Optimización de funciones DC. El algoritmo DCA

Presentado por:
Carlos Valverde Martín

Supervisado por:
Dr. Rafael Blanquero Bravo
Dr. Emilio Carrizosa Priego

FACULTAD DE MATEMÁTICAS
Departamento de Estadística e Investigación Operativa
Sevilla, 21 de junio de 2017

Contents

1 Introduction 5
2 Preliminaries of Convex Analysis 7
3 DC Functions and DC Sets. Properties 11
3.1 DC Functions and DC Sets 11
3.2 Properties of DC Functions 15
3.3 Norm of a DC Function 24
3.4 Non-uniqueness of DC Decomposition 27
4 DC Programming. The DCA Algorithm 29
4.1 Conjugate Functions and Properties 29
4.2 Duality in DC Programming 36
4.3 Optimality Conditions for DC Programming 37
4.3.1 Global Optimality for DC Programming 37
4.3.2 Local Optimality for DC Programming 41
4.4 The DCA Algorithm 43
4.4.1 Description of DCA for general DC programs 44
4.4.2 Convergence of DCA for general DC programs 46
4.5 Polyhedral DC optimization problems 55
5 Applications of DCA 61
5.1 The trust-region subproblem (TSRP) 61
5.2 Least-squares fitting by circles 63

Chapter 1

Introduction

In recent years there has been a very active research in nonconvex programming, because most real life optimization problems are nonconvex. DC programming constitutes the backbone of smooth/nonsmooth nonconvex programming and global optimization.

The focus of this work is on DC Algorithm, which was first introduced by Pham Dinh Tao in 1985 as an extension of his subgradients algorithms to DC programming.

This work is structured in four chapters apart from this introduction. In Chapter 2, we provide the necessary theory about convex analysis. In Chapter 3, properties of DC sets and DC functions are introduced. Then, in Chapter 4, DC Programming and DCA are explained in detail. Finally, in Chapter 5, some applications of DCA are shown, using Python to compare results with other algorithms.

Chapter 2

Preliminaries of Convex Analysis

In this chapter we state some properties of convex functions which will be needed along this work. We can find all these properties in [7].
Definition 2.0.1. A set $C \subset \mathbb{R}^{n}$ is convex if $\forall x_{1}, x_{2} \in C$ and $\lambda \in[0,1]$ we have

$$
(1-\lambda) x_{1}+\lambda x_{2} \in C .
$$

Definition 2.0.2. A polyhedral convex set $C \subset \mathbb{R}^{n}$ is a set which can be expressed as the intersection of some finite collection of closed half-spaces, i.e., if C is of the form:

$$
C=\left\{x \in \mathbb{R}^{n}:\left\langle b_{i}, x\right\rangle \leq \beta_{i}, \quad i=1, \ldots, m\right\} .
$$

Definition 2.0.3. Let $M=\left\{a_{1}, \ldots, a_{m}\right\} \subset \mathbb{R}^{n}$ be a finite point set. We define the convex hull of M, denoted by $\operatorname{co}(M)$, as the smallest convex set that contains M. Expressing as a single formula, the convex hull is the set:

$$
\operatorname{co}(M)=\left\{\sum_{i=1}^{m} \lambda_{i} a_{i}: \lambda_{i} \geq 0, i=1, \ldots, m, \sum_{i=1}^{m} \lambda_{i}=1\right\} .
$$

Definition 2.0.4. Let $f: C \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ and C be a convex set. The function f is convex if $\forall x_{1}, x_{2} \in C$ and $\lambda \in[0,1]$:

$$
f\left((1-\lambda) x_{1}+\lambda x_{2}\right) \leq(1-\lambda) f\left(x_{1}\right)+\lambda f\left(x_{2}\right)
$$

Definition 2.0.5. A function $f: C \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$, where C is a convex set, is said to be strictly convex if

$$
\begin{equation*}
f\left((1-\lambda) x_{1}+\lambda x_{2}\right)<(1-\lambda) f\left(x_{1}\right)+\lambda f\left(x_{2}\right), \quad \forall x_{1}, x_{2} \in C, \quad 0<\lambda<1 . \tag{2.1}
\end{equation*}
$$

Definition 2.0.6. Let $\rho \geq 0$ and $C \subset \mathbb{R}^{n}$ be a convex set. A function $f: C \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is ρ-convex if

$$
f\left((1-\lambda) x_{1}+\lambda x_{2}\right) \leq(1-\lambda) f\left(x_{1}\right)+\lambda f\left(x_{2}\right)-\frac{\lambda(1-\lambda)}{2} \rho\left\|x_{1}-x_{2}\right\|^{2}
$$

for every $x_{1}, x_{2} \in C, \quad 0<\lambda<1$. We also define the modulus of strong convexity of f on C, denoted by $\rho(f, C)$ or $\rho(f)$ if $C=X$ as

$$
\rho(f, C)=\sup _{\rho \geq 0}\left\{f-\frac{\rho}{2}\|\cdot\|^{2} \text { is convex on } C\right\} .
$$

Proposition 2.0.1. Let $C \subset \mathbb{R}^{n}$ be an open convex set. A twice differentiable function $f: C \rightarrow \mathbb{R}$ is convex if and only if for every $x \in C$, its Hessian matrix, $\nabla^{2} f(x)$, is positive semi-definite, i.e. $u^{\prime} \nabla^{2} f(x) u \geq 0, \forall u \in \mathbb{R}^{n}$.

Definition 2.0.7. A convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ is proper if $f\left(x_{0}\right)<+\infty$ for at least one $x_{0} \in \mathbb{R}^{n}$ and $f(x)>-\infty$ for every $x \in \mathbb{R}^{n}$.
Definition 2.0.8. A norm $\|\cdot\|$ in \mathbb{R}^{n} is said to be monotonic in \mathbb{R}_{+}^{n} if

$$
\|x\| \leq\|y\| \quad \forall x=\left(x_{1}, \ldots, x_{n}\right), \quad \forall y=\left(y_{1}, \ldots, y_{n}\right), \quad 0 \leq x_{i} \leq y_{i}, \quad i=1, \ldots, n
$$

Definition 2.0.9. Given a norm $\|\cdot\|$, its dual norm, $\|\cdot\|_{*}$, is defined as:

$$
\left\|x^{*}\right\|_{*}=\max _{x \in B}\left\{\left\langle x^{*}, x\right\rangle\right\}
$$

where B denotes the unit ball of the norm $\|\cdot\|$.
Definition 2.0.10. A function $\gamma: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a gauge if there exists a closed convex set B, called the unit ball of γ, with the origin in its interior such that

$$
\gamma(x)=\inf \{t>0: x \in t B\}, \quad x \in \mathbb{R}^{n} .
$$

Remark 2.0.1. In particular, norms are those gauges with compact unit ball symmetric with respect to the origin.
Definition 2.0.11. Given a non-empty convex set C, we define its polar set, C° as:

$$
C^{\circ}=\left\{x \in \mathbb{R}^{n}:\langle u, x\rangle \leq 1, \forall u \in C\right\}
$$

Definition 2.0.12. Given a non-empty convex set C, we define its normal cone at $x \in C, N_{C}(x) a s$:

$$
N_{C}(x)=\left\{x^{*} \in \mathbb{R}^{n}:\left\langle x^{*}, x\right\rangle \geq\left\langle x^{*}, u\right\rangle, \forall u \in C\right\}
$$

Definition 2.0.13. Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $x \in \mathbb{R}^{n}$:

1. For given $g \geq 0$, we define the set

$$
\partial_{\varepsilon} g(x)=\left\{x^{*} \in \mathbb{R}^{n}: g(y) \geq g(x)+\left\langle x^{*}, y-x\right\rangle-\varepsilon, \quad \forall y \in \mathbb{R}^{n}\right\}
$$

to be the ε-subdifferential of g at x. The elements of the ε-subdifferential are called ε-subgradients.
2. For $\varepsilon=0, \partial_{0} g(x)$ is called subdifferential of g at x, and denoted $\partial g(x)$. If $\partial g(x)$ is not empty, g is said to be subdifferentiable at x. Besides, we will define

$$
\operatorname{dom} \partial g=\left\{x \in \mathbb{R}^{n}: \partial g(x) \neq \emptyset\right\}
$$

and

$$
\text { range } \partial g=\bigcup_{x \in \operatorname{dom} \partial g} \partial g(x) \text {. }
$$

3. Let \mathcal{C}^{0} denote the space of continuous real-valued functions on \mathbb{R}^{n}. We call

$$
\partial^{\gamma} g(x)=\left\{\psi \in \mathcal{C}^{0}: g(y) \geq g(x)+\psi(y)-\psi(x), \quad \forall y \in \mathbb{R}^{n}\right\}
$$

the γ-subdifferential of g at x.
Definition 2.0.14. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be an arbitrary function. The set

$$
\begin{equation*}
\text { epi } f=\left\{(x, t) \in \mathbb{R}^{n} \times \mathbb{R}: f(x)-t \leq 0\right\} \tag{2.2}
\end{equation*}
$$

is called the epigraph of f.
Definition 2.0.15. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ a convex function. The effective domain of f, which we denote by $\operatorname{dom} f$, is the set

$$
\begin{equation*}
\operatorname{dom} f=\left\{x \in \mathbb{R}^{n}: f(x)<+\infty\right\} \tag{2.3}
\end{equation*}
$$

Definition 2.0.16. A function $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is closed if for any closed set $F \subset \mathbb{R}^{n}$ the image $\varphi(F)$ is closed in \mathbb{R}.

Definition 2.0.17. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be lower semi-continuous if

$$
\begin{equation*}
f(x) \leq \lim _{n \rightarrow+\infty} f\left(x_{n}\right) \tag{2.4}
\end{equation*}
$$

for any sequence $\left\{x_{n}\right\}_{n \geq 1} \subseteq \mathbb{R}^{n}$ that converges to x.

Chapter 3

DC Functions and DC Sets. Properties

3.1 DC Functions and DC Sets

Definition 3.1.1. Let $C \subset \mathbb{R}^{n}$ be a convex set. A function $f: C \rightarrow \mathbb{R}$ is called DC in C if there exist two convex functions $g, h: C \rightarrow \mathbb{R}$ such that f can be expressed in the form

$$
\begin{equation*}
f(x)=g(x)-h(x) \tag{3.1}
\end{equation*}
$$

If $C=\mathbb{R}^{n}$, then f is called a $\boldsymbol{D C}$ function. Each representation of the form (3.1) is said to be a DC decomposition of f.

We call a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ locally DC if $\forall x_{0} \in \mathbb{R}^{n}, \exists \varepsilon>0$ such that f is DC in the ball $B\left(x_{0}, \varepsilon\right)=\left\{x \in \mathbb{R}^{n}:\left\|x-x_{0}\right\|<\varepsilon\right\}$.

The class of DC functions is very broad, since it includes, in particular:

- Convex and concave functions.
- Quadratic functions of the form $f(x)=x^{\prime} Q x$, where Q is a square matrix $n \times n$. For these functions there exist two square, positive semidefinite $n \times n$ matrices A, B such that $x^{\prime} Q x=x^{\prime} A x-x^{\prime} B x$, where $g(x)=x^{\prime} A x$ and $h(x)=x^{\prime} B x$ are the convex functions that appear in the DC decomposition.
- Inner product: $\langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)$

Definition 3.1.2. A set $N \subset \mathbb{R}^{n}$ is said to be a $\boldsymbol{D C}$ set if there exist convex functions $g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $N=\left\{x \in \mathbb{R}^{n}: g(x) \leq 0, h(x) \geq 0\right\}$.

Remark 3.1.1.

- Using the previous definition we can write N as follows $N=A \backslash B$, where $A=\left\{x \in \mathbb{R}^{n}: g(x) \leq 0\right\}$ and $B=\left\{x \in \mathbb{R}^{n}: h(x)<0\right\}$.
- Since $N=\left\{x \in \mathbb{R}^{n}: g(x) \leq 0, h(x) \geq 0\right\}$ can be written as the set $N=\{x \in$ $\left.\mathbb{R}^{n}: \max [g(x),-h(x)] \leq 0\right\}$ one has that a DC set can also be defined by the following DC inequality $N=\left\{x \in \mathbb{R}^{n}: g(x)-h(x) \leq 0\right\}$.

Surprisingly, DC sets are not so different from arbitrary closed sets ([1]), as shown in Theorem 3.1.1 below. First, some definitions and results are needed.

Definition 3.1.3. Let $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a strictly convex function and $F \subset \mathbb{R}^{n}$ a nonempty closed set. We define

$$
d^{2}(x)=\inf _{y \in F, x^{*} \in \partial h(x)}\left[h(y)-h(x)-\left\langle x^{*}, y-x\right\rangle\right]
$$

Lemma 3.1.1. Given a nonempty closed set $F \subset \mathbb{R}^{n}$. We have:

1. $d(x)=0, \forall x \in F$.
2. $d(x)>0, \forall x \notin F$.
3. If $x_{k} \rightarrow x$ and $d\left(x_{k}\right) \xrightarrow{k \rightarrow \infty} 0$, then $x \in F$.

Definition 3.1.4. Let F be as in Lemma 3.1.1 let $\theta>0$ and $r: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$be any function such that:

- $r(x)=0, \forall x \in F$
- $0<r(x) \leq \min \{\theta, d(x)\}, \forall x \notin F$

We define:

$$
g_{F}(x)=\sup _{y \notin F, x^{*} \in \partial h(y)}\left\{h(y)+\left\langle x^{*}, x-y\right\rangle+r^{2}(y)\right\}
$$

Proposition 3.1.1. Let $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be any given strictly convex function. Then for every closed set $F \subset \mathbb{R}^{n}$ the function $g_{F}(x)$ is closed, convex, finite everywhere and satisfies

$$
\begin{equation*}
F=\left\{x \in \mathbb{R}^{n}: g_{F}(x)-h(x) \leq 0\right\} \tag{3.2}
\end{equation*}
$$

Proof:

For the proof, see [6].

Theorem 3.1.1. Any closed set in \mathbb{R}^{n} is the projection on \mathbb{R}^{n} of a DC set in \mathbb{R}^{n+1}.
Proof:

From (3.2) it follows

$$
F=\left\{x \in \mathbb{R}^{n}: g_{F}(x)-h(x) \leq 0\right\}=\left\{x: \exists(x, t) \in \mathbb{R}^{n+1}, g_{F}(x) \leq t, h(x) \geq t\right\}
$$

Therefore, we conclude that F is the projection of $A \backslash B \subset \mathbb{R}^{n+1}$, where $A=$ $\left\{(x, t) \in \mathbb{R}^{n+1}: g_{F}(x) \leq t\right\}$ and $B=\left\{(x, t) \in \mathbb{R}^{n+1}: h(x)<t\right\}$.

As a consequence, we will now show that every optimization problem dealing with DC functions, i.e. every DC optimization problem can be written as an optimization problem which has a linear objective function and only two constraints, one of them being a convex inequality, the other being reverse convex, that is to say, it is expressed in the form $h(x) \geq 0, h$ being convex. This type of problem is called canonical DC program. Obviously, both constraints can also be written as a DC set.

Let us study these results in more detail.
Definition 3.1.5. A canonical DC program is an optimization problem of the form

$$
\left\{\begin{aligned}
\min & c^{\prime} x \\
\text { s.t. } & g(x) \leq 0 \\
& h(x) \geq 0
\end{aligned}\right.
$$

where $c \in \mathbb{R}^{n} ; g, h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are convex.
Theorem 3.1.2. Every DC programming problem of the form

$$
\left\{\begin{array}{cl}
\min & f_{0}(x) \tag{3.3}\\
\text { s.t. } & x \in R \\
& f_{i}(x) \leq 0 \quad i=1, \ldots, m
\end{array}\right.
$$

where R is defined by a finite system of convex inequalities $\varphi_{j}(x) \leq 0$, for $j \in J \subset \mathbb{N}$ and $f_{i}, i=0, \ldots, m$ are DC functions with DC decompositions $f_{i}=g_{i}-h_{i}, i=$ $0, \ldots, m$, can be converted into an equivalent canonical DC program.

Proof:

By introducing an additional variable t, we see that the previous problem is equivalent to the following one:

$$
\begin{cases}\min & t \\ \text { s.t. } & \varphi_{j}(x) \leq 0, \quad j \in J \\ & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\ & f_{0}(x)-t \leq 0\end{cases}
$$

Therefore, we have obtained a linear objective function. Furthermore the DC inequalities $f_{0}(x)-t \leq 0$ and $f_{i}(x) \leq 0, i=1, \ldots, m$ can be replaced by a single one:

$$
r(x, t)=\max _{i=1, \ldots, m}\left(f_{0}(x)-t, f_{i}(x)\right) \leq 0
$$

We note that $r(x, t)$ is a DC function, since we can write $r(x, t)$ as

$$
r(x, t)=\max \left\{g_{0}(x)+\sum_{i=1}^{m} h_{i}(x)-t, g_{i}(x)+\sum_{j \neq i} h_{j}(x), i=1, \ldots, m\right\}-\sum_{i=0}^{m} h_{i}(x)
$$

and thus,

$$
\begin{equation*}
r(x, t)=p(x, t)-q(x, t) \leq 0 \tag{3.4}
\end{equation*}
$$

where $p(x, t)=\max \left\{g_{0}(x)+\sum_{i=1}^{m} h_{i}(x)-t, g_{i}(x)+\sum_{j \neq i} h_{j}(x), i=1, \ldots, m\right\}$ and $q(x, t)=\sum_{i=0}^{m} h_{i}(x)$ are convex.

If we now introduce a new additional real variable z, we see that (3.4) is equivalent to the system:

$$
\begin{aligned}
p(x, t)-z & \leq 0 \\
q(x, t)-z & \geq 0
\end{aligned}
$$

The first inequality is convex and the second reverse convex.
Finally, setting the functions

$$
g(x, t, z):=\max _{j \in J}\left(p(x, t)-z, \varphi_{j}(x)\right) \text { and } h(x, t, z):=q(x, t)-z,
$$

we see that Problem (3.3) is transformed into an equivalent canonical DC program.

Furthermore, as we have said before, a canonical problem can be written as an optimization problem of the form

$$
\left\{\begin{array}{cc}
\min & c^{\prime} x \\
\text { s.t. } & x \in N
\end{array}\right.
$$

where $N=\{x: g(x) \leq 0, h(x) \geq 0\}$ is a DC set.

3.2 Properties of DC Functions

Let us now deal with some basic properties of DC functions:

Proposition 3.2.1. Let f and $f_{i}, i=1, \ldots, m$ be $D C$ functions. Then, the following functions are also DC:

1. $\sum_{i=1}^{m} \lambda_{i} f_{i}(x), \lambda_{i} \in \mathbb{R}, i=1, \ldots, m$
2. $\max _{i=1, \ldots, m} f_{i}(x)$
3. $\min _{i=1, \ldots, m} f_{i}(x)$
4. $|f(x)|$
5. $f^{+}(x):=\max \{0, f(x)\}$
6. $f^{-}(x):=\min \{0, f(x)\}$

Proof:
Note that the results above will be proved constructively. Let us assume that $f_{i}=g_{i}-h_{i}$ is a DC descomposition of $f_{i}, \forall i$.
1.

$$
\begin{aligned}
\sum_{i} \lambda_{i} f_{i} & =\left(\sum_{i: \lambda_{i} \geq 0} \lambda_{i} g_{i}+\sum_{i: \lambda_{i}<0}\left(-\lambda_{i}\right) h_{i}\right)-\left(\sum_{i: \lambda_{i} \geq 0} \lambda_{i} h_{i}+\sum_{i: \lambda_{i}<0}\left(-\lambda_{i}\right) g_{i}\right) \\
& =\tilde{g}(x)-\tilde{h}(x)
\end{aligned}
$$

with

$$
\tilde{g}(x)=\sum_{i: \lambda_{i} \geq 0} \lambda_{i} g_{i}+\sum_{i: \lambda_{i}<0}\left(-\lambda_{i}\right) h_{i} \quad \text { and } \quad \tilde{h}(x)=\sum_{i: \lambda_{i} \geq 0}\left(-\lambda_{i}\right) h_{i}+\sum_{i: \lambda_{i}<0} \lambda_{i} g_{i}
$$

convex functions, because they are a linear combination of convex functions.
2. We know that $f_{i}(x)=g_{i}(x)-h_{i}(x)=g_{i}(x)+\sum_{\substack{j=1 \\ j \neq i}}^{m} h_{j}(x)-\sum_{j=1}^{m} h_{j}(x)$.

Since the last sum does not depend on i, one has the following expression:

$$
\begin{aligned}
\max _{i=1, \ldots, m} f_{i}(x) & =\max _{i=1, \ldots, m}\left(g_{i}(x)-h_{i}(x)\right)= \\
& =\max _{i=1, \ldots, m}\left[g_{i}(x)+\sum_{\substack{j=1 \\
j \neq i}}^{m} h_{j}(x)\right]-\sum_{j=1}^{m} h_{j}(x)= \\
& =\tilde{g}(x)-\tilde{h}(x),
\end{aligned}
$$

where $\tilde{g}(x)=\max _{i=1, \ldots, m}\left[g_{i}(x)+\sum_{\substack{j=1 \\ j \neq i}}^{m} h_{j}(x)\right]$ and $\tilde{h}(x)=\sum_{j=1}^{m} h_{j}(x)$. This is a DC decomposition because the finite sum and the maximum of convex functions are convex functions.
3. Analogously,
$\min _{i=1, \ldots, m} f_{i}(x)=-\max _{i=1, \ldots, m}-f_{i}(x)=-\max _{i=1, \ldots, m}\left(h_{i}(x)-g_{i}(x)\right)$, where g_{i} and h_{i} are convex functions.

Hence, $-f_{i}$ is a DC function. Using item 2 we have $\max _{i=1 \ldots m}-f_{i}(x)$ is DC and finally we obtain $-\max _{i=1, \ldots, m}-f_{i}(x)=\min _{i=1, \ldots, m} f_{i}(x)$ is DC by item 1 .
4. We study separately the cases $f(x) \geq 0$ and $f(x)<0$:

- Assume that $g(x) \geq h(x)$. Then

$$
\begin{aligned}
|f(x)| & =|g(x)-h(x)|=g(x)-h(x)=2 g(x)-(g(x)+h(x))= \\
& =2 \max \{g(x), h(x)\}-(g(x)+h(x)) .
\end{aligned}
$$

- In this case we have $g(x)<h(x)$ so,

$$
\begin{aligned}
|f(x)| & =|g(x)-h(x)|=h(x)-g(x)=2 h(x)-(g(x)+h(x))= \\
& =2 \max \{g(x), h(x)\}-(g(x)+h(x)) .
\end{aligned}
$$

Thus the DC decomposition of $|f|$ is given by the following expression $|f(x)|=$ $2 \max \{g(x), h(x)\}-(g(x)+h(x))$.
5. Applying item 2 to the functions $f_{1}(x)=0$ and $f_{2}(x)=f(x)$, we obtain

$$
f^{+}(x)=\max \{0, f(x)\}=\max \{0, g(x)-h(x)\}=\max \{g, h\}-h .
$$

Hence the DC decomposition for f^{+}is

$$
\begin{equation*}
\max \{0, g-h\}=\max \{g, h\}-h \tag{3.5}
\end{equation*}
$$

6. To prove that, we just use the same previous functions and item 3 to obtain

$$
\min \{0, g-h\}=g-\max \{g, h\}
$$

The next result states that any locally DC function is DC. To show this, a technical result is needed, Proposition 3.2.2.

Proposition 3.2.2. Let $g: C \rightarrow \mathbb{R}$ be any function defined on a convex set C. If $\forall x \in C, \exists U$, neighbourhood of x such that g is convex on $U \cap C$, then g is convex on C.

Proof:

For the proof, the reader is referred to [6].

Proposition 3.2.3. Every locally DC function is $D C$.
Proof:
In the general case, see [4].

Now, we give the proof for the particular case in which D is assumed to be compact.

Proposition 3.2.4. A locally DC function on a compact convex set D is $D C$ on D.
Proof:
D is a compact set, so there exist $\left\{x_{1}, \ldots, x_{k}\right\} \subset D$ such that the neighbourhoods of x_{i}, U_{i}, cover $D, \forall i$. Thus, f is DC on each U_{i} and $f=\left(f+h_{i}\right)-h_{i}$, with $h_{i}: \mathbb{R} \rightarrow \mathbb{R}^{n}$ convex on U_{i}, hence $f+\left.h_{i}\right|_{U_{i}}$ is convex for each i.

Let $h=\sum_{i=1}^{k} h_{i}$ be a convex function and consider the function $g=f+h$.
Then $\left.g\right|_{U_{i}}=f+\left.h\right|_{U_{i}}=f+\left.\sum_{i=1}^{k} h_{i}\right|_{U_{i}}=f+\left.h_{i}\right|_{U_{i}}+\left.\sum_{j \neq i} h_{j}\right|_{U_{i}}$ is convex.
Therefore, by Proposition 3.2.2 one obtains that g is convex on D and implies that $f=g-h$ is DC.

Proposition 3.2.5. Every function $f \in C^{2}$ is $D C$ on any compact convex set D.
Proof:
It suffices to show that for sufficiently large ρ the function

$$
g(x)=f(x)+\frac{1}{2} \rho\|x\|^{2}
$$

is convex on D.
Let ρ be so large that $-\min \left\{u^{\prime} \nabla^{2} f(x) u: x \in D,\|u\|=1\right\} \leq \rho$.
Then:

$$
\begin{aligned}
u^{\prime} \nabla^{2} g(x) u & =u^{\prime} \nabla^{2}\left(f(x)+\frac{1}{2} \rho\|x\|^{2}\right) u=u^{\prime} \nabla^{2} f(x) u+\rho\|u\|^{2}= \\
& =u^{\prime} \nabla^{2} f(x) u+\rho \geq \min \left\{u^{\prime} \nabla^{2} f(x) u\right\}+\rho \geq-\rho+\rho=0
\end{aligned}
$$

Thus, $u^{\prime} \nabla^{2} g(x) u \geq 0, \forall u$. Hence, by Proposition 2.0.1, g is convex.
Therefore, $f(x)=g(x)-\frac{1}{2} \rho\|x\|^{2}$ is a DC function.

Proposition 3.2.6. Every function $f \in C^{2}$ is $D C$.
Proof:
This proposition is merely a consequence of Proposition 3.2.3.
Let us fix $x_{0} \in \mathbb{R}^{n}$ and let consider the compact set

$$
\bar{B}\left(x_{0}, \varepsilon\right)=\left\{x \in \mathbb{R}^{n}:\left\|x-x_{0}\right\| \leq \varepsilon\right\} .
$$

Since the lowest eigenvalue is continuous, $\nabla^{2} f(x)$ has the eigenvalues bounded in the compact $\bar{B}\left(x_{0}, \varepsilon\right)$.

Let be $\mu=-\min \left\{\lambda: \lambda\right.$ is an eigenvalue of $\nabla^{2} f(x)$ for some $\left.x \in \bar{B}\left(x_{0}, \varepsilon\right)\right\}$.
As in the proof of Proposition 3.2.5 it then follows that $f(x)+\frac{1}{2} \mu\|x\|^{2}$ is convex on $\bar{B}\left(x_{0}, \varepsilon\right)$.

Hence, $f(x)=\left(f(x)+\frac{1}{2} \mu\|x\|^{2}\right)-\frac{1}{2} \mu\|x\|^{2}, \forall x \in \bar{B}\left(x_{0}, \varepsilon\right)$, so f is DC on $\bar{B}\left(x_{0}, \varepsilon\right), \forall x_{0} \in \mathbb{R}^{n}$ which implies that f is DC on \mathbb{R}^{n}.

Proposition 3.2.7. Let $D \subset \mathbb{R}^{n}$ be a compact convex set. Then any continuous function f on D is the limit of a sequence of $D C$ functions on D which converges uniformly in D, in other words, for any continuous function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ and for any $\varepsilon>0$ there exists a DC function $\tilde{f}: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $|f(x)-\tilde{f}(x)| \leq \varepsilon, \forall x \in D$.

Proof:
This proposition is a consequence of the Stone-Weierstrass Theorem and the Weierstrass Approximation Theorem. Furthermore, polynomials in various variables in \mathbb{R}^{n} are dense on continuous functions space. Therefore, we can approximate any continuous function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by a polynomial function which is obviously a \mathcal{C}^{2} function and hence DC .

Proposition 3.2.8. Let $D_{1} \subset \mathbb{R}^{n}$ and $D_{2} \subset \mathbb{R}^{m}$ be convex sets such that D_{1} is open or closed and D_{2} is open. If $F_{1}: D_{1} \rightarrow D_{2}$ and $F_{2}: D_{2} \rightarrow \mathbb{R}^{k}$ are $D C$ functions, then $F_{2} \circ F_{1}: D_{1} \rightarrow \mathbb{R}^{k}$ is also a $D C$ function.

Proof:

It suffices to show that if $F=\left(f_{1}, \ldots, f_{m}\right): D_{1} \rightarrow D_{2}$ is DC, where $f_{i}: D_{1} \subset$ $\mathbb{R}^{n} \rightarrow \mathbb{R}$ are DC $\forall i=1, \ldots, m$ and $g: D_{2} \rightarrow \mathbb{R}$ is convex then $g\left(f_{1}, \ldots, f_{m}\right)$ is DC in D_{1}, because if we consider the DC function $F_{2}=g^{+}-g^{-}$, we have $g^{+} \circ F$ and $g^{-} \circ F$ are DC, so

$$
F_{2} \circ F=\left(g^{+}-g^{-}\right) \circ F=g^{+} \circ F-g^{-} \circ F
$$

is DC by Proposition 3.2.1.
Let $x \in D_{1}$ and $y=F(x) \in D_{2}$. It follows that g is a convex function, so $g(y)$ can be represented in a neighbourhood of y, U_{2}, as pointwise supremum of a family of affine functions:

$$
g(y)=\sup _{t} \ell_{t}
$$

where $\ell_{t}=a_{0 t}+a_{1 t} y_{1}+\ldots+a_{m t} y_{m}, y=\left(y_{1}, \ldots, y_{m}\right)$ and $M=\sup _{i, t}\left|a_{i t}\right|<+\infty$.
Let $f_{i}(x)=f_{i}^{+}(x)-f_{i}^{-}(x)$ in a neighbourhood of x, U_{1}, satisfying that $F\left(U_{1}\right) \subset$ U_{2}.

Then,

$$
\begin{aligned}
\ell_{t}\left(f_{1}, \ldots, f_{m}\right) & =a_{0 t}+a_{1 t} f_{1}+\ldots+a_{m t} f_{m}= \\
& =a_{0 t}+\sum_{i=1}^{m} a_{i t} f_{i}= \\
& =a_{0 t}+\sum_{i=1}^{m} a_{i t}\left(f_{i}^{+}-f_{i}^{-}\right)= \\
& =a_{0 t}+\sum_{i=1}^{m} a_{i t} f_{i}^{+}-\sum_{i=1}^{m} a_{i t} f_{i}^{-}= \\
& =\left[a_{0 t}+\sum_{i=1}^{m}\left(M+a_{i t}\right) f_{i}^{+}+\sum_{i=1}^{m}\left(M-a_{i t}\right) f_{i}^{-}\right]-M \sum_{i=1}^{m}\left(f_{i}^{+}+f_{i}^{-}\right)= \\
& =p_{t}-q .
\end{aligned}
$$

with p_{t} and q convex.
Therefore, $g\left(f_{1}, \ldots, f_{m}\right)=\sup _{t} \ell_{t}\left(f_{1}, \ldots, f_{m}\right)=\sup _{t}\left(p_{t}-q\right)=p-q$, i.e. $g\left(f_{1}, \ldots, f_{m}\right)$ is locally DC on D_{1} and by Proposition 3.2.4, $g \circ F$ is DC on D_{1}.

Proposition 3.2.9. Let $f_{i}, i=1, \ldots$, m be DC functions. Then $\prod_{i=1}^{m} f_{i}(x)$ is a DCfunction too.

Proof:
It suffices to prove the result for two DC functions f_{1} and f_{2}.
We consider the function

$$
\begin{aligned}
P: & \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& (s, t) \mapsto P(s, t)=s t
\end{aligned}
$$

One has that P is a DC function with the following DC decomposition $P(s, t)=$ $s t=\frac{1}{4}(s+t)^{2}-\frac{1}{4}(s-t)^{2}$. Then using Proposition 3.2.8 we have that $P\left(f_{1}, f_{2}\right)$ is a DC function.

We build now a DC decomposition for a polynomial function.
Proposition 3.2.10. Let $f(x)=\prod_{i=1}^{m}\left(x-y_{i}\right)$ be, with $y_{1}<\ldots<y_{m}$. Then f is $D C$ on [y_{1}, y_{m}] with DC decomposition

$$
\begin{equation*}
f(x)=\left(f(x)+\frac{1}{2} \mu x^{2}\right)-\frac{1}{2} \mu x^{2}, \tag{3.6}
\end{equation*}
$$

where $\mu=m(m-1)\left|y_{m}-y_{1}\right|^{m-2}$.
Proof:
For each i we have that $x-y_{i}$ is a affine function, so it is DC.
Furthermore using Proposition 3.2.9 we can affirm that $f(x)=\prod_{i=1}^{m}\left(x-y_{i}\right)$ is DC and Proposition 3.2.6 gives us the expression in 3.6 since f is a polynomial and hence
a \mathfrak{C}^{2} function.
It just remains to calculate the value of μ that satisfies $f^{\prime \prime}(x)+\mu \geq 0$ (see proof of Proposition 3.2.6):

We consider $f(x)=\prod_{i=1}^{m}\left(x-y_{i}\right)$. Then,

$$
f^{\prime}(x)=\sum_{i=1}^{m} \prod_{j \neq i}\left(x-y_{j}\right)=\sum_{i=1}^{m} \frac{f(x)}{x-y_{i}}=f(x)\left(\sum_{i=1}^{m} \frac{1}{x-y_{i}}\right)
$$

and

$$
\begin{aligned}
f^{\prime \prime}(x) & =f(x)\left(\sum_{i=1}^{m}\left(\frac{-1}{\left(x-y_{i}\right)^{2}}\right)\right)+f^{\prime}(x)\left(\sum_{i=1}^{m} \frac{1}{x-y_{i}}\right) \\
& =f(x)\left(\sum_{i=1}^{m}\left(\frac{-1}{\left(x-y_{i}\right)^{2}}\right)\right)+f(x)\left(\sum_{i=1}^{m} \frac{1}{x-y_{i}}\right)^{2} \\
& =f(x)\left(-\sum_{i=1}^{m}\left(\frac{1}{\left(x-y_{i}\right)^{2}}\right)+\sum_{i=1}^{m}\left(\frac{1}{\left(x-y_{i}\right)^{2}}\right)+2 \sum_{\substack{i, j=1 \\
j \neq i}}^{m} \frac{1}{\left(x-y_{i}\right)\left(x-y_{j}\right)}\right) \\
& =2 \sum_{\substack{i, j=1 \\
j \neq i}}^{m} \frac{f(x)}{\left(x-y_{i}\right)\left(x-y_{j}\right)} \\
& =2 \sum_{\substack{i, j=1 \\
j \neq i}}^{m} \prod_{k \neq i, j}\left(x-y_{k}\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& f^{\prime \prime}(x)=2 \sum_{\substack{i, j=1 \\
j \neq i}}^{m} \prod_{k \neq i, j}\left(x-y_{k}\right) \geq-2 \sum_{\substack{i, j=1 \\
j \neq i}}^{m} \prod_{k \neq i, j}\left|x-y_{k}\right| \geq-2 \sum_{\substack{i, j=1 \\
j \neq i}}^{m} \prod_{k \neq i, j}\left|y_{m}-y_{1}\right|= \\
& -2 \sum_{\substack{i, j=1 \\
j \neq i}}^{m}\left|y_{m}-y_{1}\right|^{m-2}=-2\binom{m}{2}\left|y_{m}-y_{1}\right|^{m-2}=-m(m-1)\left|y_{m}-y_{1}\right|^{m-2}
\end{aligned}
$$

Thus, $\mu=m(m-1)\left|y_{m}-y_{1}\right|^{m-2}$.

Corollary 3.2.1. Let $f(x)=-\prod_{i=1}^{m}\left(x-y_{i}\right)$ be, with $y_{1}<\ldots<y_{m}$. Then f is $D C$ with DC decomposition

$$
f(x)=\frac{1}{2} \mu x^{2}-\left(f(x)+\frac{1}{2} \mu x^{2}\right),
$$

where $\mu=m(m-1)\left|y_{m}-y_{1}\right|^{m-2}$.
As application, we will show that the following statements can be rewritten as a DC set:

- $x_{j} \in \mathbb{Z}$
- $L_{j} \leq x_{j} \leq U_{j}$
$\forall j \in J$, where J is a set of subscripts.
These two statements are equivalents to:

$$
\begin{gathered}
\left(x_{j}-L_{j}\right)\left(x_{j}-\left(L_{j}+1\right)\right) \ldots\left(x_{j}-\left(U_{j}-1\right)\right)\left(x_{j}-U_{j}\right)=0 \Leftrightarrow \\
\Leftrightarrow\left\{\begin{array}{l}
\left(x_{j}-L_{j}\right)\left(x_{j}-\left(L_{j}+1\right)\right) \ldots\left(x_{j}-\left(U_{j}-1\right)\right)\left(x_{j}-U_{j}\right) \leq 0 \\
\left(x_{j}-L_{j}\right)\left(x_{j}-\left(L_{j}+1\right)\right) \ldots\left(x_{j}-\left(U_{j}-1\right)\right)\left(x_{j}-U_{j}\right) \geq 0
\end{array} \Leftrightarrow\right. \\
\Leftrightarrow\left\{\begin{array}{l}
F_{1}\left(x_{j}\right):=\left(x_{j}-L_{j}\right)\left(x_{j}-\left(L_{j}+1\right)\right) \ldots\left(x_{j}-\left(U_{j}-1\right)\right)\left(x_{j}-U_{j}\right) \leq 0 \\
F_{2}\left(x_{j}\right):=-\left(x_{j}-L_{j}\right)\left(x_{j}-\left(L_{j}+1\right)\right) \ldots\left(x_{j}-\left(U_{j}-1\right)\right)\left(x_{j}-U_{j}\right) \leq 0
\end{array}\right.
\end{gathered}
$$

$F_{1}\left(x_{j}\right)$ and $F_{2}\left(x_{j}\right)$ are the type of functions that appear in Proposition 3.2.10 and Corollary 3.2.1.

So, the DC set will be expressed as:

$$
\begin{gathered}
\left\{\begin{array}{l}
x_{j} \in \mathbb{Z}, \\
L_{j} \leq x_{j} \leq U_{j} .
\end{array} \forall j \in J, \text { where } J \text { is a set of subscripts. }\right\} \Leftrightarrow \\
\Leftrightarrow\left\{x_{j}:\left(F_{1}\left(x_{j}\right)+\frac{1}{2} \mu x_{j}^{2}\right)-\frac{1}{2} \mu x_{j}^{2} \leq 0\right\} \bigcap\left\{x_{j}: \frac{1}{2} \mu x_{j}^{2}-\left(F_{2}\left(x_{j}\right)+\frac{1}{2} \mu x_{j}^{2}\right) \leq 0\right\},
\end{gathered}
$$

where μ has the following expression as we have stated in Proposition 3.2.10 and Corollary 3.2.1.

$$
\mu=\left(U_{j}-L_{j}+1\right)\left(U_{j}-L_{j}\right)\left|U_{j}-L_{j}\right|^{U_{j}-L_{j}-1} .
$$

3.3 Norm of a DC Function

Below, we will see some results that allow us to give a DC decomposition of the norm of $f,\|f\|$, where f is a DC function. These results are based on the Definitions 2.0.8, 2.0.9, 2.0.10 and 2.0.11 that appear in Chapter2.

Lemma 3.3.1. Let the norm $\|\cdot\|$ be monotonic in \mathbb{R}_{+}^{n}. Then

$$
\begin{equation*}
\|z\|=\max _{u \in \mathbb{R}_{+}^{n}}\left\{\langle u, z\rangle:\|u\|_{*} \leq 1\right\} \quad \forall z \in \mathbb{R}_{+}^{n} \tag{3.7}
\end{equation*}
$$

Proof:
First at all, observe that $\left(\|\cdot\|_{*}\right)_{*}=\|\cdot\|$, and hence, by definition we have

$$
\left(\|z\|_{*}\right)_{*}=\|z\|=\max _{u \in \mathbb{R}^{n}}\left\{\langle u, z\rangle:\|u\|_{*} \leq 1\right\} \quad \forall z \in \mathbb{R}^{n}
$$

the optimal value for the optimization problem being attained at any u, subgradient of $\|\cdot\|$ at z.

Thus, it suffices to prove that for any $z \in \mathbb{R}_{+}^{n}$, there exists some non-negative subgradient, i.e.

$$
\begin{equation*}
\partial\|z\| \cap \mathbb{R}_{+}^{n} \neq \emptyset \quad \forall z \in \mathbb{R}_{+}^{n} \tag{3.8}
\end{equation*}
$$

Let $z \in \mathbb{R}_{+}^{n}$,

- Assume that z has all its components strictly positive. Let $u \in \partial\|z\|$. For any $i=1, \ldots, n$, let e_{i} the unit vector with 1 in its i-th coordinate and zeroes everywhere else. For $\tau>0$ sufficiently small, by the monotonicity of $\|\cdot\|$ and the definition of subgradient, one has

$$
0 \geq\left\|z-\tau e_{i}\right\|-\|z\| \geq-\tau u^{\prime} e_{i}
$$

Thus, $u \geq 0$ and (3.8) holds.

- Now, for an arbitrary $z \in \mathbb{R}_{+}^{n}$, take a sequence $\left\{z_{k}\right\}$ of componentwise strictly positive vectors converging to z, and, for each k, an arbitrary $u_{k} \in \partial\left\|z_{k}\right\|$.

Reasoning analogously as before, $u_{k} \geq 0, \forall k$. Moreover, the sequence $\left\{u_{k}\right\}$ is contained in a compact set, the dual unit ball, so it contains a subsequence converging to some u, which, by construction, is a non-negative subgradient of $\|\cdot\|$ at z.

Hence, (3.8) holds.

Lemma 3.3.2. Let $C \subset \mathbb{R}^{n}$ be a convex set. Let $\gamma: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a gauge in \mathbb{R}^{m} with unit ball B, such that $B^{\circ} \subset \mathbb{R}_{+}^{m}$. Let $f=\left(f_{1}, \ldots, f_{m}\right): C \rightarrow \mathbb{R}^{m}$ be a DC function with $D C$ decomposition known $f_{i}=g_{i}-h_{i}$, with g_{i}, h_{i} convex. For any $i=1, \ldots, m$, let $M_{i} \geq \gamma\left(e_{i}\right)$, where e_{i} is the i-th unit vector of \mathbb{R}^{m}. Then, $\gamma \circ f: C \rightarrow \mathbb{R}$ is a DC function and a DC decomposition for it is given by:

$$
\gamma \circ f=\left(\gamma \circ f+\sum_{i=1}^{m} M_{i} h_{i}\right)-\left(\sum_{i=1}^{m} M_{i} h_{i}\right)
$$

Proof:
First, observe that a finite $M_{i} \geq \gamma\left(e_{i}\right)$ can be chosen, since the origin is an interior point of B and, hence, the polar set $B^{\circ} \subset \mathbb{R}_{+}^{m}$ is bounded.

By Theorem 14.5 of [7], every gauge γ in \mathbb{R}^{m} can be written as a pointwise maximum of the affine functions φ_{u},

$$
\gamma(y)=\max _{u \in B^{\circ}} \varphi_{u}(y), \quad \forall y \in \mathbb{R}_{+}^{m}
$$

where $\varphi_{u}(y)=\langle u, y\rangle$.
Then,

$$
\begin{aligned}
\varphi_{u}(f) & =\langle u, f\rangle=\sum_{i=1}^{m} u_{i} f_{i}=\sum_{i=1}^{m} u_{i}\left(g_{i}-h_{i}\right)=\sum_{i=1}^{m} u_{i} g_{i}-\sum_{i=1}^{m} u_{i} h_{i}= \\
& =\left(\sum_{i=1}^{m} u_{i} g_{i}+\sum_{i=1}^{m}\left(M_{i}-u_{i}\right) h_{i}\right)-\left(\sum_{i=1}^{m} M_{i} h_{i}\right)
\end{aligned}
$$

Since $M_{i} \geq \gamma\left(e_{i}\right)=\max _{u \in B^{\circ}} u_{i}$ it follows that $\varphi_{u} \circ f$ can be written as the difference of two convex functions, namely $\varphi_{u} \circ f=p_{u}-q$ where

$$
\begin{gathered}
p_{u}=\sum_{i=1}^{m} u_{i} g_{i}+\sum_{i=1}^{m}\left(M_{i}-u_{i}\right) h_{i} \text { and } \\
q=\sum_{i=1}^{m} M_{i} h_{i}
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
\gamma \circ f & =\max _{u \in B^{\circ}} \varphi\left(f_{1}, \ldots, f_{m}\right)=\max _{u \in B^{\circ}}\left(p_{u}-q\right)=\left(\max _{u \in B^{\circ}} p_{u}\right)-q= \\
& =\left(\max _{u \in B^{\circ}}\left(\varphi_{u} \circ f+q\right)\right)-q=\left(\max _{u \in B^{\circ}}\left(\varphi_{u} \circ f\right)+q\right)-q= \\
& =(\gamma \circ f+q)-q
\end{aligned}
$$

and the result holds.
For more details of this proof, see [2].

Theorem 3.3.1. Let the norm $\|\cdot\|$ be monotonic in \mathbb{R}_{+}^{m}, and let define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}^{m}$ as a non-negative DC function on the convex set $C \subset \mathbb{R}^{n}$, with $D C$ decomposition $f=g-h$. Then a DC decomposition on C for $\|f\|$ is given by

$$
\|f\|=\|g-h\|=\left(\|g-h\|+\sum_{i=1}^{m}\left\|e_{i}\right\| h_{i}\right)-\left(\sum_{i=1}^{m}\left\|e_{i}\right\| h_{i}\right),
$$

where, for each $i=1, \ldots, m, e_{i}$ is the unit vector with 1 in its $i-$ th coordinate and zeroes everywhere else.

Proof:

Let γ be the gauge in \mathbb{R}^{m} defined as

$$
\gamma(z)=\max _{u \in \mathbb{R}_{+}^{m}}\left\{\langle u, z\rangle:\|u\|_{*} \leq 1\right\}, \quad \forall z \in \mathbb{R}^{m}
$$

Let $B_{\|\cdot\|}$ denote the unit ball of $\|\cdot\|$. Observe that

$$
\begin{aligned}
\left(B_{\|\cdot\|}^{\circ} \cap \mathbb{R}_{+}^{m}\right)^{\circ} & =\left\{x \in \mathbb{R}^{m}:\langle u, x\rangle \leq 1, \forall u \in \mathbb{R}_{+}^{m} \cap B_{\|\cdot\|}^{\circ}\right\}= \\
& =\left\{x \in \mathbb{R}^{m}: 1 \geq \max _{u \in \mathbb{R}_{+}^{m}}\left\{\langle u, x\rangle:\|u\|_{*} \leq 1\right\}\right\}= \\
& =\left\{x \in \mathbb{R}^{m}: 1 \geq \gamma(x)\right\}= \\
& =B_{\gamma}
\end{aligned}
$$

Hence $B_{\gamma}^{\circ}=\left(B_{\|\cdot\|}^{\circ} \cap \mathbb{R}_{+}^{m}\right)^{\circ \circ}=B_{\|\cdot\|}^{\circ} \cap \mathbb{R}_{+}^{m} \subset \mathbb{R}_{+}^{m}$, so Lemma 3.3.2 can be applied, taking $M_{i}=\gamma\left(e_{i}\right), i=1, \ldots, m$. We conclude that $\gamma \circ f$ is a DC function with the following DC decomposition:

$$
\gamma \circ f=\left(\gamma \circ(g-h)+\sum_{i=1}^{m} \gamma\left(e_{i}\right) h_{i}\right)-\left(\sum_{i=1}^{m} \gamma\left(e_{i}\right) h_{i}\right)
$$

By Lemma 3.3.1 $\|z\|=\gamma(z), \forall z \geq 0$ and therefore, since f is non-negative on C, $\|f\|=\gamma(f)=\gamma \circ f$ on C.

Thus, $\|f\|$ is DC with this DC decomposition on C :

$$
\|f\|=\|g-h\|=\left(\|g-h\|+\sum_{i=1}^{m}\left\|e_{i}\right\| h_{i}\right)-\left(\sum_{i=1}^{m}\left\|e_{i}\right\| h_{i}\right) .
$$

Theorem 3.3.1 is valid for non-negative functions f. In arbitrary functions we have the following result of the norm of f :

Proposition 3.3.1. Let $\|\cdot\|$ be any norm in \mathbb{R}^{m}, let be C a convex set and let define $f: C \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ as a DC function with DC decomposition $f=g-h$. Then a DC decomposition on C for $\|f\|$ is given by:

$$
\begin{equation*}
\|f\|=\|g-h\|=\left(\|g-h\|+\sum_{i=1}^{m} M_{i}\left(g_{i}+h_{i}\right)\right)-\left(\sum_{i=1}^{m} M_{i}\left(g_{i}+h_{i}\right)\right), \tag{3.9}
\end{equation*}
$$

where, for each $i=1, \ldots, m, e_{i}$ is the unit vector with 1 in its $i-$ th coordinate and zeroes everywhere else, and M_{i} is an arbitrary constant satisfying that $M_{i} \geq\left\|e_{i}\right\|$.
Proof:
For the proof of this result the reader is referred to [2].

3.4 Non-uniqueness of DC Decomposition

Proposition 3.4.1. If f is a $D C$ function, then there are infinitely many $D C$ decompositions.

Proof:
If we have a DC decomposition of $f, f=g-h$, with g and h convex, another DC decomposition is obtained just adding a convex term, ϕ, since the sum of convex functions is also convex. This way, $f=(g+\phi)-(h+\phi)$.

Chapter 4

DC Programming. The DCA Algorithm

In this chapter, we are going to study both unconstrained and constrained DC optimization problems. We are giving an algorithm called DCA to solve this problem. Before this, we need to introduce some concepts and prove some results to understand this algorithm. We consider the Hilbert space $X=\mathbb{R}^{n}$ with the inner product $\langle\cdot, \cdot\rangle$ and the corresponding Euclidan norm $\|\cdot\|$. Since X is a finite-dimensional vector space, its dual X^{*} can be identified with X itself.

4.1 Conjugate Functions and Properties

In this section, we are studying conjugate functions, which play an important role in duality.

Notation 4.1.1. We denote $\Gamma_{0}(X)$ the set of all lower semicontinuous proper convex functions on X.

Definition 4.1.1. Let $g \in \Gamma_{0}(X)$, the conjugate function g^{*} is a function defined by

$$
g^{*}\left(x^{*}\right)=\sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-g(x)\right\} .
$$

Examples 4.1.1. Now, we show some examples of conjugate functions offamiliar functions:

1. Let $g(x)=m x+n, x \in \mathbb{R}$. Its conjugate function is

$$
g^{*}\left(x^{*}\right)=\sup _{x \in \mathbb{R}}\left\{\left\langle x^{*}, x\right\rangle-(m x+n)\right\} .
$$

Let denote $h(x)=\left\langle x^{*}, x\right\rangle-(m x+n)$. Then, we have that h is differentiable. Computing the derivative, we obtain $h^{\prime}(x)=x^{*}-m$. Therefore, we have that the
supremum is attained when $x^{*}=m$, i.e, $g^{*}(m)=-n$. If $x^{*}>m, h(x) \rightarrow+\infty$ when $x \rightarrow+\infty$. If $x^{*}<m, h(x) \rightarrow+\infty$ when $x \rightarrow-\infty$.
In summary, we have:

$$
g^{*}\left(x^{*}\right)= \begin{cases}-n, & \text { if } x^{*}=m, \\ +\infty, & \text { otherwise } .\end{cases}
$$

2. Let $g(x)=\frac{1}{2} x^{\prime} x, x \in X$. Its conjugate function is

$$
g^{*}\left(x^{*}\right)=\sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-\frac{1}{2} x^{\prime} x\right\} .
$$

If we denote $h(x)=\left\langle x^{*}, x\right\rangle-\frac{1}{2} x^{\prime} x$, we have a differentiable function. Then, we have $\nabla h(x)=\frac{1}{2}\left(x^{*}-x\right)=0$ that implies $\hat{x}=x^{*}$ is a maximum.
It follows that

$$
g^{*}\left(x^{*}\right)=\sup _{x \in X} h(x)=h(\hat{x})=\left\langle x^{*}, \hat{x}\right\rangle-\frac{1}{2} \hat{x}^{\prime} \hat{x}=\left\langle x^{*}, x^{*}\right\rangle-\frac{x^{*^{\prime}} x^{*}}{2}=\frac{x^{*^{\prime}} x^{*}}{2} .
$$

Then, we have $g^{*} \equiv g$ in X.
3. Let $g(x)=\|x\|, x \in X$. We recall that

$$
g^{*}(y)=\sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-g(x)\right\}=\sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-\|x\|\right\} .
$$

We have two cases:

- If $\left\|x^{*}\right\|_{*} \leq 1$, then

$$
\left\langle x^{*}, x\right\rangle \leq\left\|x^{*}\right\|_{*}\|x\| \leq\|x\|, \quad \forall x \in X .
$$

Therefore, $g^{*}\left(x^{*}\right) \leq 0, \forall x \in X$, in particular, for $x=0$, we have the equality. Hence, $g^{*}\left(x^{*}\right)=0, \forall x^{*}$ with $\left\|x^{*}\right\|_{*} \leq 1$.

- If $\left\|x^{*}\right\|_{*}>1$, there exists an x_{0} with $\left\|x_{0}\right\| \leq 1$ and $\left\langle x^{*}, x\right\rangle>1$. Then,

$$
\begin{aligned}
g^{*}\left(x^{*}\right) & =\sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-\|x\|\right\} \\
& \geq \sup _{\lambda>0}\left\{\left\langle x^{*}, \lambda x_{0}\right\rangle-\left\|\lambda x_{0}\right\|\right\} \\
& =\sup _{\lambda>0} \lambda\left(\left\langle x^{*}, x_{0}\right\rangle-\left\|x_{0}\right\|\right)=+\infty .
\end{aligned}
$$

In summary, we have:

$$
\left\|x^{*}\right\|^{*}=\left\{\begin{array}{lr}
0, & \text { if }\left\|x^{*}\right\|_{*} \leq 1 \\
+\infty, & \text { otherwise }
\end{array}\right.
$$

Proposition 4.1.1. The conjugate function g^{*} has the following properties:

1. (Young's inequality) $g(x)+g^{*}\left(x^{*}\right) \geq\left\langle x^{*}, x\right\rangle, \quad \forall x, x^{*} \in X$.
2. $g^{*}(0)=-\inf _{x \in X} g(x)$.
3. If $f \leq g$ then $g^{*} \leq f^{*}$.
4. $\left(\sup _{i \in I} g_{i}\right)^{*} \leq \inf _{i \in I} g_{i}^{*}$ and $\left(\inf _{i \in I} g_{i}\right)^{*} \geq \inf _{i \in I} g_{i}^{*}$.
5. $(\lambda g)^{*}\left(x^{*}\right)=\lambda g^{*}\left(\frac{1}{\lambda} x^{*}\right), \forall \lambda>0$.
6. If we consider the translation function $g_{\alpha}(x)=g(x-\alpha), \alpha, x \in X$. We have $g_{\alpha}^{*}\left(x^{*}\right)=g^{*}\left(x^{*}\right)+\left\langle x^{*}, \alpha\right\rangle$.

Proof:

1. $g^{*}\left(x^{*}\right)=\sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-g(x)\right\} \geq\left\langle x^{*}, x\right\rangle-g(x), \forall x, x^{*} \in X$. Hence, we have the Young's inequality.
2. $g^{*}(0)=\sup _{x \in X}\{\langle 0, x\rangle-g(x)\}=\sup _{x \in X}\{-g(x)\}=-\inf _{x \in X}\{g(x)\}$.
3. $g^{*}\left(x^{*}\right)=\sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-g(x)\right\} \geq \sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-f(x)\right\}=f^{*}\left(x^{*}\right)$.
4. We have

$$
\begin{aligned}
\left.\sup _{i \in I} g_{i}\right)^{*}\left(x^{*}\right) & =\sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-\sup _{i \in I} g_{i}(x)\right\} \\
& \leq \sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-g_{i}(x)\right\}=g_{i}^{*}\left(x^{*}\right), \quad \forall i \in I, \forall x^{*} \in X .
\end{aligned}
$$

Therefore, $\left(\sup _{i \in I} g_{i}\right)^{*} \leq \inf _{i \in I} g_{i}^{*}$. We can obtain analogously the other inequality.
5. If $\lambda>0$, we have

$$
(\lambda g)^{*}\left(x^{*}\right)=\sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-\lambda g(x)\right\}=\lambda \sup _{x \in X}\left\{\left\langle\frac{x^{*}}{\lambda}, x\right\rangle-g(x)\right\}=\lambda g^{*}\left(\frac{x^{*}}{\lambda}\right) .
$$

6. Let $\alpha \in X$. Then, we obtain

$$
\begin{aligned}
g_{\alpha}^{*}\left(x^{*}\right) & =\sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-g_{\alpha}(x)\right\} \\
& =\sup _{x \in X}\left\{\left\langle x^{*}, x-\alpha\right\rangle-g(x-\alpha)\right\}+\left\langle x^{*}, x\right\rangle=g^{*}\left(x^{*}\right)+\left\langle x^{*}, \alpha\right\rangle .
\end{aligned}
$$

Theorem 4.1.1 (Hahn-Banach separation theorem in \mathbb{R}^{n}). If $C \subset \mathbb{R}^{n}$ closed and convex and $x_{0} \notin C$, then there exists $x^{*} \in \mathbb{X}, x^{*} \neq 0$ that strictly separates C and x_{0}, i.e. there is a $c \in \mathbb{R}$ such that $\left\langle x^{*}, x\right\rangle<c, \forall x \in W$ and $\left\langle x^{*}, x_{0}\right\rangle>c$.

Now, we are going to use this main theorem to prove next result.
Theorem 4.1.2. The conjugate function g^{*} of $g \in \Gamma_{0}(X)$ is in $\Gamma_{0}(X)$.
Proof:

- g^{*} is convex Let $x_{1}^{*}, x_{2}^{*} \in X$ and $\lambda \in[0,1]$. We have

$$
\begin{aligned}
g^{*}\left(\lambda x_{1}^{*}+\left(1-\lambda x_{2}^{*}\right)\right) & =\sup _{x \in X}\left\{\left\langle\lambda x_{1}^{*}+(1-\lambda) x_{2}^{*}, x\right\rangle-g(x)\right\} \\
& \leq \lambda \sup _{x \in X}\left\{\left\langle x_{1}^{*}, x\right\rangle-g(x)\right\}+(1-\lambda) \sup _{x \in X}\left\{\left\langle x_{2}^{*}, x\right\rangle-g(x)\right\} \\
& \leq \lambda g^{*}\left(x_{1}^{*}\right)+(1-\lambda) g^{*}\left(x_{2}^{*}\right) .
\end{aligned}
$$

- g^{*} is lower semicontinuous Let be $x_{n}^{*} \rightarrow x^{*}$. From the Young's inequality, we have:

$$
g^{*}\left(x^{*}\right)+g(x) \geq\left\langle x^{*}, x\right\rangle, \quad \forall x, x^{*} \in X .
$$

In particular,

$$
g^{*}\left(x_{n}^{*}\right) \geq\left\langle x_{n}^{*}, x\right\rangle-g(x), \quad \forall x \in X .
$$

Then follows

$$
\liminf _{n \rightarrow+\infty}^{*} g^{*}\left(x_{n}^{*}\right) \geq \liminf _{n \rightarrow+\infty}\left\langle x_{n}^{*}, x\right\rangle-g(x)=\left\langle x^{*}, x\right\rangle-g(x), \quad \forall x \in X .
$$

Hence

$$
\liminf _{n \rightarrow+\infty} g^{*}\left(x_{n}^{*}\right) \geq \sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-g(x)\right\}=g^{*}\left(x^{*}\right),
$$

so we have that g^{*} is lower semicontinuous.

- g^{*} is proper We have $g \in \Gamma_{0}(X)$, in particular, g is a convex proper function.

1. $g^{*}\left(x^{*}\right)>-\infty, \forall x^{*} \in X$. Because of g is proper, there exists $x \in X$ such that $g(x)<\infty$. Therefore

$$
g^{*}\left(x^{*}\right)=\sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-g(x)\right\} \geq\left\langle x^{*}, y\right\rangle-g(y)>-\infty, \quad \forall x^{*} \in X .
$$

2. $g^{*} \not \equiv+\infty$. Let $C=$ epi g which is a closed convex set. For any $c>0$ and $y \in X$ such that $f(y)<\infty$ holds $(y, g(y)-c) \notin C$ because

$$
g(y)-(g(y)-c)=c>0 .
$$

Then, applying Separation Theorem 4.1.1 to C and $x_{0}=(y, g(y)-c)$. We obtain some $\left(x^{*}, \alpha\right) \in X \times \mathbb{R}$ such that

$$
\begin{aligned}
\left\langle x^{*}, x\right\rangle+\alpha t & =\left\langle\left(x^{*}, \alpha\right),(x, t)\right\rangle \\
& <\left\langle\left(x^{*}, \alpha\right), x_{0}\right\rangle=\left\langle x^{*}, y\right\rangle+\alpha(g(y)-c), \quad \forall(x, t) \in C .
\end{aligned}
$$

Let see that $\alpha<0$.

- If $\alpha>0$, the left-hand side tends to $+\infty$ when $t \rightarrow+\infty$ that contradicts the relation.
- If $\alpha=0$, we would have $\left\langle x^{*}, y\right\rangle<\left\langle x^{*}, x\right\rangle, \forall x \in \operatorname{dom} g$. But it is also a contradiction because $y \in \operatorname{dom} g$.
Dividing by $-\alpha$ and setting $x_{1}^{*}:=\frac{x^{*}}{-\alpha}$ and $t:=g(x)$, we obtain

$$
\left\langle x_{1}^{*}, x\right\rangle-g(x)<\left\langle x_{1}^{*}, y\right\rangle-g(y)+c, \quad \forall x^{*} \in \operatorname{dom} g .
$$

Taking supremum in this expression, we obtain that

$$
g^{*}\left(x_{1}^{*}\right)=\sup _{x \in X}\left\{\left\langle x_{1}^{*}, x\right\rangle-g(x)\right\} \leq\left\langle x_{1}^{*}, y\right\rangle-g(y)+c<+\infty .
$$

Therefore, $g^{*} \in \Gamma_{0}(X)$ as we wanted to prove.

Remark 4.1.1. It is not necessary that $g \in \Gamma_{0}(X)$ to prove that g^{*} is convex and lower semicontinuous. However, g must be in $\Gamma_{0}(X)$ to see that it is proper.

Now, we introduce the concept of biconjugate of a function which is the following
Definition 4.1.2. Let $g^{*} \in \Gamma_{0}(X)$, the biconjugate function $g^{* *}$ is a function defined by

$$
g^{* *}(x)=\sup _{x^{*} \in X}\left\{\left\langle x^{*}, x\right\rangle-g^{*}\left(x^{*}\right)\right\} .
$$

Examples 4.1.2. Now, we are going to compute the biconjugate of the functions from examples 4.1.1.

1. Let $g^{*}\left(x^{*}\right)$ defined by

$$
g^{*}\left(x^{*}\right)= \begin{cases}-n, & \text { if } x^{*}=m, \\ +\infty, & \text { otherwise } .\end{cases}
$$

It follows $g^{* *}(x)=\sup _{x^{*} \in X}\left\{\left\langle x^{*}, x\right\rangle-g^{*}\left(x^{*}\right)\right\}=m x+n, \forall x \in \mathbb{R}$. Therefore $g^{* *} \equiv g$.
2. From the second example, we obtained that $g^{*} \equiv g$. Then, it is obvious that $g^{* *} \equiv g^{*} \equiv g$.
3. Let $g^{*}\left(x^{*}\right)$ from the third example, which is defined by

$$
\left\|x^{*}\right\|^{*}=\left\{\begin{array}{lc}
0, & \text { if }\left\|x^{*}\right\|_{*} \leq 1 \\
+\infty, & \text { otherwise }
\end{array}\right.
$$

Then, we have $g^{* *}(x)=\sup _{x^{*} \in X}\left\{\left\langle x^{*}, x\right\rangle-g^{*}\left(x^{*}\right)\right\}=\max _{x^{*} \in X}\left\{\left\langle x^{*}, x\right\rangle,\left\|x^{*}\right\|_{*} \leq\right.$ $1\}$. Consequently, we conclude that $g^{* *} \equiv g$, namely, $\|\cdot\|^{* *} \equiv\|\cdot\|$.

All of the examples above are functions in $\Gamma_{0}(X)$. All these functions have the property that their biconjugates are themselves. This result will be proved in the next theorem.

Theorem 4.1.3. If $g \in \Gamma_{0}(X)$, then $g^{* *} \equiv g$.
Proof:

We must prove that $g^{* *}(x) \leq g(x)$ and $g^{* *}(x) \geq g(x)$, for every $x \in X$.

- $g^{* *} \leqq g$ Using the Young's inequality it follows

$$
g^{* *}(x)=\sup _{x^{*} \in X}\left\{\left\langle x^{*}, x\right\rangle-g^{*}\left(x^{*}\right)\right\} \leq \sup _{x^{*} \in X}\left\{\left\langle x^{*}, x\right\rangle-\left\langle x^{*}, x\right\rangle+g(x)\right\}=g(x) .
$$

- $g^{* *} \geqq g \quad$ We have 2 cases:
- Suppose that $y \notin \operatorname{dom} g^{* *}$, i.e. $g^{* *}(y)=\infty$. Since $g \in \Gamma_{0}(X)$, because of Theorem 4.1.2 $g^{*} \in \Gamma_{0}(X)$ and $g^{* *}$ too. In particular, $g^{* *}$ is a proper function. Therefore, we have $\infty=g^{* *}(y) \geq g(y)$.
- Now, let be $y \in \operatorname{dom} g^{* *}$ and suppose that $g(y)>g^{* *}(y)$. We define $c:=\frac{1}{2}\left(g(y)-g^{* *}(y)\right)>0$ and $C=$ epi g. Then $(y, g(y)-c) \notin C$ because

$$
g(y)-(g(y)-c)=c>0
$$

Therefore, arguing as we did in Theorem 4.1.2, we can say that there exists $x_{1}^{*} \in X$ such that

$$
g^{*}\left(x_{1}^{*}\right) \leq\left\langle x_{1}^{*}, y\right\rangle-g(y)+\frac{1}{2}\left(g(y)-g^{* *}(y)\right)
$$

Using Young's inequality with $g^{* *}$, we obtain

$$
\left\langle x_{1}^{*}, y\right\rangle-g^{* *}(y) \leq g^{*}\left(x_{1}^{*}\right) \leq\left\langle x_{1}^{*}, y\right\rangle-\frac{1}{2} g(y)-\frac{1}{2} g^{* *}(y)
$$

Therefore, $g(y) \leq g^{* *}(y)$, which is a contradiction.

Therefore, $g^{* *} \equiv g$.

Now, we are going to get assertions which relates subdifferentials with conjugate functionals.

Theorem 4.1.4. Let be a function g and its conjugate g^{*} in X. Then for every $x \in X$, $x^{*} \in \partial g(x)$ if and only if $g(x)+g^{*}\left(x^{*}\right)=\left\langle x^{*}, x\right\rangle$.

Proof:
\Longrightarrow Let $x^{*} \in \partial g(x)$. Then we have that

$$
g(y)-g(x) \geq\left\langle x^{*}, y-x\right\rangle, \quad \forall y \in X
$$

This expression is equivalent to

$$
\left\langle x^{*}, x\right\rangle-g(x) \geq\left\langle x^{*}, y\right\rangle-g(y), \quad \forall y \in X
$$

Taking supreme in the equation above, we obtain

$$
\left\langle x^{*}, x\right\rangle-g(x) \geq \sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-g(x)\right\}=g^{*}\left(x^{*}\right) .
$$

On the other hand, because of Young's we have $\left\langle x^{*}, x\right\rangle-g(x) \leq g^{*}\left(x^{*}\right)$. In summary,

$$
g(x)+g^{*}\left(x^{*}\right)=\left\langle x^{*}, x\right\rangle .
$$

\Longleftarrow Suppose that $g(x)+g^{*}\left(x^{*}\right)=\left\langle x^{*}, x\right\rangle$ for some $x, x^{*} \in X$. Then

$$
\left\langle x^{*}, x\right\rangle-g(x)=g^{*}\left(x^{*}\right)=\sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-g(x)\right\} \geq\left\langle x^{*}, y\right\rangle-g(y), \quad \forall y \in X .
$$

Hence

$$
g(y)-g(x) \geq\left\langle x^{*}, y-x\right\rangle, \quad \forall y \in X
$$

which is equivalent to say that $x^{*} \in \partial g(x)$.

Theorem 4.1.5. Let be $g \in \Gamma_{0}(X)$. Then $x^{*} \in \partial g(x)$ if and only if $x \in \partial g^{*}\left(x^{*}\right)$.
We recall that

$$
\partial g_{\epsilon}^{*}\left(x^{*}\right)=\left\{x \in \mathbb{R}^{n}: g^{*}\left(y^{*}\right) \geq g^{*}\left(x^{*}\right)+\left\langle y^{*}-x^{*}, x\right\rangle-\epsilon, \quad \forall y^{*} \in \mathbb{R}^{n}\right\} .
$$

Proof:
\Longrightarrow Let be $x^{*} \in \partial g(x)$. Using Young's inequality we obtain that

$$
g^{*}\left(y^{*}\right) \geq\left\langle y^{*}, x\right\rangle-g(x) .
$$

Besides, Theorem 4.1.4 yields that $g(x)=\left\langle x^{*}, x\right\rangle-g^{*}\left(x^{*}\right)$. Combining both equations, we have

$$
g^{*}\left(y^{*}\right) \geq\left\langle y^{*}, x\right\rangle-g(x)=g^{*}\left(x^{*}\right)+\left\langle y^{*}-x^{*}, x\right\rangle,
$$

i.e $x \in \partial g^{*}\left(x^{*}\right)$.
\Longleftarrow Let be $x \in \partial g^{*}\left(x^{*}\right)$. Arguing as we did above, we obtain that $x^{*} \in \partial g^{* *}(x)$. Since $g \in \Gamma_{0}(X)$, Theorem4.1.3 yields $g^{* *} \equiv g$. Therefore, we have $x^{*} \in \partial g(x)$.

4.2 Duality in DC Programming

Let be (P) the following primal problem:

$$
\text { (P) } \quad \inf _{x \in X}\{g(x)-h(x)\} .
$$

Remark 4.2.1. If the optimal solution of (P) is finite, then dom $g \subset \operatorname{dom} h$.

In this section, we will give the dual problem (D) of the primal problem (P) using conjugate functions which we have seen before.

Remark 4.2.2. If $h \in \Gamma_{0}(X)$ in (P) then the dual problem (D) is well defined and its formulation is
(D) $\quad \inf _{x^{*} \in X}\left\{h^{*}\left(x^{*}\right)-g^{*}\left(x^{*}\right)\right\}$.

Since $h \in \Gamma_{0}(X)$, we have that $h^{* *} \equiv h$, i.e

$$
h(x)=\sup _{x^{*} \in X}\left\{\left\langle x^{*}, x\right\rangle-h^{*}\left(x^{*}\right)\right\}, \quad \forall x \in X .
$$

Replacing this equality in (P)

$$
\begin{aligned}
\inf _{x \in X}\{g(x)-h(x)\} & =\inf _{x \in X}\left\{g(x)-\sup _{x^{*} \in X}\left\{\left\langle x^{*}, x\right\rangle-h^{*}\left(x^{*}\right)\right\}\right\} \\
& =\inf _{x \in X}\left\{g(x)+\inf _{x^{*} \in X}\left\{h^{*}\left(x^{*}\right)-\left\langle x^{*}, x\right\rangle\right\}\right\} \\
& =\inf _{x \in X} \inf _{x^{*} \in X}\left\{g(x)+h^{*}\left(x^{*}\right)-\left\langle x^{*}, x\right\rangle\right\} \\
& =\inf _{x^{*} \in X} \inf _{x \in X}\left\{g(x)+h^{*}\left(x^{*}\right)-\left\langle x^{*}, x\right\rangle\right\} \\
& =\inf _{x^{*} \in X}\left\{h^{*}\left(x^{*}\right)+\inf _{x \in X}\left\{g(x)-\left\langle x^{*}, x\right\rangle\right\}\right\} \\
& =\inf _{x^{*} \in X}\left\{h^{*}\left(x^{*}\right)-\sup _{x \in X}\left\{\left\langle x^{*}, x\right\rangle-g(x)\right\}\right\} \\
& =\inf _{x^{*} \in X}\left\{h^{*}\left(x^{*}\right)-g^{*}\left(x^{*}\right)\right\}
\end{aligned}
$$

Then, it makes sense the dual problem (D) of (P)
(D)

$$
\inf _{x^{*} \in X}\left\{h^{*}\left(x^{*}\right)-g^{*}\left(x^{*}\right)\right\},
$$

as we wanted to see.
Remark 4.2.3. Arguing as we did above, we can say that the dual problem of (D) is exactly (P). Besides, if we have a solution x of (P), then both problems have the same solution x.

4.3 Optimality Conditions for DC Programming

In this section we are studying optimality conditions which will give us a way to know when a point is an optimal solution. We are considerating both global and local optimality conditions.

4.3.1 Global Optimality for DC Programming

Theorem4.3.1 gives a characterization of optimal solutions in term of ε-subdifferentials and γ-subdifferentials (See [3]). To prove it we refer to the Definitions 2.0.13 and 2.0 .14 in Chapter 2.

Notation 4.3.1. We will denote \mathcal{P} and \mathcal{D} the solution sets of problems (P) and (D), respectively.

Lemma 4.3.1. A point $x \in \mathcal{P}$ if and only if

$$
\begin{equation*}
\text { epi } \bar{g} \subset e p i ~ h \tag{4.1}
\end{equation*}
$$

where $\bar{g}(y)=g(y)-(g(x)-h(x))$.
Proof:
For the details of the proof, we refer to [5].

Theorem 4.3.1. Let $g, h: X \rightarrow \mathbb{R}$ be convex functions and let be $x \in X$. Then the following statements are equivalent:

1) $x \in \mathcal{P}$.
2) $\partial^{\gamma} h(x) \subseteq \partial^{\gamma} g(x)$.
3) $\partial_{\varepsilon} h(x) \subseteq \partial_{\varepsilon} g(x), \forall \varepsilon>0$.

Proof:

$$
1) \Rightarrow 2)
$$

By assumption we have that $g(x)-h(x) \leq g(y)-h(y), \forall y \in X$. Thus,

$$
g(y)-g(x) \geq h(y)-h(x), \forall x \in X .
$$

Let consider $\psi \in \partial^{\gamma} h(x)$. Then

$$
h(y) \geq h(x)+\psi(y)-\psi(x), \forall y \in X
$$

and so

$$
h(y)-h(x) \geq \psi(y)-\psi(x), \forall y \in X .
$$

Therefore, $g(y)-g(x) \geq h(y)-h(x) \geq \psi(y)-\psi(x), \forall y \in X$. Then $\psi \in \partial^{\gamma} g(x)$ and 2) holds.

$$
2) \Rightarrow 3)
$$

Let $\varepsilon \geq 0$ and $x^{*} \in \partial_{\varepsilon} h(x)$ be given. We have to show that $x^{*} \in \partial_{\varepsilon} g(x)$.
As $x^{*} \in \partial_{\varepsilon} h(x)$ we have $h(y) \geq h(x)+\left\langle x^{*}, y-x\right\rangle-\varepsilon, \quad \forall y \in X$.

We now choose an arbitrary $\overline{x^{*}} \in \partial h(x)$ and let define the function

$$
\psi(y)=\sup \left\{\left\langle x^{*}, y-x\right\rangle-\varepsilon,\left\langle\overline{x^{*}}, y-x\right\rangle\right\}, \quad \forall y \in X
$$

Clearly, $\psi(x)=0$ and $h(y) \geq h(x)+\left\langle\overline{x^{*}}, y-x\right\rangle, \forall y \in X$.
Therefore, $h(y)-h(x) \geq \psi(y)$ so $h(y)-h(x) \geq \psi(y)-\psi(x)$ and $\psi \in \partial^{\gamma} h(x)$. Then, by assumption $\psi \in \partial^{\gamma} g(x)$ and hence satisfies that

$$
g(y) \geq g(x)+\psi(y)-\psi(x)=g(x)+\psi(y) \geq g(x)+\left\langle x^{*}, y-x\right\rangle-\varepsilon .
$$

Hence, $x^{*} \in \partial_{\varepsilon} g(x)$.

$$
3) \Rightarrow 1)
$$

We prove this implication by contradiction.
Suppose that $x \notin \mathcal{P}$. By Lemma 4.3.1 this is equivalent to say that $\exists x_{0} \in X$ such that $\left(x_{0}, g\left(x_{0}\right)\right) \notin$ epi h.

Since epi h is a closed convex set, by Theorem 4.1.1 there exists a nonvertical hyperplane separating the point $\left(x_{0}, g\left(x_{0}\right)\right)$ from epi h, that is to say, $\exists x^{*} \in X, c \in \mathbb{R}$ such that:

$$
h(y) \geq\left\langle x^{*}, y-x\right\rangle-c, \quad \forall y \in X
$$

Hence,

$$
\begin{gathered}
\left(x_{0}, \bar{g}\left(x_{0}\right)\right) \notin \text { epi } h \Rightarrow\left\{\begin{array}{r}
x_{0} \notin \mathbb{R}^{n} \\
h\left(x_{0}\right)>\bar{g}\left(x_{0}\right)
\end{array} \Rightarrow h\left(x_{0}\right)<\left\langle x^{*}, x_{0}-x\right\rangle-c\right\} \Rightarrow \\
\Rightarrow \bar{g}\left(x_{0}\right)=g\left(x_{0}\right)-(g(x)-h(x))<h\left(x_{0}\right)<\left\langle x^{*}, x_{0}-x\right\rangle-c .
\end{gathered}
$$

Let $\varepsilon=c+h(x)$. One has $\varepsilon \geq 0$ because $x \in X$ by assumption and $h(x) \geq$ $\left\langle x^{*}, x-x\right\rangle-c=-c \Rightarrow h(x)+c \geq 0$.

Then, we have:
$h(y) \geq\left\langle x^{*}, y-x\right\rangle-c \Rightarrow h(y) \geq h(x)+\left\langle x^{*}, y-x\right\rangle-\varepsilon, \forall x \in X$
and
$g\left(x_{0}\right)-g(x)+h(x)<\left\langle x^{*}, x_{0}-x\right\rangle-c$, in other words that means,

$$
g\left(x_{0}\right)<g(x)-h(x)+\left\langle x^{*}, x_{0}-x\right\rangle-c .
$$

Hence, $g\left(x_{0}\right)<g(x)+\left\langle x^{*}, x_{0}-x\right\rangle-\varepsilon$ which implies that 3$)$ does not hold, which is a contradiction.

Remark 4.3.1. By the symmetry of the DC duality, Theorem 4.3.1 has its dual counterpart, i.e., the following statements are equivalent:

1) $x^{*} \in \mathcal{D}$.
2) $\partial^{\gamma} g^{*}\left(x^{*}\right) \subseteq \partial^{\gamma} h^{*}\left(x^{*}\right)$.
3) $\partial_{\varepsilon} g^{*}\left(x^{*}\right) \subseteq \partial_{\varepsilon} h^{*}\left(x^{*}\right), \forall \varepsilon>0$.

Corollary 4.3.1. Let $g, h: X \rightarrow \mathbb{R}$ be convex functions. Then

$$
\begin{gathered}
x \in \mathcal{P} \text { iff } \partial h(x) \subseteq \partial g(x), \\
x^{*} \in \mathcal{D} \text { iff } \partial g^{*}\left(x^{*}\right) \subseteq \partial h^{*}\left(x^{*}\right) .
\end{gathered}
$$

Proof:

Trivially, taking limits in the ε-subdiferential as $\varepsilon \rightarrow 0$.

Finally, we will see that solving the primal problem (P) implies solving the dual problem (D) and vice versa. It may be useful if one of them is easier to solve than the other.

Proposition 4.3.1. Let $g, h: X \rightarrow \mathbb{R}$ be convex functions. Then

- $\bigcup_{x \in \mathcal{P}} \partial h(x) \subset \mathcal{D}$.
- $\bigcup_{x^{*} \in \mathcal{D}} \partial g^{*}\left(x^{*}\right) \subset \mathcal{P}$.

Proof:
Let $x \in \mathcal{P}$, and let $x^{*} \in \partial h(x)$. Then, by Theorem 4.3.1, $x^{*} \in \partial g(x)$. From Theorem 4.1.4, we have

$$
h^{*}\left(x^{*}\right)=\left\langle x^{*}, x\right\rangle-h(x), \quad g^{*}\left(x^{*}\right)=\left\langle x^{*}, x\right\rangle-g(x) .
$$

Therefore,

$$
h^{*}\left(x^{*}\right)-g^{*}\left(x^{*}\right)=h(x)-g(x),
$$

by Remark 4.2.3, we conclude that $x^{*} \in \mathcal{D}$.

Analogously, let $x^{*} \in \mathcal{D}$, and let $x \in \partial g^{*}\left(x^{*}\right)$. By Remark 4.3.1, $x \in \partial h^{*}\left(x^{*}\right)$. From Theorem 4.1.4, we have

$$
h^{*}\left(x^{*}\right)=\left\langle x^{*}, x\right\rangle-h(x), \quad g^{*}\left(x^{*}\right)=\left\langle x^{*}, x\right\rangle-g(x) .
$$

Hence,

$$
h^{*}\left(x^{*}\right)-g^{*}\left(x^{*}\right)=h(x)-g(x),
$$

by Remark 4.2 .3 , we conclude that $x \in \mathcal{P}$.
The global optimality condition is dificult to use for deriving solution methods to problem (P). However, we have local optimality conditions which algorithm DCA is based on.

4.3.2 Local Optimality for DC Programming

In this subsection, we are studying conditions that allow us to ensure when we have obtained a local solution of our problems (P) and (D). These results on DC programming on which DCA relies the reader is referred to ...

Notation 4.3.2. We will denote \mathcal{P}_{l} and \mathcal{D}_{l} the following sets:

$$
\mathcal{P}_{l}=\{x \in X: \partial h(x) \subset \partial g(x)\} \quad \mathcal{D}_{l}=\left\{x^{*} \in X: \partial g^{*}\left(x^{*}\right) \subset \partial h^{*}\left(x^{*}\right)\right\} .
$$

Definition 4.3.1. Let be $g, h \in \Gamma_{0}(X)$. A point x is said to be a local minimizer of $g-h$ if $g(x)-h(x)$ is finite and there exists a neighbourhood U of x such that

$$
g(x)-h(x) \leq g(y)-h(y), \quad \forall y \in U .
$$

Definition 4.3.2. Let be $g, h \in \Gamma_{0}(X)$. A point x is said to be a critical point of $g-h$ if $\partial g(x) \cap \partial h(x) \neq \emptyset$.

Theorem 4.3.2. Let be $g, h \in \Gamma_{0}(X)$. Then,

1) If x is a local minimizer of $g-h$, then $x \in \mathcal{P}_{l}$.
2) Let x be a critical point of $g-h$ and $x^{*} \in \partial g(x) \cap \partial h(x)$. Let U be a neighbourhood of x such that $U \cap$ dom $g \subset$ dom ∂h. If for any $y \in U \cap$ dom g there exists $y^{*} \in \partial h(y)$ such that $h^{*}\left(y^{*}\right)-g^{*}\left(y^{*}\right) \geq h^{*}\left(x^{*}\right)-g^{*}\left(x^{*}\right)$, then x is a local minimizer of $g-h$.

Proof:

1) If x is a local minimizer of $g-h$, then there exists a neighbourhood U of x such that

$$
g(y)-g(x) \geq h(y)-h(x), \quad \forall x \in U \cap \operatorname{dom} g .
$$

Besides, for $x^{*} \in \partial h(x)$ we have

$$
h(y) \geq h(x)+\left\langle x^{*}, y-x\right\rangle .
$$

Hence, we obtain

$$
g(y)-g(x) \geq\left\langle x^{*}, y-x\right\rangle, \quad \forall x \in U \cap \operatorname{dom} g .
$$

Then, $x^{*} \in \partial g(x)$ and we conclude that $x \in \mathcal{P}_{l}$.
2) Since $x^{*} \in \partial g(x) \cap \partial h(x)$, then $g(x)+g^{*}\left(x^{*}\right)=\left\langle x^{*}, x\right\rangle=h(x)+h^{*}\left(x^{*}\right)$. Hence,

$$
g(x)-h(x)=h^{*}\left(x^{*}\right)-g^{*}\left(x^{*}\right) .
$$

By assumption, for each $y \in U \cap \operatorname{dom} g$ there is $y^{*} \in \partial h(y)$ such that

$$
h^{*}\left(y^{*}\right)-g^{*}\left(y^{*}\right) \geq h^{*}\left(x^{*}\right)-g^{*}\left(x^{*}\right) .
$$

On the other hand, since $y^{*} \in \partial h(y)$ we have $h(y)+h^{*}\left(y^{*}\right)=\left\langle y^{*}, y\right\rangle \leq g(y)+$ $g^{*}\left(y^{*}\right)$. Then, we have

$$
g(y)-h(y) \geq h^{*}\left(y^{*}\right)-g^{*}\left(y^{*}\right)
$$

In summary, we obtain

$$
g(y)-h(y) \geq h^{*}\left(y^{*}\right)-g^{*}\left(y^{*}\right) \geq h^{*}\left(x^{*}\right)-g^{*}\left(x^{*}\right)=g(x)-h(x),
$$

for every $y \in U \cap \operatorname{dom} g$, namely x is a local minimizer.
Corollary 4.3.2. Let x be a point that admits a neighbourhood U such that $\partial g(x) \cap$ $\partial h(y) \neq \emptyset$ for every $y \in U \cap$ dom g. Then x is a local minimizer of $g-h$. More precisely, $g(y)-h(y) \geq g(x)-h(x)$, for every $y \in U \cap$ dom g.

Proof:
Let $y \in U \cap \operatorname{dom} g$ and let $y^{*} \in \partial g(x) \cap \partial h(y)$. Since $y^{*} \in \partial g(x)$ we have $g(x)+g^{*}\left(y^{*}\right)=\left\langle y^{*}, x\right\rangle \leq h(x)+h^{*}\left(y^{*}\right)$, then $h^{*}\left(y^{*}\right)-g^{*}\left(y^{*}\right) \geq g(x)-h(x)$. Moreover, if $x^{*} \in \partial g(x) \cap \partial h(x)$, then $g(x)+g^{*}\left(x^{*}\right)=\left\langle x^{*}, x\right\rangle=h(x)+h^{*}\left(x^{*}\right)$. Hence, $g(x)-h(x)=h^{*}\left(x^{*}\right)-g^{*}\left(x^{*}\right)$. Therefore,

$$
h^{*}\left(y^{*}\right)-g^{*}\left(y^{*}\right) \geq g(x)-h(x)=h^{*}\left(x^{*}\right)-g^{*}\left(x^{*}\right) .
$$

By Theorem 4.3.2, we conclude that x^{*} is a local minimizer.

Remark 4.3.2. Again, Theorem 4.3.2 has its dual counterpart. Thus,

1) If x^{*} is a local minimizer of $h^{*}-g^{*}$, then $x^{*} \in \mathcal{D}_{l}$.
2) Let x^{*} be a critical point of $h^{*}-g^{*}$ and $x \in \partial g^{*}\left(x^{*}\right) \cap \partial h^{*}\left(x^{*}\right)$. Let V be a neighbourhood of x^{*} such that $V \cap$ dom $\partial g^{*} \subset$ dom h. If for any $y^{*} \in V \cap$ dom ∂g^{*} there is $y \in \partial g^{*}\left(y^{*}\right)$ such that $g(y)-h(y) \geq g(x)-h(x)$, then x^{*} is a local minimizer of $h^{*}-g^{*}$.

It might happen that (D) is easier to locally solve than (P). So it is useful to state results relative to the d.c. duality transportation of local minimizers.

Corollary 4.3.3. Let $x \in$ dom ∂h be a local minimizer of $g-h$ and let $x^{*} \in \partial h(x)$ (i.e. x admits a neighbourhood U such that $g(y)-h(y) \geq g(x)-h(x), \forall y \in U \cap$ dom $g)$. If

$$
x^{*} \in \operatorname{int}\left(\operatorname{dom} g^{*}\right) \text { and } \partial g^{*}\left(x^{*}\right) \subset U,
$$

then x^{*} is a local minimizer of $h^{*}-g^{*}$.

Proof:

According to 1) of Theorem 4.3.2, $x \in \mathcal{P}_{l}$. Thus, since $x^{*} \in \partial h(x)$ we have that $x^{*} \in \partial g(x)$. Hence, $x^{*} \in \partial g(x) \cap \partial h(x)$. By Theorem4.1.5, $x \in \partial g^{*}\left(x^{*}\right) \cap \partial h^{*}\left(x^{*}\right)$. Under the assumption that $x^{*} \in \operatorname{dom} g^{*}$ and $\partial g^{*}\left(x^{*}\right) \subset U$, and upper semicontinuity of $\partial g^{*}, x^{*}$ admits a neighbourhood $V \subset \operatorname{int}\left(\operatorname{dom} g^{*}\right)$ such that $\partial g^{*}(V) \subset U \cap \operatorname{dom} g$, since we have range $\partial g^{*}=\operatorname{dom} \partial g \subset \operatorname{dom} g$. Thus, we have

- x^{*} is a critical point of $h^{*}-g^{*}$.
- $x \in \partial g^{*}\left(x^{*}\right) \cap \partial h^{*}\left(x^{*}\right)$.
- V is a neighbourhood of x^{*} such that $V \cap \operatorname{dom} \partial g^{*} \subset U \cap \operatorname{dom} g \subset \operatorname{dom} h$.
- For each $y^{*} \in V \cap \operatorname{dom} \partial g^{*}$ there is $y \in \partial g^{*}\left(y^{*}\right) \subset U \cap \operatorname{dom} g$ such that $g(y)-h(y) \geq g(x)-h(x)$.

By Remark 4.3.2, we conclude that x^{*} is a local minimizer of $h^{*}-g^{*}$.

4.4 The DCA Algorithm

In this section we will expose an algorithm that solves (P) or (D) using the framework studied. This algorithm is called DCA Algorithm and we will study its convergence and applications in different problems. Finally, we will use Python to program it.

4.4.1 Description of DCA for general DC programs

For each fixed $x \in X$, we consider the problem

$$
(S(x)) \inf _{x^{*} \partial h(x)}\left\{h^{*}\left(x^{*}\right)-g^{*}\left(x^{*}\right)\right\},
$$

which is equivalent to

$$
\inf _{x^{*} \partial h(x)}\left\{\left\langle x^{*}, x\right\rangle-g^{*}\left(x^{*}\right)\right\} .
$$

Analogously, for each fixed $x^{*} \in X^{*}$, for duality, we define the problem

$$
\left(T\left(x^{*}\right)\right) \inf _{x \in \partial g^{*}\left(x^{*}\right)}\{g(x)-h(x)\} .
$$

This problem is equivalent to

$$
\inf _{x \in \partial g^{*}\left(x^{*}\right)}\left\{\left\langle x^{*}, x\right\rangle-h(x)\right\} .
$$

Let $\mathcal{S}(x), \mathcal{T}\left(x^{*}\right)$ the solution sets of Problems $(S(x))$ and $\left(T\left(x^{*}\right)\right)$, respectively. The complete form of DCA is based upon duality of DC optimization defined by (P) and (D). It allows approximating a point $\left(x, x^{*}\right) \in \mathcal{P}_{l} \times \mathcal{D}_{l}$. From a point of $x_{0} \in$ dom ∂g, the algorithm consists on constructing two sequences $\left\{x_{k}\right\}$ and $\left\{x_{k}^{*}\right\}$ defined by

$$
x_{k}^{*} \in \mathcal{S}\left(x_{k}\right) ; \quad x_{k+1} \in \mathcal{T}\left(x_{k}^{*}\right) .
$$

From a practical point of view, although $\left(S\left(x_{k}\right)\right)$ and $\left(T\left(x_{k}^{*}\right)\right)$ are easier to solve than (P) and (D), it is often used the simplified form of DCA.

Simplified form of DCA

The idea of the simplified DCA is to construct two sequences $\left\{x_{k}\right\}$ and $\left\{x_{k}^{*}\right\}$ easy to compute and satisfying the following statements:

- The sequences $(g-h)\left(x_{k}\right)$ and $\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)$ are decreasing.
- If

$$
x=\lim _{k \rightarrow+\infty} x_{k} \quad \text { and } \quad x^{*}=\lim _{k \rightarrow+\infty} x_{k}^{*},
$$

then x and x^{*} either are critical points of $g-h$ and $h^{*}-g^{*}$, respectively, or $\left(x, x^{*}\right) \in \mathcal{P}_{l} \times \mathcal{D}_{l}$.

Then, starting from a point $x_{0} \in \operatorname{dom} g$, we shall construct the sequences by setting

$$
x_{k}^{*} \in \partial h\left(x_{k}\right), \quad x_{k+1} \in \partial g^{*}\left(x_{k}^{*}\right) .
$$

Thus, we can give the following interpretation to the DCA. At each iteration k we have:

$$
\begin{aligned}
\left(\mathbf{P}_{k}\right) \quad & x_{k}^{*} \in \partial h\left(x_{k}\right) \rightarrow x_{k+1} \in \partial g^{*}\left(x_{k}^{*}\right) \\
& =\underset{x \in X}{\operatorname{argmin}}\left\{g(x)-\left[h\left(x_{k}\right)+\left\langle x_{k}^{*}, x-x_{k}\right\rangle\right]\right\} \\
\left(\mathbf{D}_{k}\right) \quad & x_{k} \in \partial g^{*}\left(x_{k-1}^{*}\right) \rightarrow x_{k}^{*} \in \partial h\left(x_{k}\right) \\
& =\underset{x^{*} \in Y}{\operatorname{argmin}}\left\{h^{*}\left(x^{*}\right)-\left[g^{*}\left(x_{k-1}^{*}\right)+\left\langle x^{*}-x_{k-1}^{*}, x_{k}\right\rangle\right]\right\} .
\end{aligned}
$$

Using the Theorem 4.1.4, we can obtain the previous results:
For every $x \in X$, we have

$$
x_{k}^{*} \in \partial h(x) \Longleftrightarrow h(x)+h^{*}\left(x_{k}^{*}\right)=\left\langle x_{k}^{*}, x\right\rangle,
$$

in particular, for $x=x_{k}$:

$$
x_{k}^{*} \in \partial h\left(x_{k}\right) \Longleftrightarrow h\left(x_{k}\right)+h^{*}\left(x_{k}^{*}\right)=\left\langle x_{k}^{*}, x_{k}\right\rangle .
$$

Subtracting both equations:

$$
h(x)=h\left(x_{k}\right)+\left\langle x_{k}^{*}, x-x_{k}\right\rangle .
$$

Hence

$$
\underset{x \in X}{\operatorname{argmin}}\{g(x)-h(x)\}=\underset{x \in X}{\operatorname{argmin}}\left\{g(x)-\left[h\left(x_{k}\right)+\left\langle x_{k}^{*}, x-x_{k}\right\rangle\right]\right\} .
$$

We can argue in an equivalent way to see that

$$
\underset{x^{*} \in Y}{\operatorname{argmin}}\left\{h^{*}\left(x^{*}\right)-g^{*}\left(x^{*}\right)\right\}=\underset{x^{*} \in Y}{\operatorname{argmin}}\left\{h^{*}\left(x^{*}\right)-\left[g^{*}\left(x_{k-1}^{*}\right)+\left\langle x^{*}-x_{k-1}^{*}, x_{k}\right\rangle\right]\right\} .
$$

Now, we are proving that this algorithm is well-defined from the construction of the sequences.

Theorem 4.4.1. Let be $x_{0} \in$ dom ∂g. If

$$
\operatorname{dom} \partial g \subset \operatorname{dom} \partial h \quad \text { and } \quad \text { dom } \partial h^{*} \subset \operatorname{dom} \partial g^{*}
$$

then the sequences $\left\{x_{k}\right\},\left\{y_{k}\right\}$ are well defined.

Proof:

We have $x_{k+1} \in \partial g^{*}\left(x_{k}^{*}\right)$ and $x_{k}^{*} \in \partial h\left(x_{k}\right)$, for every $k \geq 0$. With these assumptions, we get that $\left\{x_{k}\right\} \subset$ range $\partial g^{*}=\operatorname{dom} \partial g \subset \operatorname{dom} \partial h$. Then, we can obtain x_{k}^{*} from $\partial h\left(x_{k}\right)$. Analogously, $\left\{x_{k}^{*}\right\} \subset$ range $\partial h=\operatorname{dom} \partial h^{*} \subset \operatorname{dom} \partial g^{*}$, therefore, it makes sense to have $x_{k+1} \in \partial g^{*}\left(x_{k}^{*}\right)$.

4.4.2 Convergence of DCA for general DC programs

Now, we are going to see that this algorithm is convergent. We are also going to study interesting properties that makes this algorithm good. Firstly, we need to introduce some notation to simplify the following statements.

Let $0 \leq \rho_{g}<\rho(g)$ and $0 \leq \rho_{h}<\rho(h)$ be real nonnegative numbers (resp. $\rho_{g}^{*}, \rho_{h}^{*}$). Also let $\Delta x_{k}=x_{k+1}-x_{k}$ and $\Delta x_{k}^{*}=x_{k+1}^{*}-x_{k}^{*}$.

Proposition 4.4.1. Let be $\left\{x_{k}\right\}$ and $\left\{x_{k}^{*}\right\}$ the sequences generated by the simplified DCA. Then we have

1. $(g-h)\left(x_{k+1}\right) \leq\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2} \leq(g-h)\left(x_{k}\right)-\frac{\rho_{g}+\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2}$. The equality $(g-h)\left(x_{k+1}\right)=(g-h)\left(x_{k}\right)$ holds if and only if

$$
x_{k} \in \partial g^{*}\left(x_{k}^{*}\right), \quad x_{k}^{*} \in \partial h\left(x_{k+1}\right) \quad \text { and } \quad\left(\rho_{g}+\rho_{h}\right)\left\|\Delta x_{k}\right\|=0 .
$$

2. By duality, we have

$$
\left(h^{*}-g^{*}\right)\left(x_{k+1}^{*}\right) \leq(g-h)\left(x_{k+1}\right)-\frac{\rho_{g}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2} \leq\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\frac{\rho_{g}^{*}+\rho_{h}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2} .
$$

The equality $\left(h^{*}-g^{*}\right)\left(x_{k+1}^{*}\right)=\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)$ holds if and only if

$$
x_{k+1} \in \partial g^{*}\left(x_{k+1}^{*}\right), \quad x_{k}^{*} \in \partial h\left(x_{k+1}\right) \quad \text { and } \quad\left(\rho_{g}^{*}+\rho_{h}^{*}\right)\left\|\Delta x_{k}^{*}\right\|=0 .
$$

Proof:
We are going to prove Property 1. The dual case is analogously proved.
Since $x_{k}^{*} \in \partial h\left(x_{k}\right)$ we have that

$$
h\left(x_{k+1}\right) \geq h\left(x_{k}\right)+\left\langle x_{k}^{*}, x_{k+1}-x_{k}\right\rangle+\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2} .
$$

Hence,

$$
\begin{equation*}
(g-h)\left(x_{k+1}\right) \leq g\left(x_{k+1}\right)-\left\langle x_{k}^{*}, x_{k+1}-x_{k}\right\rangle-h\left(x_{k}\right)-\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2} . \tag{4.2}
\end{equation*}
$$

In the same way, $x_{k+1} \in \partial g^{*}\left(x_{k}^{*}\right) \Longleftrightarrow x_{k}^{*} \in \partial g\left(x_{k+1}\right)$ follows that

$$
g\left(x_{k}\right) \geq g\left(x_{k+1}\right)+\left\langle x_{k}^{*}, x_{k}-x_{k+1}\right\rangle+\frac{\rho_{g}}{2}\left\|\Delta x_{k}\right\|^{2} .
$$

Thus,

$$
\begin{equation*}
g\left(x_{k+1}\right)-\left\langle x_{k}^{*}, x_{k+1}-x_{k}\right\rangle-h\left(x_{k}\right) \leq(g-h)\left(x_{k}\right)-\frac{\rho_{g}}{2}\left\|\Delta x_{k}\right\|^{2} . \tag{4.3}
\end{equation*}
$$

On the other hand, by the Theorem 4.1.4 we have:

$$
\begin{aligned}
x_{k+1} \in \partial g^{*}\left(x_{k}^{*}\right) & \Longleftrightarrow g\left(x_{k+1}\right)+g^{*}\left(x_{k}^{*}\right)=\left\langle x_{k}^{*}, x_{k+1}\right\rangle, \\
x_{k}^{*} \in \partial h\left(x_{k}\right) & \Longleftrightarrow h\left(x_{k}\right)+h^{*}\left(x_{k}^{*}\right)=\left\langle x_{k}^{*}, x_{k}\right\rangle .
\end{aligned}
$$

Substracting both expression, we obtain:

$$
\begin{equation*}
g\left(x_{k+1}\right)-\left\langle x_{k}^{*}, x_{k+1}-x_{k}\right\rangle-h\left(x_{k}\right)=h^{*}\left(x_{k}^{*}\right)-g^{*}\left(x_{k}^{*}\right) . \tag{4.4}
\end{equation*}
$$

Finally, combining (4.2), (4.3) and (4.4) we have that

$$
(g-h)\left(x_{k+1}\right) \leq\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2} \leq(g-h)\left(x_{k}\right)-\frac{\rho_{g}+\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2}
$$

Now, we are going to prove when the equality holds:

- \Longrightarrow If $(g-h)\left(x_{k+1}\right)=(g-h)\left(x_{k}\right)$, the last equation yields that

$$
\frac{\rho_{g}+\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2} \leq 0 \Longleftrightarrow\left(\rho_{g}+\rho_{h}\right)\left\|\Delta x_{k}\right\|=0
$$

since ρ_{g} and ρ_{h} are non-negative. We have two choices:

- $\rho_{g}+\rho_{h}>0$ This implies that $\left\|\Delta x_{k}\right\|=0$ if and only if $x_{k+1}=x_{k}$. Thus

$$
\begin{aligned}
x_{k+1} \in \partial g^{*}\left(x_{k}^{*}\right) & \Longrightarrow x_{k} \in \partial g^{*}\left(x_{k}^{*}\right), \\
x_{k}^{*} \in \partial h\left(x_{k}\right) & \Longrightarrow x_{k}^{*} \in \partial h\left(x_{k+1}\right) .
\end{aligned}
$$

- $\rho_{g}=\rho_{h}=0$ This yields

$$
(g-h)\left(x_{k+1}\right) \leq\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right) \leq(g-h)\left(x_{k}\right),
$$

which, from assumption, gives that

$$
\begin{aligned}
\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right) & =(g-h)\left(x_{k}\right) \\
(g-h)\left(x_{k+1}\right) & =\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)
\end{aligned}
$$

Then

$$
\left\{\begin{aligned}
x_{k}^{*} \in \partial h\left(x_{k}\right) \Leftrightarrow\left\langle x_{k}^{*}, x_{k}\right\rangle & =h\left(x_{k}\right)+h^{*}\left(x_{k}^{*}\right), \\
h\left(x_{k}\right) & =g\left(x_{k}\right)+g^{*}\left(x_{k}^{*}\right)-h^{*}\left(x_{k}^{*}\right),
\end{aligned}\right.
$$

and

$$
\left\{\begin{aligned}
x_{k+1} \in \partial g^{*}\left(x_{k}^{*}\right) \Leftrightarrow\left\langle x_{k}^{*}, x_{k+1}\right\rangle & =g\left(x_{k+1}\right)+g^{*}\left(x_{k}^{*}\right), \\
g\left(x_{k+1}\right) & =h\left(x_{k+1}\right)+h^{*}\left(x_{k}^{*}\right)-g^{*}\left(x_{k}^{*}\right),
\end{aligned}\right.
$$

produces that

$$
\begin{aligned}
\left\langle x_{k}^{*}, x_{k}\right\rangle=g\left(x_{k}\right)+g^{*}\left(x_{k}^{*}\right) & \Longleftrightarrow x_{k} \in \partial g^{*}\left(x_{k}^{*}\right), \\
\left\langle x_{k}^{*}, x_{k+1}\right\rangle=h\left(x_{k+1}\right)+h^{*}\left(x_{k}^{*}\right) & \Longleftrightarrow x_{k}^{*} \in \partial h\left(x_{k+1}\right) .
\end{aligned}
$$

- \Longleftarrow Actually, we have just prove the reciprocal, because

$$
\left\{\begin{aligned}
x_{k+1} \in \partial g^{*}\left(x_{k}^{*}\right) & \Leftrightarrow\left\langle x_{k}^{*}, x_{k+1}\right\rangle=g\left(x_{k+1}\right)+g^{*}\left(x_{k}^{*}\right), \\
x_{k}^{*} \in \partial h\left(x_{k+1}\right) & \Leftrightarrow\left\langle x_{k}^{*}, x_{k+1}\right\rangle=h\left(x_{k+1}\right)+h^{*}\left(x_{k}^{*}\right),
\end{aligned}\right.
$$

and

$$
\left\{\begin{aligned}
x_{k}^{*} \in \partial h\left(x_{k}\right) & \Leftrightarrow\left\langle x_{k}^{*}, x_{k}\right\rangle=h\left(x_{k}\right)+h^{*}\left(x_{k}^{*}\right), \\
x_{k} \in \partial g^{*}\left(x_{k}^{*}\right) & \Leftrightarrow\left\langle x_{k}^{*}, x_{k}\right\rangle=g\left(x_{k}\right)+g^{*}\left(x_{k}^{*}\right),
\end{aligned}\right.
$$

yields, respectively

$$
\begin{aligned}
(g-h)\left(x_{k+1}\right) & =\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right) \\
\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right) & =(g-h)\left(x_{k}\right)
\end{aligned}
$$

which says that the equality holds.

Corollary 4.4.1. Let be $\left\{x_{k}\right\}$ and $\left\{x_{k}^{*}\right\}$ the sequences generated by $D C A$. Then we have

1. (a) $(g-h)\left(x_{k+1}\right) \leq\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2}$

$$
\leq(g-h)\left(x_{k}\right)-\left[\frac{\rho_{g}^{*}}{2}\left\|\Delta x_{k-1}^{*}\right\|^{2}+\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2}\right] .
$$

(b) $(g-h)\left(x_{k+1}\right) \leq\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\frac{\rho_{h}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2}$

$$
\leq(g-h)\left(x_{k}\right)-\left[\frac{\rho_{g}^{*}}{2}\left\|\Delta x_{k-1}^{*}\right\|^{2}+\frac{\rho_{h}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2}\right] .
$$

The equality $(g-h)\left(x_{k+1}\right)=(g-h)\left(x_{k}\right)$ holds if and only if

$$
x_{k} \in \partial g^{*}\left(x_{k}^{*}\right), x_{k}^{*} \in \partial h\left(x_{k+1}\right) \text { and }\left(\rho_{g}+\rho_{h}\right) \Delta x_{k}=\rho_{g}^{*} \Delta x_{k-1}^{*}=\rho_{h}^{*} \Delta x_{k}^{*}=0 .
$$

2. By duality, we have
(c) $\left(h^{*}-g^{*}\right)\left(x_{k+1}^{*}\right) \leq(g-h)\left(x_{k+1}\right)-\frac{\rho_{g}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2}$

$$
\leq\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\left[\frac{\rho_{g}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2}+\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2}\right]
$$

(d) $\left(h^{*}-g^{*}\right)\left(x_{k+1}^{*}\right) \leq(g-h)\left(x_{k+1}\right)-\frac{\rho_{g}^{*}}{2}\left\|\Delta x_{k+1}\right\|^{2}$

$$
\leq\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\left[\frac{\rho_{g}}{2}\left\|\Delta x_{k+1}\right\|^{2}+\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2}\right]
$$

The equality $\left(h^{*}-g^{*}\right)\left(x_{k+1}^{*}\right)=\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)$ holds if and only if

$$
x_{k+1} \in \partial g^{*}\left(x_{k+1}^{*}\right), x_{k}^{*} \in \partial h\left(x_{k+1}\right) \text { and }\left(\rho_{g}^{*}+\rho_{h}^{*}\right) \Delta x_{k}^{*}=\rho_{h} \Delta x_{k}=\rho_{g} \Delta x_{k+1}=0
$$

Proof:
It is an immediate consequence of the Proposition 4.4.1. We only prove (a) and (b) combining previous expressions. From

$$
(g-h)\left(x_{k+1}\right) \leq\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2}
$$

and

$$
\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right) \leq(g-h)\left(x_{k}\right)-\frac{\rho_{g}^{*}}{2}\left\|\Delta x_{k-1}^{*}\right\|^{2}
$$

we obtain that

$$
\begin{aligned}
(g-h)\left(x_{k+1}\right) & \leq\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2} \\
& \leq(g-h)\left(x_{k}\right)-\left[\frac{\rho_{g}^{*}}{2}\left\|\Delta x_{k-1}^{*}\right\|^{2}+\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2}\right] .
\end{aligned}
$$

Similarly, equations

$$
(g-h)\left(x_{k+1}\right) \leq\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\frac{\rho_{h}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2}
$$

and

$$
\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right) \leq(g-h)\left(x_{k}\right)-\frac{\rho_{g}^{*}}{2}\left\|\Delta x_{k-1}^{*}\right\|^{2}
$$

yields

$$
\begin{aligned}
(g-h)\left(x_{k+1}\right) & \leq\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\frac{\rho_{h}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2} \\
& \leq(g-h)\left(x_{k}\right)-\left[\frac{\rho_{g}^{*}}{2}\left\|\Delta x_{k-1}^{*}\right\|^{2}+\frac{\rho_{h}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2}\right] .
\end{aligned}
$$

We can argue in the same way as we did in the Proposition 4.4.1 to see when equality holds.

The basic convergence theorem of DCA for general d.c. programming will be stated below.

Theorem 4.4.2. Suppose that the sequences $\left\{x_{k}\right\}$ and $\left\{x_{k}^{*}\right\}$ are defined by DCA. Then we have

1. $(g-h)\left(x_{k+1}\right) \leq\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\max \left\{\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2}, \frac{\rho_{h}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2}\right\}$

$$
\begin{aligned}
\leq & (g-h)\left(x_{k}\right)-\max \left\{\frac{\rho_{g}+\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2}, \frac{\rho_{g}^{*}}{2}\left\|\Delta x_{k-1}\right\|^{2}\right. \\
& \left.+\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2}, \frac{\rho_{g}^{*}}{2}\left\|\Delta x_{k-1}^{*}\right\|^{2}+\frac{\rho_{h}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2}\right\} .
\end{aligned}
$$

The equality $(g-h)\left(x_{k+1}\right)=(g-h)\left(x_{k}\right)$ holds if and only if $x_{k} \in \partial g^{*}\left(x_{k}^{*}\right)$, $x_{k}^{*} \in \partial h\left(x_{k+1}\right)$ and $\left(\rho_{g}+\rho_{h}\right) \Delta x_{k}=\rho_{g}^{*} \Delta x_{k-1}^{*}=\rho_{h}^{*} \Delta x_{k}^{*}=0$. In this case

- $(g-h)\left(x_{k+1}\right)=\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)$ and x_{k}, x_{k+1} are the critical points of $g-h$ satisfying $x_{k}^{*} \in \partial g\left(x_{k}\right) \cap \partial h\left(x_{k}\right)$ and $x_{k}^{*} \in \partial g\left(x_{k+1}\right) \cap \partial h\left(x_{k+1}\right)$.
- x_{k}^{*} is a critical point of $h^{*}-g^{*}$ satisfying $\left[x_{k}, x_{k+1}\right] \subset\left(\partial g^{*}\left(x_{k}^{*}\right) \cap \partial h^{*}\left(x_{k}^{*}\right)\right)$.
- $x_{k+1}=x_{k}$ if $\rho_{g}+\rho_{h}>0, x_{k}^{*}=x_{k-1}^{*}$ if $\rho_{g}^{*}>0$ and $x_{k}^{*}=x_{k+1}^{*}$ if $\rho_{h}^{*}>0$.

2. Similarly, for the dual problem we have

$$
\begin{aligned}
\left(h^{*}-g^{*}\right)\left(x_{k+1}^{*}\right) \leq & (g-h)\left(x_{k+1}\right)-\max \left\{\frac{\rho_{g}}{2}\left\|\Delta x_{k+1}\right\|^{2}, \frac{\rho_{g}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2}\right\} \\
\leq & \left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\max \left\{\frac{\rho_{g}^{*}+\rho_{h}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2}, \frac{\rho_{g}}{2}\left\|\Delta x_{k+1}\right\|^{2}\right. \\
& \left.+\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2}, \frac{\rho_{g}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2}+\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2}\right\} .
\end{aligned}
$$

The equality $\left(h^{*}-g^{*}\right)\left(x_{k+1}^{*}\right)=\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)$ holds if and only if $x_{k+1} \in$ $\partial g^{*}\left(x_{k+1}^{*}\right), x_{k}^{*} \in \partial h\left(x_{k+1}\right)$ and $\left(\rho_{g}^{*}+\rho_{h}^{*}\right) \Delta x_{k}^{*}=\rho_{h} \Delta x_{k}=\rho_{g} \Delta x_{k+1}=0$. In this case

- $\left(h^{*}-g^{*}\right)\left(x_{k+1}^{*}\right)=(g-h)\left(x_{k+1}\right)$ and x_{k}^{*}, x_{k+1}^{*} are the critical points of $h^{*}-g^{*}$ satisfying $x_{k+1} \in \partial g^{*}\left(x_{k}^{*}\right) \cap \partial h^{*}\left(x_{k}^{*}\right)$ and $x_{k+1} \in \partial g^{*}\left(x_{k+1}^{*}\right) \cap$ $\partial h^{*}\left(x_{k+1}^{*}\right)$.
- x_{k+1} is a critical point of $g-h$ satisfying $\left[x_{k}^{*}, x_{k+1}^{*}\right] \subset\left(\partial g\left(x_{k+1}\right) \cap \partial h\left(x_{k+1}\right)\right)$.
- $x_{k+1}^{*}=x_{k}^{*}$ if $\rho_{g}^{*}+\rho_{h}^{*}>0, x_{k+1}=x_{k+2}$ if $\rho_{g}>0$ and $x_{k}=x_{k+1}$ if $\rho_{h}>0$.

3. If α is finite then the decreasing sequences $\left\{(g-h)\left(x_{k}\right)\right\}$ and $\left\{\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)\right\}$ converge to the same limit $\beta \geq \alpha$. If $\rho_{g}+\rho_{h}>0$ (resp. $\rho_{g}^{*}+\rho_{h}^{*}>0$), then

$$
\lim _{k \rightarrow+\infty}\left(x_{k+1}-x_{k}\right)=0 \quad\left(\text { resp. } \quad \lim _{k \rightarrow+\infty}\left(x_{k+1}^{*}-x_{k}^{*}\right)=0\right) .
$$

Moreover,

$$
\lim _{k \rightarrow+\infty}\left\{g\left(x_{k}\right)+g^{*}\left(x_{k}^{*}\right)-\left\langle x_{k}^{*}, x_{k}\right\rangle\right\}=0=\lim _{k \rightarrow+\infty}\left\{h\left(x_{k+1}\right)+h^{*}\left(x_{k}^{*}\right)-\left\langle x_{k}^{*}, x_{k+1}\right\rangle\right\} .
$$

4. If α is finite and the sequences $\left\{x_{k}\right\}$ and $\left\{x_{k}^{*}\right\}$ are bounded, then for every limit x of $\left\{x_{k}\right\}$ (resp. x^{*} of $\left\{x_{k}^{*}\right\}$) there exists a cluster point x of $\left\{x_{k}\right\}$ (resp. x^{*} of $\left\{x_{k}^{*}\right\}$) such that

- $\left(x, x^{*}\right) \in\left(\partial g^{*}\left(x^{*}\right) \cap \partial h^{*}\left(x^{*}\right)\right) \times(\partial g(x) \cap \partial h(x))$.
- $(g-h)(x)=\beta=\left(h^{*}-g^{*}\right)\left(x^{*}\right)$.
- $\lim _{k \rightarrow+\infty}\left\{g\left(x_{k}\right)+g^{*}\left(x_{k}^{*}\right)\right\}=\lim _{k \rightarrow+\infty}\left\langle x_{k}^{*}, x_{k}\right\rangle$.

Proof:
Properties 1 and 2 are proved analogously, therefore we give the proof for 1 only.

1. From 1 of Corollary 4.4.1 we have that:

$$
\left\{\begin{array}{l}
(g-h)\left(x_{k+1}\right) \leq\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2} \\
(g-h)\left(x_{k+1}\right) \leq\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\frac{\rho_{h}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2}
\end{array}\right.
$$

Hence,

$$
\begin{aligned}
(g-h)\left(x_{k+1}\right) & \leq\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)+\min \left\{-\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2},-\frac{\rho_{h}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2}\right\}= \\
& =\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\max \left\{\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2}, \frac{\rho_{h}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2}\right\} .
\end{aligned}
$$

We have two choices:

- If $\rho_{h}\left\|\Delta x_{k}\right\|^{2} \leq \rho_{h}^{*}\left\|\Delta x_{k}^{*}\right\|^{2}$, from paragraph 1 of the Proposition 4.4.1;

$$
\begin{aligned}
\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\frac{\rho_{h}^{*}}{2} & \leq\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2} \\
& \leq(g-h)\left(x_{k}\right)-\frac{\rho_{g}+\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2}
\end{aligned}
$$

Similarly, from 1 of Corollary 4.4.1 we obtain that

$$
\begin{aligned}
\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\frac{\rho_{h}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2} & \leq\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2} \\
& \leq(g-h)\left(x_{k}\right)-\left[\frac{\rho_{g}^{*}}{2}\left\|\Delta x_{k-1}^{*}\right\|^{2}+\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2}\right] .
\end{aligned}
$$

Moreover, paragraph 2 of the same corollary yields that

$$
\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\frac{\rho_{h}}{2}\left\|\Delta x_{k}^{*}\right\|^{2} \leq(g-h)\left(x_{k}\right)-\left[\frac{\rho_{g}^{*}}{2}\left\|\Delta x_{k-1}^{*}\right\|^{2}+\frac{\rho_{h}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2}\right]
$$

Combining these inequalities, we get

$$
\begin{aligned}
(g-h)\left(x_{k+1}\right) & \leq\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\frac{\rho_{h}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2} \\
& \leq(g-h)\left(x_{k}\right)-\max \left\{\frac{\rho_{g}+\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2}, \frac{\rho_{g}^{*}}{2}\left\|\Delta x_{k-1}^{*}\right\|^{2}\right. \\
& \left.+\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2}, \frac{\rho_{g}^{*}}{2}\left\|\Delta x_{k-1}^{*}\right\|^{2}+\frac{\rho_{h}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2}\right\} .
\end{aligned}
$$

- If $\rho_{h}^{*}\left\|\Delta x_{k}^{*}\right\|^{2} \leq \rho_{h}\left\|\Delta x_{k}\right\|^{2}$, from paragraph 1 of the Corollary 4.4.1

$$
\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2} \leq(g-h)\left(x_{k}\right)-\frac{\rho_{g}+\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2} .
$$

Similarly, using again this corollary, we obtain that

$$
\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2} \leq(g-h)\left(x_{k}\right)-\left[\frac{\rho_{g}^{*}}{2}\left\|\Delta x_{k-1}^{*}\right\|^{2}+\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2}\right] .
$$

Finally,

$$
\begin{aligned}
\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2} & \leq\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\frac{\rho_{h}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2} \\
& \leq(g-h)\left(x_{k}\right)-\left[\frac{\rho_{g}^{*}}{2}\left\|\Delta x_{k-1}^{*}\right\|^{2}+\frac{\rho_{h}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2}\right] .
\end{aligned}
$$

Again, combining these equations yields that

$$
\begin{aligned}
(g-h)\left(x_{k+1}\right) & \leq\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)-\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2} \\
& \leq(g-h)\left(x_{k}\right)-\max \left\{\frac{\rho_{g}+\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2}, \frac{\rho_{g}^{*}}{2}\left\|\Delta x_{k-1}^{*}\right\|^{2}\right. \\
& \left.+\frac{\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2}, \frac{\rho_{g}^{*}}{2}\left\|\Delta x_{k-1}^{*}\right\|^{2}+\frac{\rho_{h}^{*}}{2}\left\|\Delta x_{k}^{*}\right\|^{2}\right\} .
\end{aligned}
$$

Therefore, we have just obtained the inequality 1 . We don't prove when equality holds because it is done in the Proposition 4.4.1. However, we are going to see the consequences:

- We have already proved that $(g-h)\left(x_{k+1}\right)=\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)$ in the Proposition 4.4.1. On the other hand, we have that $x_{k}^{*} \in \partial h\left(x_{k}\right)$ by construction and $x_{k}^{*} \in \partial g\left(x_{k}\right)$ because $x_{k} \in \partial g^{*}\left(x_{k}^{*}\right)$. Besides, $x_{k}^{*} \in \partial g\left(x_{k+1}\right)$ because $x_{k+1} \in \partial g^{*}\left(x_{k}^{*}\right)$ by construction and $x_{k}^{*} \in \partial h\left(x_{k+1}\right)$. Therefore,

$$
\left\{\begin{array}{l}
x_{k}^{*} \in \partial g\left(x_{k}\right) \cap \partial h\left(x_{k}\right), \\
x_{k}^{*} \in \partial g\left(x_{k+1}\right) \cap \partial h\left(x_{k+1}\right),
\end{array}\right.
$$

i.e., x_{k} and x_{k+1} are critical points of $g-h$.

- From the previous paragraph, we have that $x_{k}^{*} \in \partial g\left(x_{k}\right) \cap \partial h\left(x_{k}\right)$, which is equivalent to $x_{k} \in \partial g^{*}\left(x_{k}^{*}\right) \cap \partial h^{*}\left(x_{k}^{*}\right)$, i.e., x_{k}^{*} is a critical point of $h^{*}-g^{*}$. Similarly, $x_{k+1} \in \partial g^{*}\left(x_{k}^{*}\right) \cap \partial h^{*}\left(x_{k}^{*}\right)$ since $x_{k}^{*} \in \partial g\left(x_{k+1}\right) \cap \partial h\left(x_{k+1}\right)$. But $\partial g^{*}\left(x_{k}^{*}\right) \cap \partial h^{*}\left(x_{k}^{*}\right)$ is convex so that $\left[x_{k}, x_{k+1}\right] \subset\left(\partial g^{*}\left(x_{k}^{*}\right) \cap \partial h^{*}\left(x_{k}^{*}\right)\right)$.
- This part is straightforward, and thus its proof is omitted.

3. From paragraph 1, we have that

$$
\begin{equation*}
(g-h)\left(x_{k+1}\right) \leq\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right) \leq(g-h)\left(x_{k}\right) . \tag{4.5}
\end{equation*}
$$

Therefore, if $\lim _{k \rightarrow+\infty}(g-h)\left(x_{k}\right)=\beta$, by the sandwich theorem, we conclude that $\lim _{k \rightarrow+\infty}\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)=\beta$. Moreover, from paragraph 1:

$$
(g-h)\left(x_{k+1}\right) \leq(g-h)\left(x_{k}\right)-\frac{\rho_{g}+\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2} .
$$

If we take limit, we obtain that

$$
\beta \leq \beta-\lim _{k \rightarrow+\infty} \frac{\rho_{g}+\rho_{h}}{2}\left\|\Delta x_{k}\right\|^{2}
$$

which is similar to

$$
\lim _{k \rightarrow+\infty}\left(\rho_{g}+\rho_{h}\right)\left\|\Delta x_{k}\right\|^{2} \leq 0
$$

Since $\rho_{g}+\rho_{h}>0$, we conclude that

$$
\lim _{k \rightarrow+\infty}\left\|\Delta x_{k}\right\|^{2}=0=\lim _{k \rightarrow+\infty} \Delta x_{k}
$$

Moreover, using (4.4) and (4.5) yields

$$
(g-h)\left(x_{k+1}\right) \leq g\left(x_{k+1}\right)-\left\langle x_{k}^{*}, x_{k+1}-x_{k}\right\rangle-h\left(x_{k}\right) \leq(g-h)\left(x_{k}\right) .
$$

Taking limits again, by the sandwich theorem:

$$
\begin{aligned}
\lim _{k \rightarrow+\infty}(g-h)\left(x_{k+1}\right) & =\lim _{k \rightarrow+\infty}\left\{g\left(x_{k+1}\right)-\left\langle x_{k}^{*}, x_{k+1}-x_{k}\right\rangle-h\left(x_{k}\right)\right\} \\
& =\lim _{k \rightarrow+\infty}(g-h)\left(x_{k}\right) .
\end{aligned}
$$

The second equality implies that

$$
\lim _{k \rightarrow+\infty}\left\{g\left(x_{k+1}\right)-\left\langle x_{k}^{*}, x_{k+1}-x_{k}\right\rangle-g\left(x_{k}\right)\right\}=0
$$

Since $x_{k+1} \in \partial g^{*}\left(x_{k}^{*}\right)$, this implies that $\left\langle x_{k}^{*}, x_{k+1}\right\rangle=g\left(x_{k+1}\right)+g^{*}\left(x_{k}^{*}\right)$. Therefore,

$$
\lim _{k \rightarrow+\infty}\left\{g\left(x_{k}\right)+g^{*}\left(x_{k}^{*}\right)-\left\langle x_{k}^{*}, x_{k}\right\rangle\right\} .
$$

Likewise, the first equality implies that

$$
\lim _{k \rightarrow+\infty}\left\{h\left(x_{k+1}\right)-\left\langle x_{k}^{*}, x_{k+1}-x_{k}\right\rangle-h\left(x_{k}\right)\right\}=0 .
$$

Since $x_{k}^{*} \in \partial h\left(x_{k}\right)$, this implies that $\left\langle x_{k}^{*}, x_{k+1}\right\rangle=h\left(x_{k}\right)+h^{*}\left(x_{k}^{*}\right)$, then

$$
\lim _{k \rightarrow+\infty}\left\{h\left(x_{k+1}\right)+h^{*}\left(x_{k}^{*}\right)-\left\langle x_{k}^{*}, x_{k+1}\right\rangle\right\} .
$$

4. Suppose that α is finite and $\left\{x_{k}\right\},\left\{x_{k}^{*}\right\}$ bounded. Let be x a limit point of $\left\{x_{k}\right\}$, i.e., $x=\lim _{k \rightarrow+\infty} x_{k}$. By being bounded in a finite-dimensional space, we can suppose (substracting a subsequence) that there exists a sequence $\left\{x_{k}^{*}\right\}$ that converges to $x^{*} \in \partial h(x)$. By property 3 :

$$
\lim _{k \rightarrow+\infty}\left\{g\left(x_{k}\right)+g^{*}\left(x_{k}^{*}\right)\right\}=\lim _{k \rightarrow+\infty}\left\{\left\langle x_{k}^{*}, x_{k}\right\rangle\right\}=\left\langle x^{*}, x\right\rangle .
$$

Let be $\theta\left(x^{*}, x\right)=g(x)+g^{*}\left(x^{*}\right)$ for $\left(x^{*}, x\right) \in X^{*} \times X$. It is clear that $\theta \in$ $\Gamma_{0}\left(X^{*} \times X\right)$. Then the lower semicontinuity of θ implies

$$
\theta\left(x^{*}, x\right) \leq \liminf _{k \rightarrow+\infty} \theta\left(x_{k}^{*}, x_{k}\right)=\lim _{k \rightarrow+\infty} \theta\left(x_{k}^{*}, x_{k}\right)=\lim _{k \rightarrow+\infty}\left\{\left\langle x_{k}^{*}, x_{k}\right\rangle\right\}=\left\langle x^{*}, x\right\rangle .
$$

By Young's inequality, $\theta\left(x^{*}, x\right)=g(x)+g^{*}\left(x^{*}\right) \geq\left\langle x^{*}, x\right\rangle$. Therefore,

$$
\theta\left(x^{*}, x\right)=g(x)+g^{*}\left(x^{*}\right)=\left\langle x^{*}, x\right\rangle \Longleftrightarrow x^{*} \in \partial g(x) .
$$

So that $x^{*} \in \partial g(x) \cap \partial h(x) \Longleftrightarrow x \in \partial g^{*}\left(x^{*}\right) \cap \partial h^{*}\left(x^{*}\right)$.
On the other hand,

$$
\begin{aligned}
x^{*} \in \partial h(x) & \Longrightarrow h\left(x_{k}\right) \geq h(x)+\left\langle x^{*}, x_{k}-x\right\rangle, \\
x_{k} \in \partial h\left(x_{k}\right) & \not \forall h(x) \geq h\left(x_{k}\right)+\left\langle x_{k}^{*}, x-x_{k}\right\rangle,
\end{aligned} \quad \forall k .
$$

so that

$$
h(x)+\left\langle x^{*}, x_{k}-x\right\rangle \leq h\left(x_{k}\right) \leq h(x)-\left\langle x_{k}^{*}, x-x_{k}\right\rangle .
$$

Letting $k \rightarrow+\infty$, by the sandwich theorem, we obtain that $\lim _{k \rightarrow+\infty} h\left(x_{k}\right)=$ $h(x)$. Analogously, we can see that $\lim _{k \rightarrow+\infty} h^{*}\left(x_{k}^{*}\right)=h^{*}\left(x^{*}\right)$. Therefore, by Paragraph 3

$$
\begin{aligned}
& \lim _{k \rightarrow+\infty}(g-h)\left(x_{k}\right)=\lim _{k \rightarrow+\infty} g\left(x_{k}\right)-\lim _{k \rightarrow+\infty} h\left(x_{k}\right)=\lim _{k \rightarrow+\infty} g\left(x_{k}\right)-h(x)=\beta, \\
& \lim _{k \rightarrow+\infty}\left(h^{*}-g^{*}\right)\left(x_{k}^{*}\right)=\lim _{k \rightarrow+\infty} h^{*}\left(x_{k}^{*}\right)-\lim _{k \rightarrow+\infty} g^{*}\left(x_{k}^{*}\right)=h^{*}\left(x^{*}\right)-\lim _{k \rightarrow+\infty} g^{*}\left(x_{k}^{*}\right)=\beta .
\end{aligned}
$$

Then, it is sufficient to prove that

$$
\begin{aligned}
& \lim _{k \rightarrow+\infty} g\left(x_{k}\right)=g(x), \\
& \lim _{k \rightarrow+\infty} g^{*}\left(x_{k}^{*}\right)=g^{*}\left(x^{*}\right) .
\end{aligned}
$$

Since both limits exist, by Paragraph 3

$$
g(x)+g^{*}\left(x^{*}\right)=\lim _{k \rightarrow+\infty}\left\{g\left(x_{k}\right)+g^{*}\left(x_{k}^{*}\right)\right\}=\lim _{k \rightarrow+\infty} g\left(x_{k}\right)+\lim _{k \rightarrow+\infty} g^{*}\left(x_{k}^{*}\right) .
$$

By the semicontinuity of g and g^{*} :

$$
\begin{aligned}
& \lim _{k \rightarrow+\infty} g\left(x_{k}\right)=\liminf _{k \rightarrow+\infty} g\left(x_{k}\right) \geq g(x) \\
& \lim _{k \rightarrow+\infty} g^{*}\left(x_{k}^{*}\right)=\liminf _{k \rightarrow+\infty} g^{*}\left(x_{k}^{*}\right) \geq g^{*}\left(x^{*}\right) .
\end{aligned}
$$

Hence, $g(x)+g^{*}\left(x^{*}\right) \geq \ldots \geq g(x)+g^{*}\left(x^{*}\right)$. Then, inequalities are equalities and

$$
\begin{aligned}
& \lim _{k \rightarrow+\infty} g\left(x_{k}\right)=g(x), \\
& \lim _{k \rightarrow+\infty} g^{*}\left(x_{k}^{*}\right)=g^{*}\left(x^{*}\right),
\end{aligned}
$$

which concludes the proof.

We finish this section with interesting remarks about this theorem.

Remark 4.4.1.

Properties 1 and 2 prove that DCA is a descent method for both primal and dual problems. DCA provides critical points for (P) and (D) after finitely many operations if there is no strict decrease of the primal (or dual) objective function.
If C and D are convex sets such that $\left\{x_{k}\right\} \subset C$ and $\left\{x_{k}^{*}\right\} \subset D$, then Theorem 4.4.2 remains valid if we replace $\rho(g), \rho(h)$ by $\rho(g, C), \rho(h, C)$ and $\rho\left(g^{*}\right), \rho\left(h^{*}\right)$ by $\rho\left(g^{*}, D\right), \rho\left(h^{*}, D\right)$.
In general, the qualities of DCA (robustness, stability or rate of convergence) depende upon the DC decomposition of the function f. Theorem 4.4.2 shows that strong convexity of DC components influence on DCA.
The DCA provides a x such that $\partial h(x) \subset \partial g(x)$

4.5 Polyhedral DC optimization problems

Polyhedral DC optimization occurs when either g or h is polyhedral convex [7]. This class of DC optimization problems, which is frequently encountered in practice, enjoys interesting properties (from both theoretical and practical viewpoints) concerning local optimality and the convergence of DCA.

Definition 4.5.1. Let be $C \subset X$. We define the indicator function, denoted by χ_{C}, as:

$$
\chi_{C}(x)=\left\{\begin{array}{lr}
0 & \text { if } x \in C \\
+\infty & \text { otherwise }
\end{array}\right.
$$

Remark 4.5.1. The indicator function χ_{C} is convex if and only if C is convex.
Definition 4.5.2. A function $\theta \in \Gamma_{0}(X)$ is said to be polyhedral convex if

$$
\theta(x)=\max _{i=1, \ldots, m}\left\{\left\langle a_{i}, x\right\rangle-\alpha_{i}\right\}+\chi_{C}(x) \quad \forall x \in X,
$$

where C is a nonempty polyhedral convex set in X.
In what follows we suppose that in Problem (P) either g or h is polyhedral convex. We may assume that h is a polyhedral convex function. If in $(\mathrm{P}) g$ is polyhedral and h is not so, then we consider the dual problem (D), since g^{*} is polyhedral (see [7]).

Throughout this section we assume that the optimal value α of problem (P) is finite which, by Remark 4.2.1, implies that $\operatorname{dom} g \subset \operatorname{dom} h=C$. Thus, (P) is equivalent to the problem

$$
(\tilde{\mathrm{P}}) \quad \alpha=\inf _{x \in X}\{g(x)-\tilde{h}(x)\},
$$

where $\tilde{h}(x)=\max _{i \in I}\left\{\left\langle a_{i}, x\right\rangle-\alpha_{i}\right\}$, with $I=\{1, \ldots, m\}$. Clearly

$$
\begin{equation*}
\alpha=\inf _{i \in I} \inf _{x \in X}\left\{g(x)-\left(\left\langle a_{i}, x\right\rangle-\alpha_{i}\right)\right\} . \tag{4.6}
\end{equation*}
$$

For each $i \in I$, let

$$
\left(\mathrm{P}_{i}\right) \quad \beta_{i}=\inf _{x \in X}\left\{g(x)-\left(\left\langle a_{i}, x\right\rangle-\alpha_{i}\right)\right\} .
$$

Notation 4.5.1. We denote by $\tilde{\mathcal{P}}$ the solution set of ($\tilde{\mathrm{P}})$.
Remark 4.5.2. If we denote by \mathcal{P}_{i} the solution set of the problem $\left(\mathrm{P}_{i}\right)$ we have that $\mathcal{P}_{i}=\partial g^{*}\left(a_{i}\right)$.

Proof:
The proof is very trivial as

$$
\begin{aligned}
x \in \mathcal{P}_{i} & \Longleftrightarrow g(x)-\left\langle a_{i}, x\right\rangle+\alpha_{i} \leq g(y)-\left\langle a_{i}, y\right\rangle+\alpha_{i}, & & \forall y \in X \\
& \Longleftrightarrow g(y) \geq g(x)+\left\langle a_{i}, y-x\right\rangle, & & \forall y \in X \\
& \Longleftrightarrow a_{i} \in \partial g(x) & & \\
& \Longleftrightarrow x \in \partial g^{*}\left(a_{i}\right) . & &
\end{aligned}
$$

Therefore, the equality holds.

Notation 4.5.2. We are going to denote

$$
J(\alpha)=\left\{i \in I: \beta_{i}=\alpha\right\} \quad \text { and } \quad I(x)=\left\{i \in I:\left\langle a_{i}, x\right\rangle-\alpha_{i}=\tilde{h}(x)\right\} .
$$

Theorem 4.5.1. It is verified that

1. $x \in \tilde{\mathcal{P}}$ if and only if $I(x) \subset J(\alpha)$ and $x \in \bigcap_{i \in I(x)} \partial g^{*}\left(a_{i}\right)$.
2. $\tilde{\mathcal{P}}=\bigcup_{i \in J(\alpha)} \partial g^{*}\left(a_{i}\right)$. If $\left\{a_{i}: i \in I\right\} \subset \operatorname{dom} \partial g^{*}$ then $\tilde{\mathcal{P}} \neq \emptyset$.

Proof:

1. Let $x \in \tilde{\mathcal{P}}$ and $i \in I(x)$. Then

$$
\alpha=g(x)-\tilde{h}(x)=g(x)-\left(\left\langle a_{i}, x\right\rangle-\alpha_{i}\right)=\beta_{i},
$$

which means that $i \in J(\alpha)$ and $x \in \mathcal{P}_{i}=\partial g^{*}\left(a_{i}\right)$ for every $i \in I(x)$. Therefore,

$$
I(x) \subset J(\alpha) \quad \text { and } \quad x \in \bigcap_{i \in I(x)} \partial g^{*}\left(a_{i}\right)
$$

Conversely, if $i \in J(\alpha)$ and $x \in \partial g^{*}\left(a_{i}\right)=\mathcal{P}_{i}$ then

$$
\alpha=\beta_{i}=g(x)-\left(\left\langle a_{i}, x\right\rangle-\alpha_{i}\right) \geq g(x)-\max _{i \in I}\left\{\left\langle a_{i}, x\right\rangle-\alpha_{i}\right\}=g(x)-\tilde{h}(x) \geq \alpha
$$

which implies that $\alpha=g(x)-\tilde{h}(x)$ and $g(x)-\left(\left\langle a_{i}, x\right\rangle-\alpha_{i}\right)=g(x)-\tilde{h}(x)$, i.e., $\left\langle a_{i}, x\right\rangle-\alpha=\tilde{h}(x)$ namely $i \in I(x)$ and $x \in \tilde{\mathcal{P}}$.
2. It is obvious from 1 .

Lemma 4.5.1. It is verified that

1. $\tilde{h}^{*}\left(a_{i}\right) \leq \alpha_{i}, \forall i \in I$. Equality holds if and only if there exists $x \in X$ such that $i \in I(x)$.
2. $\tilde{h}(x)=\max _{x^{*} \in \operatorname{co}\left\{a_{i}: i \in I\right\}}\left\{\left\langle x^{*}, x\right\rangle-\tilde{h}^{*}\left(x^{*}\right)\right\}=\max _{i \in I}\left\{\left\langle a_{i}, x\right\rangle-\tilde{h}^{*}\left(a_{i}\right)\right\}$.

Proof:

1. From the definition of \tilde{h} we have

$$
\left\langle a_{i}, x\right\rangle-\tilde{h}(x) \leq \alpha_{i}, \quad \forall x \in X, \forall i \in I,
$$

in particular,

$$
\tilde{h}^{*}\left(a_{i}\right)=\sup _{x \in X}\left\{\left\langle a_{i}, x\right\rangle-\tilde{h}(x)\right\} \leq \alpha_{i}, \quad \forall i \in I .
$$

If there exists $x \in X$ such that $i \in I(x)$, then

$$
\tilde{h}(x)+\tilde{h}^{*}\left(a_{i}\right) \geq\left\langle a_{i}, x\right\rangle=\tilde{h}(x)+\alpha_{i} \Longleftrightarrow \tilde{h}^{*}\left(a_{i}\right) \geq \alpha_{i},
$$

which implies that $\tilde{h}^{*}\left(a_{i}\right)=\alpha_{i}$.
Conversely, suppose that $\tilde{h}^{*}\left(a_{i}\right)=\alpha_{i}$ for some $i \in I$. Then

$$
\tilde{h}^{*}\left(a_{i}\right)=\sup _{x \in X}\left\{\left\langle a_{i}, x\right\rangle-\tilde{h}(x)\right\}=\alpha_{i}
$$

Let $x \in X$ such that $\alpha_{i}=\left\langle a_{i}, x\right\rangle-\tilde{h}(x)$. Therefore, $\tilde{h}(x)=\left\langle a_{i}, x\right\rangle-\alpha_{i}$, i.e., $i \in I(x)$.
2. By the fact that dom $\tilde{h}^{*}=\operatorname{co}\left\{a_{i}: i \in I\right\}$ (see [7]) and $\tilde{h} \in \Gamma_{0}(X)$ we have

$$
\tilde{h}(x)=\tilde{h}^{* *}(x)=\max _{x^{*} \in \operatorname{co}\left\{a_{i}: i \in I\right\}}\left\{\left\langle x^{*}, x\right\rangle-\tilde{h}^{*}(x)\right\} .
$$

On the other hand, there exists $x \in X$ such that $i \in I(x)$. Hence, from 1

$$
\tilde{h}(x)=\max _{i \in I}\left\{\left\langle a_{i}, x\right\rangle-\alpha_{i}\right\}=\max _{i \in I}\left\{\left\langle a_{i}, x\right\rangle-\tilde{h}^{*}\left(a_{i}\right)\right\},
$$

which ends the proof of this lemma.

By Lemma 4.5.1, we can write ($\tilde{\mathrm{P}})$ as

$$
\begin{align*}
& \alpha=\inf _{x^{*} \in \operatorname{co\{ }\left\{a_{i}: i \in I\right\}} \inf _{x \in X}\left\{g(x)-\left\langle x^{*}, x\right\rangle+\tilde{h}^{*}\left(x^{*}\right)\right\} \tag{4.7}\\
& \alpha=\inf _{x^{*} \in\left\{a_{i}: i \in I\right\}} \inf _{x \in X}\left\{g(x)-\left\langle x^{*}, x\right\rangle+\tilde{h}^{*}\left(x^{*}\right)\right\} . \tag{4.8}
\end{align*}
$$

Remark 4.5.3. Problem (4.7) is the dual problem ($\tilde{\mathbf{D}})$ of ($\tilde{\mathbf{P}})$

$$
\text { (邑) } \quad \alpha=\inf _{x^{*} \in \operatorname{co}\left\{a_{i}: i \in I\right\}}\left\{\tilde{h}^{*}\left(x^{*}\right)-g^{*}\left(x^{*}\right)\right\} .
$$

However, Problem (4.8) becomes

$$
\alpha=\inf _{x^{*} \in\left\{a_{i}: i \in I\right\}}\left\{\tilde{h}^{*}\left(x^{*}\right)-g^{*}(y)\right\} .
$$

The following result concerning the solution set $\tilde{\mathcal{D}}$ of the dual problem ($\tilde{\mathrm{D}})$ can be proven without using the results in the subsection 4.3.1.
Lemma 4.5.2. It is verified that

1. $J(\alpha)=\left\{i \in I: a_{i} \in \tilde{\mathcal{D}}\right.$ and $\left.\tilde{h}^{*}\left(a_{i}\right)=\alpha_{i}\right\}$.
2. $\left\{a_{i}: i \in J(\alpha)\right\} \subset \tilde{\mathcal{D}}$.

Proof:
If we prove 1 , the second result is trivial. So, let $i \in J(\alpha)$ then

$$
\begin{aligned}
\alpha=\beta_{i} & =\inf _{x \in X}\left\{g(x)-\left(\left\langle a_{i}, x\right\rangle-\alpha_{i}\right)\right\} \\
& =\alpha_{i}-\inf _{x \in X}\left\{g(x)-\left\langle a_{i}, x\right\rangle\right\} \\
& =\alpha_{i}-\sup _{x \in X}\left\{\left\langle a_{i}, x\right\rangle-g(x)\right\} \\
& =\alpha_{i}-g^{*}\left(a_{i}\right) \geq \tilde{h}^{*}\left(a_{i}\right)-g^{*}\left(a_{i}\right) .
\end{aligned}
$$

But,

$$
\alpha=\inf _{x^{*} \in \operatorname{co\{ }\left\{a_{i}: i \in I\right\}}\left\{\tilde{h}^{*}\left(x^{*}\right)-g^{*}\left(x^{*}\right)\right\} \leq \tilde{h}^{*}\left(a_{i}\right)-g^{*}\left(a_{i}\right) .
$$

Hence, the inequality becomes equality, i.e., $a_{i} \in \tilde{\mathcal{D}}$ and $\tilde{h}^{*}\left(a_{i}\right)=\alpha_{i}$.
Conversely, let $i \in I$ such that $a_{i} \in \tilde{\mathcal{D}}$ and $\tilde{h}^{*}\left(a_{i}\right)=\alpha_{i}$. Then

$$
\alpha=\tilde{h}^{*}\left(a_{i}\right)-g^{*}\left(a_{i}\right)=\alpha_{i}-g^{*}\left(a_{i}\right) .
$$

Thus

$$
\beta_{i}=\inf _{x \in X}\left\{g(x)-\left(\left\langle a_{i}, x\right\rangle-\alpha_{i}\right)\right\}=\alpha_{i}-g^{*}\left(a_{i}\right)=\alpha
$$

Hence, $i \in J(\alpha)$ as we wanted to see.
We can summarize the results of this section in the following theorem:

Theorem 4.5.2.

1. $x \in \tilde{\mathcal{P}}$ if and only if $I(x) \subset J(\alpha)$ and $x \in \bigcap_{i \in I(x)} \partial g^{*}\left(a_{i}\right)$.
2. $\tilde{\mathcal{P}}=\bigcup_{i \in J(\alpha)} \partial g^{*}\left(a_{i}\right)$. If $\left\{a_{i}: i \in I\right\} \subset \operatorname{dom} \partial g^{*}$ then $\tilde{\mathcal{P}} \neq \emptyset$.
3. $\tilde{h}(x)=\max _{x^{*} \in \operatorname{co}\left\{a_{i}: i \in I\right\}}\left\{\left\langle x^{*}, x\right\rangle-\tilde{h}^{*}\left(x^{*}\right)\right\}=\max _{i \in I}\left\{\left\langle a_{i}, x\right\rangle-\tilde{h}^{*}\left(a_{i}\right)\right\}$.
4. $J(\alpha)=\left\{i \in I: a_{i} \in \tilde{\mathcal{D}}\right.$ and $\left.\tilde{h}^{*}\left(a_{i}\right)=\alpha_{i}\right\}$ and $\left\{a_{i}: i \in J(\alpha)\right\} \subset \tilde{\mathcal{D}}$.

Chapter 5

Applications of DCA

In this chapter we present some non-convex problems that DCA have been applied to. The structure of each section will be the same. First, we will introduce the problem. Afterwards, we will obtain a DC decomposition of the objective function and finally we will apply DCA to this decomposition.

We remember that the simplified DCA is given by

```
Algorithm 1: DCA scheme
    input : \(x_{0} \in X\), tol
    \(k \leftarrow 0\)
    repeat
        Compute some \(x_{k}^{*} \in \partial h\left(x_{k}\right)\).
        Compute \(x_{k+1}=\underset{x \in C}{\operatorname{argmin}}\left\{g(x)-\left\langle x_{k}^{*}, x\right\rangle\right\}\).
        \(k \leftarrow k+1\)
    6 until \(\left|f\left(x_{k+1}\right)-f\left(x_{k}\right)\right|<\) tol;
    output: \(x_{k}\)
```


5.1 The trust-region subproblem (TSRP)

Let there be given a symmetric matrix $A \in \mathbb{R}^{n \times n}$, a vector $b \in \mathbb{R}^{n}$ and a real number $R>0$. The optimization problem

$$
\min _{x \in C}\left\{f(x):=\frac{1}{2}\langle A x, x\rangle+\langle b, x\rangle\right\},
$$

where $C=\left\{x \in \mathbb{R}^{n}:\|x\| \leq R\right\}$, is the trust-region subproblem. Since we are minimizing, this problem is equivalent to

$$
\min _{x \in X}\left\{f(x):=\frac{1}{2}\langle A x, x\rangle+\langle b, x\rangle+\chi_{C}(x)\right\},
$$

where χ_{C} denotes the indicator function.
Clearly, this problem is a DC program with different DC decompositions. Let us see some examples.

1. $f(x)=g(x)-h(x)$ with

$$
\begin{aligned}
g(x) & =\frac{1}{2}\left\langle A_{1} x, x\right\rangle+\langle b, x\rangle+\chi_{C}(x), \\
h(x) & =\frac{1}{2}\left\langle A_{2} x, x\right\rangle .
\end{aligned}
$$

The matrices A_{1} and A_{2} are symmetric positive semidefinite related to the spectral decomposition of A.

$$
A_{1}=\sum_{i \in I_{+}} \lambda_{i}\left\langle u_{i}, u_{i}\right\rangle, \quad A_{2}=-\sum_{i \in I_{-}} \lambda_{i}\left\langle u_{i}, u_{i}\right\rangle .
$$

Here $\lambda_{1} \leq \ldots \leq \lambda_{n}$ are the eigenvalues of A and $\left\{u_{1}, \ldots, u_{n}\right\}$ is an orthonormal basis of \mathbb{R}^{n} of eigenvectors of $A, I_{+}=\left\{i: \lambda_{i} \geq 0\right\}$ and $I_{-}=\left\{i: \lambda_{i}<0\right\}$.
Obviously, since $\left\langle A_{i} x, x\right\rangle, i=1,2$ is twice differentiable and its Hessian is $A_{i}, i=1,2$ which is positive semidefinite, we conclude that $\left\langle A_{i} x, x\right\rangle, i=1,2$ is convex. In addition, $\langle b, x\rangle$ is affine and C, convex. Therefore, $g(x)$ and $h(x)$ are convex and this is a DC decomposition of $f(x)$.
2. $f(x)=g(x)-h(x)$ with

$$
\begin{aligned}
g(x) & =\frac{1}{2}\langle(A+\rho I) x, x\rangle+\langle b, x\rangle+\chi_{C}(x), \\
h(x) & =\frac{1}{2} \rho\|x\|^{2} .
\end{aligned}
$$

The positive number ρ is chosen such that $A+\rho I$ is positive semidefinite, i.e., $\rho \geq-\lambda_{1}$. This is another DC decomposition of $f(x)$ for the same reason as before. The problem is that, at each iteration, the algorithm requires solving a convex quadratic program and so is expensive.
3. $f(x)=g(x)-h(x)$ with

$$
\begin{aligned}
& g(x)=\frac{\rho}{2}\|x\|^{2}+\langle b, x\rangle+\chi_{C}(x), \\
& h(x)=\frac{1}{2}\langle(\rho I-A) x, x\rangle .
\end{aligned}
$$

The positive number ρ, in this case, should render the matrix $\rho I-A$ positive semidefinite, i.e., $\rho \geq \lambda_{n}$. From the computational viewpoint, this decomposition is the most efficient. See [8].

The simplified DCA scheme which is described in the Algorithm 1 can be formulated explicity with the DC decomposition 3 .

Since $h(x)=\frac{1}{2}\langle(\rho I-A) x, x\rangle$ is differentiable, $\partial h\left(x_{k}\right)=(\rho I-A) x_{k}$. Besides, we need to compute

$$
x_{k+1}=\underset{x \in C}{\operatorname{argmin}}\left\{g(x)-\left\langle x_{k}^{*}, x\right\rangle\right\},
$$

where $x_{k}^{*}=(\rho I-A) x_{k}$.
Then,

$$
x_{k+1}=\underset{x \in C}{\operatorname{argmin}}\left\{\frac{\rho}{2}\|x\|^{2}+\langle b, x\rangle-\left\langle x_{k}^{*}, x\right\rangle\right\} .
$$

Since multiplying by a constant and adding a constant do not affect the argument function:

$$
x_{k+1}=\underset{x \in C}{\operatorname{argmin}}\left\{\|x\|^{2}-2\left\langle\frac{x_{k}^{*}-b}{\rho}, x\right\rangle+\left\|\frac{x_{k}^{*}-b}{\rho}\right\|^{2}\right\}=\underset{x \in C}{\operatorname{argmin}}\left\|x-\frac{x_{k}^{*}-b}{\rho}\right\|^{2} .
$$

Thus, x_{k+1} is, in fact, the projection of $\left(x_{k}^{*}-b\right) / \rho$ onto C, i.e.,

$$
x_{k+1}=\mathcal{P}_{C}\left(\frac{x_{k}^{*}-b}{\rho}\right)=\left\{\begin{array}{cl}
R \frac{x_{k}^{*}-b}{\left\|x_{k}^{*}-b\right\|}, & \text { if }\left\|x_{k}^{*}-b\right\| \geq \rho R, \\
\frac{x_{k}^{*}-b}{\rho}, & \text { otherwise } .
\end{array}\right.
$$

Consequently, the explicit DCA is given by Algorithm 2.

5.2 Least-squares fitting by circles

In this section we are going to consider the following problem: given a set of distinct points $\left\{a_{i}\right\}_{i=1}^{p} \subseteq \mathbb{R}^{n}$, find the spherical surface S that minimizes the sum of the squared distances from the points to S, i.e.,

$$
\text { (P) } \quad \min _{C, R} f(C, R):=\frac{1}{2 p} \sum_{i=1}^{p}\left(\left\|C-a_{i}\right\|-R\right)^{2},
$$

where C and R are the center and the radius of the spherical surface.

```
Algorithm 2: DCA scheme for (TSRP)
    input : \(x_{0} \in X\), tol
    \(k \leftarrow 0\)
    repeat
        Compute \(x_{k}^{*}=(\rho I-A) x_{k}\).
        Compute \(x_{k+1}=\left\{\begin{array}{cl}R \frac{x_{k}^{*}-b}{\left\|x_{k}^{*}-b\right\|}, & \text { if }\left\|x_{k}^{*}-b\right\| \geq \rho R, \\ \frac{x_{k}^{*}-b}{\rho}, & \text { otherwise. }\end{array}\right.\)
        \(k \leftarrow k+1\)
    until \(\left|f\left(x_{k+1}\right)-f\left(x_{k}\right)\right|<\operatorname{tol}\);
    output: \(x_{k}\)
```

Firstly, we need to get a DC decomposition of $f(C, R)$. Since the linear combination of DC functions are DC, we have to obtain a decomposition of one of the sums:

$$
\begin{aligned}
f_{i}(C, R) & =\left(\left\|C-a_{i}\right\|-R\right)^{2}=\left\|C-a_{i}\right\|^{2}+R^{2}-2\left\|C-a_{i}\right\| R= \\
& =\left\|C-a_{i}\right\|^{2}+R^{2}-\left[\left(\left\|C-a_{i}\right\|+R\right)^{2}-\left(\left\|C-a_{i}\right\|^{2}+R^{2}\right)\right]= \\
& =2\left(\left\|C-a_{i}\right\|^{2}+R^{2}\right)-\left(\left\|C-a_{i}\right\|+R\right)^{2}=g_{i}(C, R)-h_{i}(C, R) .
\end{aligned}
$$

Since g_{i} and h_{i} are convex, we have just found a DC decomposition of $f(C, R)$:

$$
\begin{aligned}
f(C, R) & =\frac{1}{2 p} \sum_{i=1}^{p}\left(\left\|C-a_{i}\right\|^{2}+R^{2}\right)-\frac{1}{2 p} \sum_{i=1}^{p}\left(\left\|C-a_{i}\right\|+R\right)^{2}= \\
& =g(C, R)-h(C, R) .
\end{aligned}
$$

This DC decomposition also provides an explicit DCA that we are going to compute. First of all, we are going to compute a subgradient of h at $\left(C_{k}, R_{k}\right)$:

$$
\begin{aligned}
\partial h\left(C, R_{k}\right) & =\partial\left(\frac{1}{p} \sum_{i=1}^{p} h_{i}\left(C, R_{k}\right)\right)=\frac{1}{2 p} \sum_{i=1}^{p} \partial\left(\left\|C-a_{i}\right\|+R_{k}\right)^{2}= \\
& =\frac{1}{2 p} \sum_{i=1}^{p} \partial\left(\left\|C-a_{i}\right\|^{2}+R_{k}^{2}+2\left\|C-a_{i}\right\| R_{k}\right)=\frac{1}{p} \sum_{i=1}^{p}\left(\left(C-a_{i}\right)+\partial\left\|C-a_{i}\right\| R_{k}\right) .
\end{aligned}
$$

Besides, the subgradient of the Euclidean norm is given by:

$$
\partial\left(\left\|C-a_{i}\right\|\right)= \begin{cases}\frac{C-a_{i}}{\left\|C-a_{i}\right\|}, & \text { if } C-a_{i} \neq 0 \\ \left\{x^{*}:\left\|x^{*}\right\| \leq 1\right\}, & \text { otherwise }\end{cases}
$$

Thus, we have:

$$
\partial h\left(C, R_{k}\right)= \begin{cases}\frac{1}{p} \sum_{i \neq j}\left(1+\frac{R_{k}}{\left\|C-a_{i}\right\|}\right)\left(C-a_{i}\right), & \text { if } C=a_{j} \\ \frac{1}{p} \sum_{i=1}^{p}\left(1+\frac{R_{k}}{\left\|C-a_{i}\right\|}\right)\left(C-a_{i}\right), & \text { otherwise }\end{cases}
$$

On the other hand,

$$
\begin{aligned}
\partial h\left(C_{k}, R\right) & =\partial\left(\frac{1}{2 p} \sum_{i=1}^{p} h_{i}\left(C_{k}, R\right)\right)=\frac{1}{2 p} \sum_{i=1}^{p} \partial\left(\left\|C_{k}-a_{i}\right\|+R\right)^{2}= \\
& =\frac{1}{2 p} \sum_{i=1}^{p} \partial\left(\left\|C_{k}-a_{i}\right\|^{2}+R^{2}+2\left\|C_{k}-a_{i}\right\| R\right)=\frac{1}{p} \sum_{i=1}^{p}\left(R+\left\|C_{k}-a_{i}\right\|\right) .
\end{aligned}
$$

Hence,

$$
\partial h\left(C_{k}, R\right)=R+\frac{1}{p} \sum_{i=1}^{p}\left\|C_{k}-a_{i}\right\| .
$$

Therefore, we obtain:

$$
\left(C_{k}^{*}, R_{k}^{*}\right) \in\left(\left.\partial h\left(C, R_{k}\right)\right|_{C_{k}} \times\left.\partial h\left(C_{k}, R\right)\right|_{R_{k}}\right)
$$

We also have to compute

$$
\binom{C_{k+1}}{R_{k+1}}=\underset{C, R}{\operatorname{argmin}}\left\{g(C, R)-\left\langle\left(C_{k}^{*}, R_{k}^{*}\right),(C, R)\right\rangle\right\},
$$

where $\left(C_{k}^{*}, R_{k}^{*}\right) \in\left(\left.\partial h\left(C, R_{k}\right)\right|_{C_{k}} \times\left.\partial h\left(C_{k}, R\right)\right|_{R_{k}}\right)$. Then,

$$
\binom{C_{k+1}}{R_{k+1}}=\underset{C, R}{\operatorname{argmin}}\left\{\tilde{g}(C, R):=\frac{1}{p} \sum_{i=1}^{p}\left(\left\|C-a_{i}\right\|^{2}+R^{2}\right)-\left\langle\left(C_{k}^{*}, R_{k}^{*}\right),(C, R)\right\rangle\right\}
$$

but this is a convex quadratic function whose minimum is attained at the point (\hat{C}, \hat{R}) such that $\nabla g(\hat{C}, \hat{R})=0$. Hence, we need to figure out the gradient:

$$
\begin{aligned}
\nabla_{C} g(C, R) & =\frac{1}{p} \sum_{i=1}^{p}\left(2\left(C-a_{i}\right)-C_{k}^{*}\right), \\
\frac{\partial g(C, R)}{\partial R} & =\frac{1}{p} \sum_{i=1}^{p}\left(2 R-R_{k}^{*}\right) .
\end{aligned}
$$

Thus, we are going to find (\hat{C}, \hat{R}) such that

$$
\left\{\begin{aligned}
\frac{1}{p} \sum_{i=1}^{p}\left(2\left(\hat{C}-a_{i}\right)-C_{k}^{*}\right) & =0 \\
\frac{1}{p} \sum_{i=1}^{p}\left(2 \hat{R}-R_{k}^{*}\right) & =0
\end{aligned}\right.
$$

This gives the following solution:

$$
\left\{\begin{array}{l}
\hat{C}=\frac{C_{k}^{*}}{2}+\frac{1}{p} \sum_{i=1}^{p} a_{i} \\
\hat{R}=\frac{R_{k}^{*}}{2}
\end{array}\right.
$$

Hence, we set

$$
\binom{C_{k+1}}{R_{k+1}}=\frac{1}{2}\binom{C_{k}^{*}}{R_{k}^{*}}+\frac{1}{p}\binom{\sum_{i=1}^{p} a_{i}}{0} .
$$

So, Algorithm 3 shows the explicit DCA in this case.
Now, we are going to implement this algorithm in Python and solve an example with this algorithm.

Example 5.2.1. Given the point cloud of the Picture 5.1] we seek the circumference that fits these points.

```
Algorithm 3: DCA scheme for (P)
    input : \(x_{0} \in X\), tol
    \(k \leftarrow 0\)
    repeat
        Compute \(C_{k}^{*}= \begin{cases}\frac{1}{p} \sum_{i \neq j}\left(1+\frac{R_{k}}{\left\|C_{k}-a_{i}\right\|}\right)\left(C_{k}-a_{i}\right), & \text { if } C_{k}=a_{j}, \\ \frac{1}{p} \sum_{i=1}^{p}\left(1+\frac{R_{k}}{\left\|C_{k}-a_{i}\right\|}\right)\left(C_{k}-a_{i}\right), & \text { otherwise. }\end{cases}\)
        Compute \(R_{k}^{*}=R_{k}+\frac{1}{p} \sum_{i=1}^{p}\left\|C_{k}-a_{i}\right\|\).
        Compute \(\binom{C_{k+1}}{R_{k+1}}=\frac{1}{2}\binom{C_{k}^{*}}{R_{k}^{*}}+\frac{1}{p}\binom{\sum_{i=1}^{p} a_{i}}{0}\).
        \(k \leftarrow k+1\)
    until \(\left|f\left(x_{k+1}\right)-f\left(x_{k}\right)\right|<\) tol;
    output: \(x_{k}\)
```

The implementation in Python is given by

```
import math
from numpy import *
from numpy.random import *
import random
import matplotlib.pyplot as plt
from numpy import linalg as LA
from scipy.optimize import minimize
import time
from scipy import stats
def dcafit(x0, nube,timelimit,tol):
    n = len(nube[0])
    n1 = n+1
    p = len(nube)
    cte = 1/p
    def f(x):
        C=x[0:n]
        R=x[-1]
        return sum((LA.norm(C-nube[i])-R)**2 for i in range(p))/(2*p)
    start_time = time.clock()
    def subgrad(x):
```


Figure 5.1: Point cloud made of two concentric circles.

```
    C = x[:n]
    R=x[-1]
    vector = zeros(n1)
    vector[0:n] = list(cte*sum((1+R/LA.norm(C-nube[i]))*(C-nube[i]) for i in range(p)))
    vector[-1] = R+cte*(sum(LA.norm(C-nube[i]) for i in range(p)))
    return vector
def argming(xstar):
    vector = zeros(n1)
    for i in range(n):
        vector[i] = cte*sum(nube[:,i])
    return (1/2)*xstar+vector
    xold = x0
    xstar = subgrad(xold)
xnew = argming(xstar)
tiempos = [0]
tiempo = time.clock()-start_time
tiempos += [tiempo]
niter = 1
while tiempo<=timelimit and abs(f(xnew)-f(xold))>tol:
    xold = xnew
    xstar = subgrad(xold)
    xnew = argming(xstar)
    tiempo = time.clock()-start_time
    tiempos += [tiempo]
    niter += 1
return [f(xold), xold,tiempos[-2],niter]
def dcamin(x0,nube,timelimit,tol,method):
    n = len(nube[0])
    p = len(nube)
```

```
def f(x):
    C = x[0:n]
    R=x[-1]
    return (I/ (2*p))*sum((LA.norm(C-nube[i])-R)**2 for i in range(p))
start_time = time.clock()
xold = x0
res = minimize(f,xold,method=method,options={'maxiter': l})
xnew = res.x
tiempos = [0]
tiempo = time.clock()-start_time
tiempos += [tiempo]
niter = 1
while tiempo <= timelimit and abs(f(xnew)-f(xold))>tol:
    xold = xnew
    res = minimize(f,xold,method=method,options={'maxiter': 1})
    xnew = res.x
    tiempo = time.clock()-start_time
    tiempos += [tiempo]
    niter += 1
return [f(xold), xold,tiempos[-2],niter]
```

The function dcafit is the code of the Algorithm 3, whereas that dcamin provides the solution of the problem using methods of SciPy. Then, we are going to utilize that to compare results.

Applying this code to this example produces the following code:

```
import math
from numpy import *
from numpy.random import *
import random
import matplotlib.pyplot as plt
from numpy import linalg as LA
from scipy.optimize import minimize
import time
from scipy import stats
from dcafit import *
# Computing the circumference that best adjusts to two concentric circles.
#===============
#========================================================================================== 
t = linspace(0, 2*pi,50)
circle1 = [2*cos(t),2*sin(t)]
circle2 = [4*cos(t),4*sin(t)]
fig, ax = plt.subplots()
ax.plot(circle1[0],circle1[1],'ko')
ax.plot(circle2[0],circle2[1],'ko')
plt.title('Point cloud')
fig.savefig('nubepuntos.pdf', dpi=fig.dpi)
plt.show()
```



```
# Data
#======================================================================================
x0 = zeros(3)
data = array([[2*\operatorname{cos(s), 2*sin(s)] for s in t] + [[4*\operatorname{cos(s),4*sin(s)] for s in t])}}\mathbf{ (s)}
timelimit = 5
tol=1e-5
#=============================
```



```
res = dcafit(x0,data,timelimit,tol)
obj = res[0]
C = res[1][:-1]
R = res[1][-1]
tiempo = res[2]
print('Objective value: ',obj)
print('Center of the circumference: ',C)
print('Radius of the circumference: ',R)
print('Execution time: ',tiempo)
circlesol = C+array([[R*cos(s),R*sin(s)] for s in t])
fig, ax = plt.subplots()
ax.plot(circle1[0],circle1[1],'ko')
ax.plot(circle2[0],circle2[1],'ko')
ax.plot(circlesol[:,0],circlesol[:,1],'r',label='Circumference solution')
plt.title('Point cloud with circumference solution')
#handles, labels = ax.get_legend_handles_labels()
#ax.legend(handles, labels)
fig.savefig('nubepuntoscirc.pdf', dpi=fig.dpi)
plt.show()
```

DCA algorithm provides the solution 5.2 .

Numerical results

In this subsection we will study two experiments to compare our algorithm with others that are implemented in the funcion optimize of the package SciPy. First experiment consists in using Multistart Algorithm with 100 uniform samples in the interval ($-2000,2000$) to do a boxplot to see the results of the objective values and execution times. In the second experiment, we will present a table to see how the results change in terms of the size p and dimension n in the different algorithms.

First experiment

Given 50 points distributed by an uniform sample in the interval $(0,100)$ in the Euclidean space, we will compute the objective values and times provided by the different

Figure 5.2: The red circumference is the solution of the example
algorithms.

Figure 5.3: Point cloud of the first experiment
The Python's code is the following:

```
import math
```

from numpy import *
import matplotlib.pyplot as plt
from numpy import linalg as LA
from scipy.optimize import minimize
import time
from scipy import stats
from dcafit import *

```
seed(1)
# Multistart and comparation with other algorithms.
#=======================================================================================
# Visualization
#========================================================================================
n}=
n1=n}+
p=50
pointcloud = uniform(0,100, size=(n,p))
fig, ax = plt.subplots()
ax.plot(pointcloud[0],pointcloud[1],'ko')
plt.title('Point cloud')
fig.savefig('nubepuntos2.pdf', dpi=fig.dpi)
plt.show()
#======================================================================================
# Data
#===================================================================================
M = 2000
numsamples = 100
initialpoints = uniform(-M,M,size=(n1,numsamples))
data = uniform(0,100,size=(p,n))
timelimit = 0.03
tol=1e-3
```



```
# Multistart DCA
#=====================================================================================
print('Multistart DCA')
DCAobj = []
DCAtimes = []
niter = 0
for i in range(numsamples):
    if niter%10==0:
        print('Iteration ',niter)
    res = dcafit(initialpoints[:,i],data,timelimit,tol)
    DCAobj += [res[0]]
    if res[2]!=0:
        DCAtimes += [res[2]]
    niter += 1
asarray(DCAobj)
asarray(DCAtimes)
```



```
# Multistart Nelder-Mead
```



```
print('\nMultistart Nelder-Mead')
```

```
NMobj = []
NMtimes = []
niter = 0
for i in range(numsamples):
    if niter%10==0:
        print('Iteration ',niter)
    res = dcamin(initialpoints[:,i],data,timelimit,tol,method='Nelder-Mead')
    NMobj += [res[0]]
    if res[2]!=0:
        NMtimes += [res[2]]
    niter += 1
asarray(NMobj)
asarray(NMtimes)
#========================================================================================
# Multistart Powell
#==========================================================================================
#print('\nMultistart Powell')
#
#Powellobj = []
#
#Powelltimes = []
#
#niter = 0
#
#for i in range(numsamples):
# if niter%10==0:
# print('Iteration ',niter)
# res = dcamin(initialpoints[:,i],data,timelimit,tol,method='Powell')
# Powellobj += [res[0]]
# if res[2]!=0:
# Powelltimes += [res[2]]
# niter += 1
#
#asarray(Powellobj)
#
#asarray(Powelltimes)
##====================================================================================
# Multistart CG
#====================================================================================
print('\nMultistart CG')
CGobj = []
CGtimes = []
niter = 0
for i in range(numsamples):
    if niter%10==0:
        print('Iteration ',niter)
    res = dcamin(initialpoints[:,i],data,timelimit,tol,method='CG')
    CGobj += [res[0]]
    if res[2]!=0:
        CGtimes += [res[2]]
    niter += 1
asarray(CGobj)
```

```
asarray(CGtimes)
stats.describe(CGobj)
#=======================================================================================
# Multistart BFGS
#=======================================================================================
print('\nMultistart BFGS')
BFGSobj = []
BFGStimes = []
niter = 0
for i in range(numsamples):
    if niter%10==0:
        print('Iteration ',niter)
    res = dcamin(initialpoints[:,i],data,timelimit,tol,method = 'BFGS')
    BFGSobj += [res[0]]
    if res[2]!=0:
        BFGStimes += [res[2]]
    niter += 1
asarray(BFGSobj)
asarray(BFGStimes)
#===================================================================================
# Boxplot
#======================================================================================
# Objective values
fig, ax = plt.subplots()
ax.boxplot([DCAobj,NMobj,CGobj,BFGSobj])
algorithms = ['DCA', 'Nelder-Mead','CGobj','BFGS']
labels = algorithms
ax.set_xticklabels(labels)
plt.title('Objective values of the algorithms')
fig.savefig('objval.pdf', dpi=fig.dpi)
plt.show()
# Objective value DCA
fig, ax = plt.subplots()
ax.boxplot(DCAobj)
algorithms = ['DCA']
labels = algorithms
ax.set_xticklabels(labels)
plt.title('Objective values of the DCA')
fig.savefig('objvaldca.pdf', dpi=fig.dpi)
plt.show()
# Execution times
fig, ax = plt.subplots()
ax.boxplot([DCAtimes,NMtimes,CGtimes,BFGStimes])
```

```
algorithms = ['DCA', 'Nelder-Mead','CG', 'BFGS']
labels = algorithms
ax.set_xticklabels(labels)
plt.title('Execution times of the algorithms')
fig.savefig('extimes.pdf', dpi=fig.dpi)
plt.show()
```

The boxplot 5.4 gives the comparation of the objective values.

Figure 5.4: Boxplot of objective values

Clearly, the objective values provided by DCA are much better than the other algorithms. If we focus on the DCA values, we have this boxplot

Figure 5.5: Boxplot of DCA objective values

Lastly, if we see the execution times, we obtain the boxplot 5.6. In this case, the execution times are more similar, but the DCA times seem to be better than the others.

Figure 5.6: Boxplot of execution times

Second experiment

In this experiment, using the same Multistart Algorithm, we are varying the parameters p and n and we will expose the main features of the distinct algorithms for each pair of parameters in a table. The code to implement this experiment is the following:

```
import math
from numpy import *
import matplotlib.pyplot as plt
from numpy import linalg as LA
from scipy.optimize import minimize
import time
from scipy import stats
from dcafit import *
seed(1)
# Mean and Multistart and comparation with other algorithms.
#======================================================================================
# Data
#========================================================================================
pointcloud = [10,50,100,200]
dimension = [1, 2,5,10]
M = 2000
numsamples = 100
#===========================================================================================
# Initialization
#===========================================================================================
DCAmean = []
NMmean = []
CGmean = []
BFGSmean = []
```

```
DCAmin = []
NMmin = []
CGmin = []
BFGSmin = []
DCAmax = []
NMmax = []
CGmax = []
BFGSmax = []
#=======================================================================================
# Loops
#========================================================================================
for p in pointcloud:
    for n in dimension:
        n1 = n + 1
        initialpoints = uniform(-M,M,size=(n1,numsamples))
        data = uniform(0,100,\operatorname{size}=(p,n))
        timelimit = 0.0003*n*p
        tol = 1e-3
        #=============================================================================
        # Multistart DCA
        print('\nMultistart DCA: p = '+str(p)+', n = '+str(n))
        DCAobj = []
        DCAtimes = []
        DCAniter = []
        for i in range(numsamples):
            res = dcafit(initialpoints[:,i],data,timelimit,tol)
            DCAobj += [res[0]]
            if res[2]!=0:
                DCAtimes += [res[2]]
                DCAniter += [res[3]]
        asarray(DCAobj)
        asarray(DCAtimes)
        asarray(DCAniter)
        #=============================================================================
        # Multistart Nelder-Mead
        #=====================================================================
        NMobj = []
        NMtimes = []
        NMniter = []
        for i in range(numsamples):
            res = dcamin(initialpoints[:,i],data,timelimit,tol,method='Nelder-Mead')
            NMobj += [res[0]]
```

```
    if res[2]!=0:
    NMtimes += [res[2]]
    NMniter += [res[3]]
asarray(NMobj)
asarray(NMtimes)
asarray(NMniter)
#=============================================================================
# Multistart Powell
#=============================================================================
#print('\nMultistart Powell')
#
#Powellobj = []
#
#Powelltimes = []
#
#niter = 0
#
#for i in range(numsamples):
# if niter%10==0
# print('Iteration ',niter)
# res = dcamin(initialpoints[:,i],data,timelimit,tol,method='Powell'
# Powellobj += [res[0]]
# if res[2]!=0:
        Powelltimes += [res[2]]
    niter += 1
#
#asarray(Powellobj)
#
#asarray(Powelltimes)
#==============================================================================
# Multistart CG
#===============================================================================
print('\nMultistart CG: p = '+str(p)+', n = '+str(n))
CGobj = []
CGtimes = []
CGniter = []
for i in range(numsamples):
    res = dcamin(initialpoints[:,i],data,timelimit,tol,method='CG')
    CGobj += [res[0]]
    if res[2]!=0:
        CGtimes += [res[2]]
        CGniter += [res[3]]
asarray(CGobj)
asarray(CGtimes)
asarray(CGniter)
#============================================================================
# Multistart BFGS
#============================================================
BFGSobj = []
BFGStimes = []
BFGSniter = []
for i in range(numsamples):
    res = dcamin(initialpoints[:,i],data,timelimit,tol,method = 'BFGS')
    BFGSobj += [res[0]]
```

```
    if res[2]!=0:
    BFGStimes += [res[2]]
    BFGSniter += [res[3]]
asarray(BFGSobj)
asarray(BFGStimes)
asarray(BFGSniter)
#================================================================================
# Means, minimum and maximum of objective values, iterations and times
#=================================================================================
DCAmean += [(mean(DCAobj),mean(DCAtimes),floor(mean(DCAniter)))]
NMmean += [(mean(NMobj),mean(NMtimes),floor(mean(NMniter)))]
CGmean += [(mean(CGobj),mean(CGtimes),floor(mean(CGniter)))]
BFGSmean += [(mean(BFGSobj),mean(BFGStimes), floor(mean(BFGSniter)))]
DCAmin += [(min(DCAobj),min(DCAtimes),floor(min(DCAniter)))]
NMmin += [(min(NMobj),min(NMtimes),floor(min(NMniter)))]
CGmin += [(min(CGobj),min(CGtimes),floor(min(CGniter)))]
BFGSmin += [(min(BFGSobj),min(BFGStimes),floor(min(BFGSniter)))]
DCAmax += [(max(DCAobj),max(DCAtimes),floor(max(DCAniter)))]
NMmax += [(max(NMobj),max(NMtimes),floor(max(NMniter)))]
CGmax += [(max(CGobj),max(CGtimes),floor(max(CGniter)))]
BFGSmax += [(max(BFGSobj),max(BFGStimes),floor(max(BFGSniter)))]
```

This code provides the following tables:
Objective values

p	n	DCA			NM			CG			BFGS		
		Min	Ave	Max									
10	1	20.47	142.6	202.7	202.7	$1.36 \mathrm{e}+6$	6.86e+6	20.47	7919	$5.99 \mathrm{e}+5$	22.93	$4.16 \mathrm{e}+4$	$4.02 \mathrm{e}+5$
10	2	74.85	327.6	695.4	170.6	$1.76 \mathrm{e}+6$	$9.16 \mathrm{e}+6$	74.84	294.6	695.347	156.6	4265	$1.67 \mathrm{e}+5$
10	5	30.04	293.5	645.1	63.05	$3.05 \mathrm{e}+6$	$1.45 \mathrm{e}+7$	30.05	276.3	642.30	44.44	671.2	$2.86 \mathrm{e}+4$
10	10	66.78	325.9	870	186.6	$5.29 \mathrm{e}+6$	$1.87 \mathrm{e}+7$	65.09	318.2	941.432	78.09	363.66	968.9
50	1	98.82	255.1	350.6	350.7	$1.51 \mathrm{e}+6$	$7.22 \mathrm{e}+6$	98.82	272.9	623.823	350.6	5.01e+4	$9.3 \mathrm{e}+5$
50	2	93.50	370.3	459.2	399.8	$1.78 \mathrm{e}+6$	$8.76 \mathrm{e}+6$	93.5	374.7	454.274	265.6	2095	$5.87 \mathrm{e}+4$
50	5	65.52	375.7	554.4	256.3	$3.68 \mathrm{e}+6$	$1.25 \mathrm{e}+7$	65.51	367.2	554.793	65.77	389.4	555
50	10	49.05	380.9	533.5	248.1	$5.01 \mathrm{e}+6$	$1.76 \mathrm{e}+7$	49.02	383.8	547.507	239.8	3561	$2.54 \mathrm{e}+5$
100	1	95.24	331.2	405.8	406.3	$1.02 \mathrm{e}+6$	$7.23 \mathrm{e}+6$	95.24	4980	$4.63 \mathrm{e}+5$	95.6	$3.22 \mathrm{e}+4$	$5.27 \mathrm{e}+5$
100	2	94.80	394.7	486.7	411.3	$1.67 \mathrm{e}+6$	$8.96 \mathrm{e}+6$	94.79	396.5	485.520	122.1	$7.42 \mathrm{e}+4$	$1.84 \mathrm{e}+6$
100	5	84.08	385.7	509.6	309.2	$3.44 \mathrm{e}+6$	$1.25 \mathrm{e}+7$	84.07	384.5	509.606	84.1	448.6	5895
100	10	296.6	418.3	510	295.6	$5.60 \mathrm{e}+6$	$2.04 \mathrm{e}+7$	291.5	412.5	504.670	296.5	428.1	844.6
200	1	102.7	329.9	409.7	409.7	$1.02 \mathrm{e}+6$	$5.79 \mathrm{e}+6$	102.7	372	1857.803	409.7	$1.66 \mathrm{e}+4$	$3.87 \mathrm{e}+5$
200	2	109.1	362.5	422.1	408.1	$1.53 \mathrm{e}+6$	$9.39 \mathrm{e}+6$	109.1	369.6	422.140	109.2	6351	$3.91 \mathrm{e}+5$
200	5	87.28	417.7	474.9	400.6	$3.68 \mathrm{e}+6$	$1.20 \mathrm{e}+7$	87.27	414.3	473.241	87.37	441.8	2024
200	10	294.7	403.8	528.4	344.9	$5.92 \mathrm{e}+6$	$2.03 \mathrm{e}+7$	328.8	401.1	531.285	331.1	407.6	531.7

Execution times

p	n	DCA			NM			CG			BFGS		
		Min	Ave	Max									
10	1	$3 \mathrm{e}-4$	0.003	0.03	4e-4	0.014	0.03	0.001	0.01	0.03	0.001	0.028	0.03
10	2	4e-4	0.055	0.06	0.001	0.015	0.054	0.004	0.056	0.06	0.055	0.059	0.06
10	5	0.06	0.148	0.15	0.001	0.044	0.15	0.107	0.147	0.15	0.14	0.148	0.15
10	10	0.3	0.3	0.3	0.005	0.078	0.237	0.288	0.297	0.3	0.292	0.298	0.3
50	1	0.002	0.019	0.124	0.002	0.532	0.148	0.011	0.049	0.149	0.109	0.143	0.15
50	2	0.002	0.117	0.3	0.002	0.079	0.298	0.017	0.254	0.3	0.139	0.291	0.3
50	5	0.165	0.732	0.75	0.004	0.145	0.745	0.177	0.729	0.75	0.733	0.745	0.75
50	10	0.655	1.49	1.5	0.025	0.29	0.983	1.382	1.483	1.5	1.407	1.488	1.5
100	1	0.004	0.026	0.154	0.004	0.16	0.3	0.021	0.087	0.297	0.112	0.283	0.3
100	2	0.003	0.285	0.6	0.012	0.166	0.526	0.033	0.498	0.6	0.435	0.572	0.6
100	5	0.008	1.402	1.5	0.04	0.289	1.344	0.06	1.435	1.5	1.271	1.486	1.5
100	10	0.009	2.966	3.000	0.152	0.667	2.239	2.857	2.969	2.999	2.906	2.981	3
200	1	0.006	0.06	0.338	0.023	0.254	0.597	0.05	0.185	0.595	0.225	0.567	0.6
200	2	0.006	0.226	1.2	0.009	0.259	1.195	0.055	0.856	1.199	0.622	1.124	1.199
200	5	0.007	1.773	2.999	0.059	0.551	1.97	0.118	2.768	3	1.252	2.829	2.999
200	10	0.016	5.52	6.000	0.293	1.196	3.85	5.737	5.944	6	3.934	5.946	6

Iterations

p	n	Iterations											
		DCA			NM			CG			BFGS		
		Min	Ave	Max									
10	1	2	5	15	2	21	45	2	4	11	2	11	18
10	2	2	99	112	2	19	66	2	23	37	8	21	33
10	5	105	252	265	2	30	124	16	39	63	14	34	57
10	10	297	455	483	4	40	114	35	56	80	25	47	70
50	1	2	9	55	2	20	55	2	5	14	6	12	20
50	2	2	42	121	2	21	84	2	20	41	12	22	38
50	5	65	277	292	2	28	139	10	48	69	30	46	63
50	10	250	552	574	4	33	109	37	54	88	8	47	69
100	1	2	5	26	2	23	46	2	4	11	8	12	19
100	2	2	50	125	3	23	79	2	21	42	4	22	42
100	5	3	255	308	5	27	130	2	46	74	13	47	73
100	10	3	539	618	11	40	134	57	57	95	22	59	81
200	1	2	7	36	3	21	55	2	4	12	7	13	21
200	2	2	22	123	2	19	89	2	16	37	8	22	30
200	5	2	148	301	4	24	88	2	39	73	22	39	70
200	10	3	479	626	7	33	80	30	52	90	32	63	79

These results show that, indeed, the DCA is a promising strategy against benchmark competitors.

Bibliography

[1] E. Asplund. Differentiability of the metric projection in finite dimensional euclidean space. Proceedings of the American Mathematical Society, 38(1):218-219, 1973.
[2] Rafael Blanquero and Emilio Carrizosa. Optimization of the norm of a vectorvalued dc function and applications. Journal of Optimization Theory and Applications, 107(2):245-260, 2000.
[3] Mirjam Dür. Conditions characterizing minima of the difference of functions. Monatshefte für Mathematik, 134:295-303, 2002.
[4] Philip Hartman. On functions representable as a difference of convex functions. Pacific Journal of Mathematics, 9(3):707-713, 1959.
[5] R. Horst and N.V. Thoai. Dc programming: Overview. Journal of Optimization Theory and Applications, 103(1):1-43, 1999.
[6] Panos M. Pardalos and Reiner Horst. Handbook of Global Optimization. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1st edition, 1995.
[7] Rockafellar R.T. Convex Analysis. Princeton University Press, New Jersey, 1970.
[8] Pham Dinh Tao and Le Thi Hoai An. Convex analysis approach to dc programming: Theory, algorithms and applications. Acta Mathematica Vietnamica, 22(1):289-355, 1997.

