  

• eash: takes into account the emissions from ash treatment and disposal. It includes 

emissions from bottom and fly ash disposal (Boesch et al., 2014).  

 

For the reference system (landfill) the electricity is produced from the biogas, a mixture of 

CH4 and CO2 from the degradable organic carbon (DOC) of the MSW refuse (IPCC, 2006). 

For GHG calculations, it has to take into account that only a fraction of the generated 

biogas is captured and used for electricity production or burned in flare. Therefore, GHG 

emissions are released from the landfill by biogas combustion (with or without energy 

recovery) and biogas leaking from the landfill site. The GHG balance of the reference 

system (Elandfill) corresponds with the climate impact of the CH4 emissions and biogenic 

carbon storage. The CH4 emissions from the landfill are calculated using the default values 

method from country-specific waste composition (Figure 6). 

In 2006, the Intergovernmental Panel on Climate Change (IPCC) published guides for the 

calculation of the GHG emissions from solid waste disposal (IPCC, 2006). The U.S. 

Environmental Protection Agency (EPA) published in 2014 a related document (EPA, 

2014), only differing in the modeling of the biogas collection efficiency (neglected in IPCC 

Waste Model). Whereas IPCC recommends not considering biogas collection in the 

landfill, the EPA recommends a range of 50% to 95% being the average 75%, i.e., 75% of 

the landfill gas generated is collected and routed to a control device. This parameter can 

vary considerably between countries. For instance, most of landfill sites in Romania or 

Serbia are uncontrolled landfills where biogas collection is not managed (Cailean and 

Teodosiu, 2016; Stanisavljevic et al., 2012). Although the EPA’s values are attributable to 

landfills from USA (Coventry et al.,2016), some authors consider the EPA values 

applicable for Europe, whereas other authors consider that these values are not 

representative of a Southern European landfill (Cherubini et al.,2008; Zamorano et 
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al.,2007; Eriksson et al.,2009; Aronica et al.,2009). A recent article analyzing Spanish 

landfills uses a biogas collection efficiency of 70% as the most favorable case 

(Chacartegui et al., 2015), so this conservative value is assumed as reference in the 

present study and its impact will be further assessed by sensitivity analysis. A correction 

factor should be introduced to distinguish between the biogas burned in the torch (without 

energy recovery) and with energy recovery. Since recommendation for this factor was not 

found in the literature, it is assumed here that 100% of the biogas collected is used for 

electricity production. Again, this conservative assumption brings total energy efficiency 

(LHV basis) of 7% for the landfill in the reference case. Finally, the GHG emissions 

associated to CH4 were calculated using the default values from country-specific waste 

composition. 

 

Figure 6. Emission factors considered in this study to calculate GHG emissions 

associated to landfilling in the reference (landfill) case (IPCC, 2016; EPA, 2014). 

 

The differential GHG impact compares the potential reduction in GHG emissions by 

replacing the existing landfill scheme (Elandfill) with a WtE scheme (EWtE) (Gaudreault et al., 
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2015) (Equation 2), i.e., it determines how better is to process MSW refuse in WtE plants 

with respect to landfilling in terms of GHG emissions reduction. 

Differential GHG impact = EWtE − Elandfill                                                                           (2) 

The GHG impact is calculated in grams of CO2 equivalent per ton of MSW refuse. 

However, the landfill and WtE systems have different electricity productions per ton of 

MSW refuse (Table 1). Therefore, it is necessary to include in the calculation of the GHG 

impact the avoided fossil GHG emissions in the production of electricity. A fossil reference 

value for electricity production (EFelectricity) is applied, which depends on the country. 

Therefore, the average value from the grid mix of each country is used, which for the case 

of Spain is 0.398 t CO2 eq./ MWhe (EUR 27215 EN).  

 

3. Results 

3.1. Economic assessment 

The economic comparison is shown in Figure 7, which displays the gate fee necessary to 

achieve 15% of internal return rate (IRR) as a function of plant fuel-input capacity (MWth), 

for the 4 WtE schemes considered. According to the previous discussion, incineration is 

considered for electricity loads higher than 100 MWth, whereas gasification schemes are 

displayed from small to medium capacities (5-60MWth) in order to adapt these WtE plants 

into existing MBT plants. As expected, the higher size plant allows lower gate fee to 

achieve the same economic feasibility. On the other hand, the impact of the gate fee on 

the feasibility is higher for gasification schemes as compared to incineration, since the 

reduction of the annualized cost of investment of these plants is more sensitive to the plant 

scale than incineration, increasing the cash flow more significantly than the wholesale 

electricity tariff. The FBG/ORC and FBG/IEA are seen to be better choices than GC/SRC 

from the economical point of view. The FBG/ORC configuration gives the lowest gate fee 

at a small-scale plant capacities (<35 MWth) because its lower capital and operational 

costs (Table 6). From 35 MWth, the FBG/ICE obtains the best results but the differences 

between the two technologies are very small, so it should be considered similar for the 

rough estimations considered in this work. However, if the gate fee was expressed as 

€/MWe (instead of €/t), i.e. if the fee received for 1 ton of refuse would take into account 

the avoided € to be paid to generate the difference of power produced by the two 

technologies per ton of refuse (which has to be supplied by other mean), the ICE would be 

much more interesting option than ORC from the economical point of view, due to the 
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much higher electric efficiency (almost three times). However, ORC is a mature and widely 

spread and reliable form of energy production in CHP applications based on biomass 

(Turboden, 2016) with lower technical and economic requirements in gas cleaning than 

ICE option, so its suitability for market penetration in the short-term scenarios should be 

considered in terms of higher reliability. 

 

 

Figure 7. Economic results according to the WtE configuration (a. gasification, b. 

incineration) considering an IRR of 15% in Andalusia. The shaded area indicates the 

range of thermal energy in which the most of the MBT plants are (5-20 MWth) in Andalusia 

(a) and the incineration plant capacities proposed in this study (b). 

 

3.2. Environmental assessment: GHG impact 

Table 9 summarizes the individual contribution of each parameter to the global GHG 

balance (EWtE) for the WtE systems and the avoided emissions in terms of electricity 

production from the landfill replacement for a WtE scheme. The largest GHG emissions 

are associated to incineration summing up 331 kg CO2 eq./t MSW refuse. The emissions 

for gasification-based schemes are considerable lower (15-25% lower than incineration): 

281, 264 and 281 kg CO2 eq./t MSW in the FBG/ICE, FBG/ORC and GG/SRC, 

respectively (Table 8). The main contributor to the GHG emissions is ep, i.e. those 

associated to processing the MSW refuse or RDF into electricity (conversion, gas cleaning 

and electricity production). Considering the avoided emissions, the FBG/ICE is the best 

option in terms of GHG emissions per ton of MSW refuse, because of the higher efficiency 

compared to other options, avoiding fossil emissions. The landfilling of MSW refuse is by 
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far the scheme with higher pollution load (454 kg CO2 eq./t MSW refuse). Overall, the 

transformation of existing landfill into WtE plants leads to a net avoidance of GHG 

emissions from national electricity production, with the exception of the scheme based on 

FBG/ORC. 

 

Table 8. Results of the GHG balance for the WtE systems and comparison with landfill in 

terms of avoided emissions from electricity production. 

 

kg CO2 eq.∙t
-1 MSW refuse 

GC/SRC 
Gasification 

Landfilling 
FBG/ICE FBG/ORC GG/SRC 

ept - (4.9) 

- 
ep 324 280 270 280 

et 4.1 - - - 

eash 3.2 5.0 

EWtE 331 285 275 285 454 

Avoided emissions (electricity balance) 

Eelectricity
a 

Landfill 73 

GC/SRC 165 

FBG/ICE 246 

FBG/ORC 107 

GG/SRC 131 

a Calculated for each WtE configuration considering the electricity balance (see Table 1). A positive electricity 

balance means a net production of electricity. 

Figure 8 shows the differential GHG impact, the GHG reduction for the replacement of the 

landfill by the four WtE schemes proposed. As expected all WtE configurations involve 

GHG reduction, concluding that the replacement of the current landfill-based system by a 

WtE scheme will benefit the climate impact. The use of gasification in a FBG with an ICE is 

shown to provide the highest climate benefit between the options considered. The low 

efficiency in the ORC cycle configuration involves to achieve the lowest avoided emissions 

being the differential GHG impact even lower than WtE scheme based on incineration.  
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Figure 8. Differential GHG impact for the replacement of the landfill disposal for 

the WtE systems proposed in this study. 

 

3.3. Selection of number WtE units in Andalusia 

In Andalusia, the possible minimum and maximum plant capacities for gasification 

considering the production of MSW refuse in each MBT plant are 5.2 and 58.5 MWth. The 

average of the plant sizes for the 23 MBT plants is 20.7 MWth; However if the highest and 

lowest MBT plants were excluded (those with the highest standard deviations), the 

average would be 14.4 MWth. Figure 9 gives the influence of the gate fee on the feasibility 

of gasification plants for these four inputs (5.2, 14.4, 20.7 and 58.5 MWth). Only positive 

results are shown, in the case of minimum capacity plant, positive results are not found for 

the GG/SRC configuration.Since the gate fee in Southern Europe is highly dependent on 

the region and the waste collection system (CEWEP, 2016), a range of 20-80 €/t MSW 

was considered. The feasibility of the gasification WtE schemes is highly dependent on the 

gate fee. It is seen that for the current gate fee in Andalusia (20 €/t) a maximum of IRR of 

13% would be achieved even for the maximum capacity plant (58.5 MWth) and the most 

efficient technology (FBG/ICE). However, with a gate fee of 60 €/t, the IRR would increase 

to 17% (for the same technology) for the average capacity (20.7 MWth). The figure also 

confirms that ICE has the highest sensitivity (higher slop) among the technologies 
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analyzed. Overall, it seems clear that the feasibility of the replacement of the landfill by 

WtE schemes in Andalusia is conditioned to the increase of the gate fee, and an increase 

of a factor of 3 is required to envision a market penetration from the economic point of 

view.  

  

 

 

Figure 9. Sensitivity analysis to the IRR according to the current and expected 

gate fee for an input of 5.2, 14.4, 20.7 and 58.5 MWth. 

 

Figure 10 shows the optimal distribution calculated considering a minimum IRR of 15%. 

The figure includes the location of the plants (dots for gasification and stars for 

incineration) with indication of the electricity output for the best gasification technologies 

(FBG with ORC and with ICE) and for the incineration plants. As seen incineration two 

centralized plants with size of 49 (East) and 48 (West) MWe are to be set up in Andalusia. 

In the case of the gasification: twenty-three (one per MBT plant) FBG/ORC gasification 

plants could be set in Andalusia with plant capacities between 0.2 and 6.0 MWe or 

FBG/ICE gasification plants with plant capacities between 0.5 and 18 MWe. 
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Figure 10. Location of MBT plants in Andalusia (dots). Every gasification plant is 

associated with a MBT plant able to produce equivalent RDF to at least 0.2 MWe. The 

numbers indicate the capacity of the FBG/ORC gasification plant (MWe) (the conversion 

factor for the FBG with ICE is 2.16). The highest-capacity MBT plants (stars) are selected 

for the location of the incineration plants (49 and 48 MWe in the East and West 

respectively). 

 

Currently, the gate fee in Andalusia is very low, about 20 €/t, which explains that the MSW 

refuse still goes to landfill disposal. The assumed minimum gate fee to come up with 

feasible WtE plants is still very far (three times higher) from the current gate fee, which 

explains the difficulty of replacement of landfill by a WtE scheme in Andalusia in the short 

term, in spite of the high environmental benefit.  

 

3.4. Sensitivity analysis 

In the study, some variables were identified to have a large influence on the results 

presented. For the economic assessment, the parameters are the transportation costs 

(only considered in the incineration scheme), wholesale electricity tariff and labor costs. 

For the environmental assessment, the ratio of biogas recovered in the landfill is the main 

parameter affecting the GHG emissions.  
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Figure 11 shows the IRR results by modification of transport costs, wholesale electric tariff 

and labor costs. Wholesale electric tariff is the most influential parameter in the economic 

results for all the WtE schemes analyzed, especially for incineration. An increase of 20% in 

this tariff involves an increase of almost 29% in the IRR for incineration and between 17 

and 21% for schemes based on gasification.  

The three parameters analyzed change from region to region (EEA reports, 2013). 

Consideration of the variation of these parameters with respect to the base case analyzed 

here (Andalusia) can provide preliminary trends for other European regions with similar 

waste management scheme (landfill-dominated). Taking this in mind, and assuming other 

variables are similar, the results suggest that setting up WtE plants in regions with high 

incentive tariff could be more easily implemented, for instance in Italy with a tariff of 88.74 

€/MWhe (Arena et al., 2015). Clearly, this is just a rough indication since labor and 

transport costs in Italy are higher than those assumed for Andalusia and the gate fee in 

Italy varies from about 80 €/t to about 120 €/t (AER, 2010; CEWEP, 2016). To achieve 

more accurate estimations, all the variables have to be taken into account at once. By 

doing so, the economic model developed in this work with the Italian parameters shows 

that WtE plants are profitable in that country, especially in regions with the highest gate 

fee. Considering Romania, at a first glance the most advantageous WtE scenario is 

incineration because of the low transportation cost in that country, but the gate fee in this 

country is 27 €/t since 2016 (CEWEP, 2016). Therefore, it is concluded from the sensitivity 

analysis made that the gate fee in Romania has to be higher before the implementation of 

profitable schemes based on incineration can be made.  
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Figure 11. Sensitivity analysis of the IRR to the influential parameters in the economic 

assessment considering a ±20% of variability. 

 

Figure 12 shows the sensitivity of the differential GHG impact for an interval from 0% to 

95% of biogas collection. The differential GHG impact varies from ±70% in the case of the 

FBG/ICE to ±84% in the case of FBG/ORC. However, all configurations achieve a climate 

benefit as far as 95% of the biogas is collected in the landfill site. 

 

Figure 12. Sensitivity analysis of the differential GHG impact to the ratio of biogas 

collected in landfill site. 
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3.5. Discussion 

In the present study, the GHG emissions associated to gasification technology are even 

lower than those to incineration. Therefore, the replacement of the landfill for a WtE 

system could result in an environmental benefit in terms of GHG emissions. Cailean and 

Teodosiu (2016) published an assessment of the Romanian solid waste management 

system based on sustainable development indicators. Table 9 shows some of the 

indicators for Romania and they are compared with Andalusian and Serbian indicators 

(Stanisavljevic et al., 2012). Although Andalusia has a much higher GDP (+70% regarding 

Romania and +80% regarding Serbia) and MSW generation ratio (+30% regarding 

Romania and +20% regarding Serbia) indicating Andalusia is a more developed region 

than those Southern European countries, the MSW ratio to landfilling is similar (-18% 

regarding Romania and -21% regarding Serbia) and very far of the European average 

(30%). Moreover, the carbon footprint associated to landfilling is also similar (-18% 

regarding Romania and -28% regarding Serbia). 

 

Table 9. Comparison between Andalusia and Southern European countries (Romania and 

Serbia). 

 

Andalusia 

(Spain) 

(Eurostat) 

Romania (Cailean 

and Teodosiu, 2016) 

Serbia (Stanisavljevic 

et al., 2012) 

GDP (€/capita) 17,263 (2016) 4,800 (2013) 4,000 (2010) 

MSW generation 

(kg MSW/capita) 
375 (2016) 272 (2013) 317 (2010) 

Waste to landfilling 

(%) 
79 96 ≈100 

Landfill carbon 

footprint 

(t CO2 eq./t MSW) 

0.45 0.55 0.63 

 

In the sensitivity analysis, wholesale electricity tariff was found to have the larger impact to 

the IRR. Considering the transport cost in Southern European countries, results achieved 

in Andalusia for the incineration plants could be applicable in countries like Cyprus, Croatia 
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and Romania (15, 10 and 5 € per hour and worker, respectively (Eurostat, 2015)). 

However, the gate fee for landfilling should be increased in Romania (currently 11-27 €/t 

(CEWEP, 2016)) and implemented in Croatia and Cyprus. In the case of the gasification 

schemes and considering both labor costs and wholesale electricity tariff, results achieved 

in Andalusia could be applicable in countries like Portugal and Greece but an increase in 

the gate fee would be necessary in both countries (CEWEP, 2016). From the differential 

GHG impact point of view, the GHG reduction would be achieved in all the European 

countries selected regardless the ratio of biogas collected in the landfill site. Moreover, 

considering the landfilling ratios and/or the content of organic matter in the MSW of these 

countries (EEA reports, 2013), similar GHG reduction can be expected in countries like 

Cyprus, Greece, Croatia and Malta. 

 

4. Summary and conclusions 

This study assesses the benefits of implementing gasification technologies in countries 

with dominant landfilling in Europe and where electricity is the main target from the thermal 

valorization point of view (i.e. low heat demand), i.e., Southern European countries. 

Various WtE schemes have been considered, from incineration to different options based 

on gasification. The study includes both techno-economic and GHG impact and is mainly 

focused on Andalusia, a region located in the south of Spain where 80% of the MSW 

generated in MBT plants are landfilled. The results are extended to consider other 

Southern European landfill-dominated countries (Italy, Croatia, Romania, Portugal and 

Greece) by applying a sensitivity analysis. The main conclusions are: 

 The replacement of landfill disposal by WtE schemes in landfill-dominated 

European countries is positive from the environmental point of view for all WtE 

options analyzed, since they provide GHG reduction potential compared to 

landfilling 

 Gasification-based compare favorably with incineration-based WtE plants. Among 

gasification-based WtE plants, the combined use of ORC and ICE gives the higher 

profitability for a given gate fee. ICE is by far the best option if the power obtained 

from 1 ton of refuse is also considered, due to much higher electrical efficiency.  

However ORC seems to be a better option in the short-term due to its higher 

technical reliability. 
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 In the case study of Andalusia, the gasification-based WtE plants have been 

designed as integrated with the existing MBT plants (ranging from 1.6 to 58.5 

MWth). For incineration-based WtE plants, an optimal allocation has been obtained 

resulting in two centralized WtE plants with power outputs of 49 and 48 MWe. 

 The gate fee is the main factor affecting profitability in WtE schemes. Calculations 

indicate that in Andalusia the gate fee has to be triple to make projects of 

gasification-based WtE plants profitable (IRR 15%). Otherwise, landfilling will 

dominate the MSW disposal in the next years despite the environmental 

advantages of the WtE schemes discussed. 

 Considering the differences along Southern European countries, gasification plants 

would be economically favored in Portugal, Greece and Andalusia (Southern 

Spain). 

 Southern European countries, regardless their economic development, have 

comparable GHG impact results thanks to their similar landfill carbon footprint. 
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List of symbols 

ep             emissions from processing (kg CO2 eq./t MSW) 

et             emissions from feedstock transport (kg CO2 eq./t MSW) 

eash          emissions from ash treatment (kg CO2 eq./t MSW) 

y1             specific electricity production from landfill biogas (MWhe/t MSW refuse) 

y2             specific electricity production from incineration (MWhe/t MSW refuse) 

y3             specific electricity production from gasification (MWhe/t MSW refuse) 

Greek letters 

β                Biogenic fraction in the feedstock 

Abbreviations 

DOC        Degradable organic carbon 

E                Global GHG emissions (kg CO2 eq./t MSW) 

Elandfill          Global GHG emissions in the landfilling (kg CO2 eq./t MSW) 

EWtE            Global GHG emissions in the waste-to-energy systems (kg CO2 eq./t MSW) 

EF              Fossil reference (t CO2 eq./MWh) 

EPA            U.S. Environmental Protection Agency 

FBG           Fluidized bed gasifier 

FBG/ICE    Fluidized bed gasifier with internal combustion engine 

FBG/ORC  Fluidized bed gasifier with organic Rankine cycle 

GDP          Gross domestic product (€/capita) 

GG             Grate gasifier 

GC        Grate combustor 

GC/SRC     Grate combustor with steam Rankine cycle  

GG/SRC     Grate gasifier with steam Rankine cycle  

GHG           Greenhouse gases 

ICE        Internal combustion engine 

IPCC          Intergovernmental panel on climate change 

IRR            Internal return rate 

LCA            Life cycle assessment 

LHV            Lower heating value 
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MBT            Mechanical and biological treatment 

MSW           Municipal solid waste 

ORC         Organic Rankine cycle 

RDF            Refuse derived fuel 

RED           Renewable energy directive 

SRC        Steam Rankine cycle 

TIC             Total investment costs 

TOC           Total operational costs 

USA           United States of America 
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Paper VI 

 

Dynamic assessment of Waste-to-Energy schemes in current European landfill-

dominated regions 

 

In this paper, advanced Waste-to-Energy (WtE) schemes based on gasification are 

proposed in order to minimize the landfill disposal in European landfill-dominant regions. 

Technical development of advanced WtE plants (gasification-based), evolution of waste 

management schemes according to realistic European targets and electricity production 

mix, as well as the environmental impact to a changing European society are considered 

in the paper. It has been accepted as conference proceedings in 201717. 

 

1. Introduction 

Even when European regulation has been encouraging landfill reduction in the last 

decades (Directive 2008/98/EC), 13 out of 28 EU countries still landfill more than 50% of 

their municipal solid waste (MSW), mainly located in Southern and Eastern Europe (Figure 

1). Landfill disposal requires the use of a not always available land and has several 

environmental impacts associated (land, atmosphere, hydrosphere and biosphere). In fact, 

recent studies determine the methane concentration in the atmosphere has dramatically 

rised in last decades. This methane is released from different sources but two thirds of the 

emissions are attributable to anthropogenic activities related to agriculture and waste 

management (Saunois et al., 2016, Global Carbon Project, 2001). Because of that, it is 

necessary to find alternatives to manage the huge amount of urban wastes going to landfill 

disposal in Southern and Eastern Europe. MSW refuse is the unsorted stream of MSW 

going currently to landfill disposal or incineration. MSW refuse usually contains a 

biodegradable fraction over 50% (IEA, 2012).  On the other hand, waste disposal 

(landfilling or mass-burnt incineration) should be replaced by waste-to-resource 

alternatives in order to reduce GHG emissions. In this study, advanced Waste-to-Energy 

                                                           
17

 Aracil C, Pedro Haro P, Fuentes-Cano D, Gómez-Barea A. Dynamic assessment of Waste-to-Energy 

schemes in current European landfill-dominant regions. EUBCE 2017.
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(WtE) schemes based on gasification are proposed in order to minimize the landfill 

disposal in European landfill-dominated regions. Technical development of advanced WtE 

plants, evolution of waste management schemes according to realistic European targets 

and electricity production mix, as well as the environmental impact to a changing 

European society are considered in the study. In order to do so, a previously developed 

dynamic GHG emission assessment methodology is used (Aracil et al. 2017). A dynamic 

assessment is crucial when comparing with a dynamic reference system (i.e. methane 

emissions are delayed several months or years after the landfilling of the wastes and the 

emissions continuing for at least 20 years more). Furthermore, the evolution of current 

waste management and electricity production needs to be modeled and is, therefore, 

included in the study.  

 

 

Figure 1. Landfilling ratios of MSW refuse in each European country (Eurostat, 2013) and 

specifically in two Spanish regions (South: Andalusia, North: The Basque Country). 

 

Up to now, only the identification of the potential energy recovery and discussion of the 

technical and economic feasibility of advanced WtE schemes had been developed. The 

results indicate that the production of electricity is a feasible option at short term and that 

the impact of using MSW refuse as feedstock is better than reported in the scarce existing 

literature. However, the economic results are strongly dependent on the gate fee and 

wholesale electric tariff for each country. The environmental aspects have not been fully 
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discussed considering the consequential impact. Up to our previous study (Aracil et al. 

2017), a dynamic assessment has not been made.  

 

2. Goal and scope 

The aim of this study is the dynamic GHG emission assessment of advanced WtE 

schemes based on gasification ir order to replace the landfill disposal. Three diferent 

configurations of advanced WtE plants according to the type of reactor and form of 

electricity production are proposed: grate gasifier with steam Rankine cycle (GG/SRC), 

fluidised bed gasifier with organic Rankine cycle (FBG/ORC) and FBG with internal 

combustion engine (FBG/ICE). The functional input unit is 1 ton of MSW refuse and the 

output is electricity. Figure 2 shows a simplified diagram of the WtE schemes proposed.  

 

 

Figure 2. Simplified diagrams of the WtE based on gasification plants proposed 

according to the gasification technology and the electricity production system.  
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3. Methodology 

The climate benefit indicator chosen for this study is the climate mitigation index (CMI) 

(Aracil et al., 2017) which compares the behavior of the WtE plant with the current MSW 

management, and production of products and services for a specific region (Table 1). 

 

Table 1. Summary of the main characteristics of the CMI 

 
Climate Mitigation Index (CMI) 

Based on AGWP (cumulative) 

Units -- 

Emissions included Biogenic and anthropogenic emissions 

Comparison BIO and BAU system for the same region 

Result Cumulative climate mitigation for a specific region 

 

Two different scenarios are taken into account: Scenario 1, in which the reference system 

(landfill) remains unaltered, and Scenario 2, in which there is an evolution towards landfill 

banning and decarbonization of the energy mix (Figure 3 and 4). 

 

 

Figure 3. Proposed scenarios in this study 
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Figure 4. The evolution of waste management schemes in Scenario 2. 

 

The case study for this study is the region of Andalusia in Southern Spain. The Spanish 

waste management scheme is based on recycling and landfilling and, to a lesser extent, 

on incineration. However, in Andalusia landfilling is dominant and incineration is not 

implemented, as commonly found in Southern and Eastern European countries.  

 

4. Results  

Figure 5 shows the CMI of the three advanced WtE plants (based on gasification) 

proposed in this study in Scenario 1 (a) and Scenario 2 (b). In scenario 1, there is a sharp 

reduction of the index from positive to negative between years 3 to 8 depending on the 

plant configuration achieving the best results the FBG with ICE configuration and the worst 

the FBG with ORC configuration. Then the trends increase towards the climate worsening 

(from negative to positive) between years 65 and 80 for FBG/ORC and GG/SRC options. 

The climate mitigation index in the FBG/ICE option is negative from year 8. The results are 

according to the energy efficiency. The highest efficiency, the highest climate mitigation. In 

scenario 2, the period of climate mitigation is shortened and all the options, including 

FBG/ICE, achieve the climate worsening in the last years when the climate impact from 

the incenration is avoided. In all cases, the highest climate mitigation is achieved at a short 

time (first 20 years) since the transient emissions from the landfill are concentrated around 

20 years after the landfilling of the MSW refuse.  

 

2015                                                                              2020 
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Figure 5. Climate mitigation index (CMI) of the three advanced WtE plants proposed 

based on gasification in Scenario 1 (a) and Scenario 2 (b) 

 

5. Conclusions 

The results reveal that the incorporation of gasification-based WtE plants in dominated-

landfill European countries has a positive climate impact compared to current waste 

management in the short term. The long-term climate impact is, however, not secure since 

it depends on the evolution of the reference system in the analyzed region. In fact, if the 

evolution towards energy recovery (incineration) in a landfill-dominated country is 

considered (scenario 2), a climate worsening is achieved for all the gasification-based 

configurations at a long term. Among the assessed configurations, the FBG/ICE 

configuration achieves the best climate benefit since has the highest energy efficiency. 
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