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Abstract: This work deals with robot-sensor network cooperation where sensor nodes (beacons)
are used as landmarks for Range-Only (RO) Simultaneous Localization and Mapping (SLAM).
Most existing RO-SLAM techniques consider beacons as passive devices disregarding the sensing,
computational and communication capabilities with which they are actually endowed. SLAM is a
resource-demanding task. Besides the technological constraints of the robot and beacons, many
applications impose further resource consumption limitations. This paper presents a scalable
distributed RO-SLAM scheme for resource-constrained operation. It is capable of exploiting
robot-beacon cooperation in order to improve SLAM accuracy while meeting a given resource
consumption bound expressed as the maximum number of measurements that are integrated
in SLAM per iteration. The proposed scheme combines a Sparse Extended Information Filter
(SEIF) SLAM method, in which each beacon gathers and integrates robot-beacon and inter-beacon
measurements, and a distributed information-driven measurement allocation tool that dynamically
selects the measurements that are integrated in SLAM, balancing uncertainty improvement and
resource consumption. The scheme adopts a robot-beacon distributed approach in which each beacon
participates in the selection, gathering and integration in SLAM of robot-beacon and inter-beacon
measurements, resulting in significant estimation accuracies, resource-consumption efficiency and
scalability. It has been integrated in an octorotor Unmanned Aerial System (UAS) and evaluated
in 3D SLAM outdoor experiments. The experimental results obtained show its performance and
robustness and evidence its advantages over existing methods.

Keywords: robot-sensor network cooperation; SLAM; sensor networks

1. Introduction

This paper deals with Range-Only (RO) Simultaneous Localization and Mapping (SLAM) in which
the robot uses range measurements to build a map of an unknown environment and to self-localize
in that map. RO-SLAM does not require line-of-sight operation and is independent of lighting
conditions, whereas visual SLAM is sensitive to them and is not suitable in the presence of dense dust or
smoke [1]. Using radio beacons as landmarks naturally solves the data association problem, typical of
visual SLAM. Besides, RO-SLAM operates with shorter measurement and state vectors than visual
SLAM, resulting in significantly lower computational burden.

Our envisioned application is aerial robot autonomous navigation for maintenance and repairing
in industrial plants. We are interested in RO-SLAM schemes where the robot uses nodes from
a sensor network as landmarks. Consider a GPS-denied scenario where a large number of sensor
nodes (beacons) have been deployed at unknown static locations. For instance, they have been
placed at random locations for real-time monitoring an accident, or they are used for monitoring
an industrial facility, and their exact location was not registered during deployment. This is not a

Sensors 2017, 17, 903; doi:10.3390/s17040903 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s17040903
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 903 2 of 19

constraint: sensor nodes are already used for monitoring and maintenance in many industrial plants.
Each node periodically gathers and filters measurements and transmits them to a monitoring station.
We assume that each node can measure the distance to other nodes. This is not a limitation, in fact most
Commercial Off-The-Shelf (COTS) nodes can measure the Radio Signal Strength of Incoming packets
(RSSI) and estimate the range to the emitting node [2]. Mapping and robot localization is essential for
UAS navigation in the above GPS-denied environments. Besides, knowing the location of beacons
enables robot-sensor network cooperative missions of interest in these scenarios such as sensor node
transportation and deployment [3,4], collection of data from sensors [5,6] or node remote powering [7].
The potential capabilities of robot-sensor network collaboration have recently originated significant
interest in RO-SLAM methods that use sensor nodes as beacons [8–11]. However, most existing
techniques consider beacons as passive landmarks disregarding the computational, communication
and sensing capabilities with which they are actually endowed.

The performance of RO-SLAM methods improves as the number of measurements integrated
in SLAM increases. For instance, integrating beacon-beacon (inter-beacon) measurements improves
map and robot estimation accuracy [12]. However, using more measurements requires spending more
resources such as the energy, bandwidth and computational power required to gather, transmit and
integrate the measurements. SLAM is a resource demanding task. In the above scenarios the robot
and beacons perform many other tasks apart from SLAM, all of them sharing the available resources.
Besides, the available resources can be, and usually are, constrained by technological or application
limitations such as the available energy and computational capacity of beacons or the bandwidth of
the sensing channel. Resource consumption reduction has attracted high interest in SLAM, but very
few resource-constrained RO-SLAM methods have been reported.

This paper presents a RO-SLAM scheme that is capable of exploiting robot-beacon cooperation
in order to improve SLAM accuracy and efficiency while meeting a given resource consumption
bound. In this work, the resource consumption bound is expressed in terms of the maximum number
of measurements that can be integrated in SLAM per iteration. The sensing channel capacity used,
the beacon energy consumed or the computational capacity employed, among others, are proportional
to the number of measurements that are gathered and integrated in SLAM. The proposed scheme can
meet static and dynamic bounds, e.g., determined by an online resource allocation tool, enabling high
flexibility, which can be of interest in many cases. Our scheme employs a distributed Sparse Extended
Information Filter (SEIF) SLAM method, in which each beacon gathers and integrates in the SLAM
update stage robot-beacon and inter-beacon measurements. Like SEIF algorithm, our scheme can be
executed in constant-time. Our scheme also comprises a distributed tool that uses a gain-cost analysis
to dynamically select the most informative measurements to be integrated in SLAM.

The proposed scheme has a robot-beacon distributed approach were beacons actively participate
in measurement selection, gathering and integration in SLAM. It has the following main properties:
(1) adaptive resource-constrained operation, since it dynamically adapts to satisfy the given resource
consumption bound; (2) accuracy, since it integrates inter-beacon measurements, significantly
improving map and robot localization accuracies and speeding up beacon initialization; (3) efficiency,
since it gathers and integrates the most informative measurements and; (4) scalability, since all the
involved tasks are executed in a distributed manner. This paper presents the scheme, evaluates and
compares its performance with existing methods in experiments performed with an octorotor UAS.

The proposed scheme employs the distributed SEIF SLAM that we sketched in [13]. In this
paper, it is enhanced and combined with a distributed measurement selection tool that enables
resource-constrained operation. The main improvements in this paper over [13] are:

• development of a distributed robot-beacon tool that selects the most informative measurements
that are integrated in SLAM fulfilling the resource consumption bound;

• harmonious integration of the distributed SEIF SLAM and the measurement selection tool.
The resulting scheme outperforms that in [13], as described in Section 6;

• extension to 3D SLAM, integration and experimentation of the scheme with an octorotor UAS;
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• new experimental performance evaluation and comparison with existing methods;
• new subsection with experimental robustness evaluation;
• extension and more detailed related work. Furthermore, the paper has been restructured and all

sections have been completed and rewritten for clarity.

The paper is organized as follows. Section 2 summarizes the related work. Section 3 presents the
problem formulation. Sections 4 and 5 briefly describe the operation of the robot and beacons. Section 6
presents its evaluation, comparison and robustness analysis in 3D SLAM experiments. The conclusions
are in Section 7.

2. Related Work

As it is known, in Simultaneous Localization and Mapping (SLAM) a robot builds a map of an
unknown environment while simultaneously keeping track of its location within that map. RO-SLAM
methods solve the SLAM problem using only range measurements. Recursive Bayesian Filters (RBFs)
provide a solid statistical basis for estimation integrating measurements in presence of noise. A good
number of RO-SLAM methods have been developed in the last years. Most of them employ approaches
based on the Extended Kalman Filter (EKF) SLAM or on Fast-SLAM. These filters have been combined
with different initialization tools in order to deal with the partial observability of range measurements.
Particle Filters (PFs) [14] involve significant computational burden but provide accurate results.
Probability grids [12,15] have also been used but are computationally inefficient to implement in
3D. Trilateration [9] is the simplest approach but it can lead to high initialization errors, which can
originate inconsistent estimations. Gaussian mixtures [16,17] provide a multi-hypothesis representation
that allows integrating measurements from the beginning in undelayed SLAM methods. Dual to
Kalman Filters, Information Filters represent the state by its information vector ξ and its information
matrix Ω. The Sparse Extended Information Filter (SEIF) [18] for online SLAM maintains a sparse
representation of Ω. SEIF is naturally efficient in the update stage and the sparseness of Ω enables
using efficient algorithms for motion update and state recovery. SEIF can be executed in constant time
regardless of the map size.

Most RO-SLAM techniques employ only robot-beacon range measurements. Work [12] was
the first in using also measurements between beacons (inter-beacon). Integrating inter-beacon
measurements improves map and robot estimation accuracy and speeds up beacon initialization.
Despite its advantages few methods employ them. Integrating more measurements involves higher
consumption of energy, bandwidth and processing time to gather, transmit and integrate them in
SLAM. Work [19] integrates inter-beacon measurements adopting decentralized methods to deal with
the increase in the consumption of resources.

Efficiency in the use of resources has received high interest in SLAM. Some methods use decision
making tools based on information metrics to balance efficiency and accuracy. Work [20] developed an
approach that selects highly informative loop-closure links to simplify the Pose SLAM information
form and reduce its computational cost. They also achieve a compact information matrix reducing
the number of measurements by operating in open loop for long periods. This open loop operation
requires good odometry estimations, which are not always available in all scenarios and applications.
Work [21] presented a method for estimating the quality of visual measurements in single-camera
SLAM maximizing the mutual information between measurements and states in order to select the
best camera measurements. Despite its potential advantages, very few SLAM techniques, and even
less RO-SLAM, for resource-constrained operation have been reported.

In work [22] we proposed a RO-SLAM scheme that improves efficiency by choosing between two
measurement gathering modes. Mode selection is performed using a simple centralized tool based
on heuristics of robot and map estimation uncertainty: It does not consider resource consumption
requirements, hence it cannot adapt to given resource consumption bounds. Besides, mode decision
is fully centralized at the robot, lacking scalability. The scheme proposed in this paper is capable of
satisfying a given resource consumption bound. It uses a distributed measurement selection tool that
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prioritizes measurements analyzing cost and expected uncertainty improvement. Besides, the scheme
is distributed and beacons actively participate in measurement selection, gathering and integration
in SLAM.

2.1. Range Only SEIF SLAM in a Nutshell

This section briefly summarizes the SEIF SLAM algorithm as an introduction to the proposed
scheme. Most expressions have been omitted. For notation simplicity, time subindex t has also been
omitted. Refer to [23] for further details.

RO-SLAM methods commonly adopt a state vector ~x comprised of the robot position (xr) and
the location of all the beacons in the map (x1, x2, . . . , xN). SEIF is based on Extended Information
Filter (EIF). Duals to Kalman Filters, Information Filters (IFs) employ the canonical representation
of multivariate Gaussian distributions. The standard representation is based on the mean vector µ

and the covariance matrix Σ, whereas the canonical representation is based on the information vector
ξ = Σ−1µ and the information matrix Ω = Σ−1.

Ω =


Ωxr ,xr Ωxr ,x1 · · · Ωxr ,xN

Ωx1,xr Ωx1,x1 · · · Ωx1,xN
...

...
. . .

...
ΩxN ,xr ΩxN ,x1 · · · ΩxN ,xN

 (1)

The information matrix Ω is symmetric and positive-semidefinite. Each off-diagonal entry of
Ω, called the link [18], represents the relation between two elements in ~x. At any time in the SEIF
SLAM operation some of the off-diagonal elements of Ω are zero meaning lack of information between
the involved elements; some of them have high values, called strong links, meaning high amount of
information; and a number of them have values close to zero, called weak links. Weak links have lower
impact on the estimation of ~x than strong links but both involve similar computational burden. SEIF
operates as EIF but maintains a sparse representation of Ω by keeping the number of active beacons
bounded by a threshold. At each step the discovered beacons are classified in active and passive.
Active beacons are those with non-zero links to the robot. Every time the number of active beacons is
above the bound, the sparsification step is performed deactivating the beacons with the weakest links.

EIF measurement update modifies only the entries of Ω corresponding to the elements involved in
the measurement. Factorizing Ω allows efficient update stages regardless of the map size. SEIF inherits
this efficiency. Furthermore, by bounding the number of active beacons, SEIF significantly reduces
the computational burden in the prediction stage. For linearizing the prediction and observation
models it is necessary to recover the state estimate µ from the predicted Ω̄ and ξ̄. SEIF recovers
only the useful part of ~x, robot and active beacons. Of course, enforcing sparseness in Ω involves
an approximation error in the estimations obtained by SEIF. Work [18] suggests using sparsification
bounds in the range [4,5,7–11] to balance between accuracy degradation and burden reductions.

2.2. Integration of Range Measurements

Range measurements have the problem of partial observability. To cope this it SEIF should
be combined with an auxiliary beacon initialization mechanism. Our scheme uses PFs for beacon
initialization due to their high flexibility. Each beacon can be in the “initialization phase” or in the
“state vector phase”. In the “initialization phase” each beacon executes its own PF. When the PF
converges, the beacon initializes its state vector: The “state vector phase” starts.

The observation model used for range measurement zr,i taken by the robot to beacon bi is:

hr,i(µ) =
√

δ2
x + δ2

y + δ2
z , (2)

where δx = µx − µi
x, δy = µy − µi

y and δz = µz − µi
z. (µx, µy, µz) and (µi

x, µi
y, µi

z) are respectively the
estimated positions of the robot and of beacon bi. hr,i is nonlinear. Its Jacobian is:
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Hr,i =
∂hr,i

∂µ
=
[

δx
hr,i

δy
hr,i

δz
hr,i

· · · −δx
hr,i

−δy
hr,i

−δz
hr,i

· · ·
]

(3)

All the entries of Hr,i that are not shown in (3) are zero. Only the entries of Hr,i corresponding to
the robot and beacon bi are not zero. The proposed method also integrates inter-beacon measurements,
such as zi,j gathered by beacon bi to bj. The adopted model hi,j is an extension of that in (2) taking

δx = µi
x − µ

j
x, δy = µi

y − µ
j
y and δz = µi

z − µ
j
z. The entries of its Jacobian Hi,j are zero except for those

corresponding to the beacons involved in the measurement:

Hi,j =
[
0 · · · δx

hi,j

δy
hi,j

δz
hi,j

· · · −δx
hi,j

−δy
hi,j

−δz
hi,j

· · ·
]

(4)

3. Problem Formulation

Consider a GPS-denied scenario where a number of sensor nodes endowed with sensing,
computational and communication capabilities have been deployed at static locations. We assume
that the location of the nodes is not known. For instance, they have been deployed at unknown
locations or their exact location has not been registered during deployment. Each node is assumed
equipped with a range sensor and can measure the distance to the robot or to other nodes within
its sensing region. Range measurements are assumed affected by statistically independent Gaussian
noise. We are interested in RO-SLAM techniques that use sensor nodes as radio beacons (landmarks),
to online estimate the locations of sensor nodes and of the robot. The SLAM method can exploit the
capabilities of the beacons deployed but, at the same time, should make efficient use of the available
resources and should comply with resource consumption constraints.

In conventional RO-SLAM techniques the robot gathers range measurements to the beacons within
its sensing region and integrates these measurements in the update stage, see Figure 1a. In the adopted
scheme measurement gathering and integration in SLAM is distributed among the beacons. The robot
computes the SEIF SLAM prediction stage and transmits the predicted state to the beacons within
its sensing region. Each beacon receiving the message: (1) gathers range measurements to the robot
and other beacons (inter-beacon measurements), see Figure 1b; (2) integrates these measurements
and computes its contribution to the update stage and; (3) transmits its contribution to the robot.
Finally, the update stage of SLAM expressed in the information form is additive [23] and the robot
reconstructs the updated state by simply adding the contributions it received. The proposed scheme
naturally exploits robot-beacon cooperation to solve online SLAM: Accurately, since it integrates
inter-beacon measurements; efficiently, distributing measurement gathering and integration in SLAM,
and hence sharing burden and energy consumption; and in a scalable manner.

Efficiency in the use of resources is very important in robot-sensor network cooperation. In most
cases the SLAM algorithm is executed simultaneously with other tasks, all of them sharing the
available resources. Furthermore, radio beacons gathering range measurements such as RSSI, Time
of Arrival (ToA) or Differential ToA, make use of some kind of communication, which requires
using a channel with a certain (constrained) capacity. In fact the capacity of the sensing channel
is one of the most relevant constraints in settings with a high number and density of deployed
beacons. In our problem resource consumption can be expressed in terms of the maximum number
of measurements that are gathered and integrated in SLAM at each iteration. The use of the sensing
channel, the consumption of beacons energy and of beacons computational capacity are proportional
to the number of measurements that are gathered and integrated in SLAM. Hence, bounding the
number of measurements constrains the consumption of the main resources involved.
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b2

b3
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zr,1
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zr,3

(a)

b1

b5
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b3

b4

z1,r
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z3,2
z3,4

z2,r
z2,3
z2,5

(b)

Figure 1. Measurement gathering in conventional SLAM methods (a) and in the proposed distributed
SLAM scheme (b). Gray circles represent the sensing regions of the robot (a) and beacons b1, b2 and
b3 (b).

A diagram of the proposed scheme with its main modules is shown in Figure 2. The scheme
combines (1) a distributed SEIF SLAM method in which beacons gather and integrate in
SLAM robot-beacon and inter-beacon measurements; and (2) a distributed information-driven
measurement selection tool that dynamically selects the measurements that are integrated in SLAM
in order to improve performance while fulfilling the bound in the total number of measurements.
Both components are executed in a distributed manner by the robot and by the beacons. Each beacon
maintains a local version of the SLAM state whereas the global state is maintained only by the robot.
The message interchange and the operation of the robot and beacons is summarized in Figure 3.

Methods that select the measurements that best reduce the uncertainty in the SLAM global state are
necessarily centralized and have to deal with the information matrix of the global state. These methods
incur in high computational burden with large maps and scale badly with the map size. The proposed
scheme approximates this centralized measurement selection by a robot-beacon distributed tool that
preserves the constant time execution and scalability. In Section 6.2 it is experimentally shown that the
adopted tool is almost as accurate as the centralized measurement selection, adifference in map and
robot RMS errors lower than 3%.

The distributed measurement selection tool is performed in two steps: Measurement distribution
and measurement allocation. In measurement distribution the robot dynamically decides the number of
measurements that are assigned to each beacon within the robot sensing region using expectations
of uncertainty reductions. In measurement allocation, each beacon bi decides the actual measurements
that it will gather and integrate in SLAM analyzing the cost and expected uncertainty improvement of
integrating each measurement.

The bound in the number of measurements that can be gathered in each iteration is NMmax.
As example where NMmax has a high value is shown in Figure 1b: Each beacon within the robot sensing
region gathers and integrates a measurement to each beacon within its sensing region. An example
with a low NMmax in shown in Figure 4. b1 and b2 are assigned with only one measurement and gather
z1,r and z2,r. b3 is assigned with two measurements and besides z3,r, it gathers z3,2, the measurement
that achieves the best expected uncertainty improvement-cost trade-off.
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Figure 2. Diagram of the proposed resource-constrained RO-SLAM scheme.

UpdateReq

UpdateResp

SEIF SLAM prediction

Sum of update contributions
Sparsification

Measurement allocation

Measurement gathering

Robot Beacon bi

Computation of update contributions

Measurement distribution

Figure 3. Operation and message interchange in the proposed scheme.

b1

b5
b2

b3

b4

z1,r

z3,r
z3,2

z2,r

Figure 4. Measurement gathering with a low value of NMmax; b1 gathers z1,r; b2 gathers z2,r; b3 gathers
z3,r and z3,2.

4. Operation of the Robot

The operation of the robot can be decomposed in four main tasks: (1) computation of the SEIF
SLAM prediction stage; (2) reconstruction of the updated state using the contributions received by the
robot; (3) computation of the sparsification step; and (4) measurement distribution. For brevity, most
SEIF equations have been omitted. Refer to [23] for further details.

The robot operation is as follows, see Algorithm 1. First, the robot computes the SEIF
SLAM prediction. Static beacons and nonlinear robot kinematic model are assumed. The robot
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Jacobian is computed at each time, which requires recovering the state. Our scheme uses the
efficient algorithm described in [18] for motion update and state recovery. This algorithm computes
the predicted information vector ξ̄t and information matrix Ω̄t and recovers the predicted µt.

Algorithm 1: Summary of the operation of the robot.
Require: ξt−1, Ωt−1, NMmax, LM

1: SEIF motion update and state recovery
2: Create and broadcast UpdateReq message
3: Receive UpdateResp messages
4: Extract ξi, Ωi and uii from UpdateResp messages
5: Compute ξt and Ωt as in (6)–(7)
6: SEIF Sparsification
7: Measurement distribution. Create LM
8: return ξt, Ωt, LM

As the robot moves beacons go in and out of the robot sensing region. The robot maintains BSr,
a list with the beacons that are currently within its sensing region. At each time t the robot broadcasts
an UpdateReq message that includes µt and LM, a list created by the robot at t− 1 that contains the
number of measurements that have been assigned to each beacon bi ∈ BSr. Transmitting the whole µt

in the UpdateReq message is not suitable in cases with large maps. Only the elements in µt required for
each beacon are transmitted. Let evi be the vector with the estimates required by beacon bi to compute
its contribution to the update stage:

evi = [µr µi µj]
T , (5)

where µr is the estimation of the robot current location, µi is the estimation of the location of beacon bi
and µj represents the estimations of the location of every beacon bj within the sensing region of bi.

When bi receives the UpdateReq message, it performs as described in Section 5 and transmits to the
robot an UpdateResp message with ξi,t and Ωi,t, its contribution to the SLAM update stage. The robot
reconstructs the updated state, ξt and Ωt, using ξ̄t and Ω̄t and the update contributions it received:

ξt = ξ̄t + ∑
i

FT
i ξi,t, (6)

Ωt = Ω̄t + ∑
i

FT
i Ωi,tFi, (7)

where Fi is the projection matrix that implements the operations necessary to allocate ξi,t and Ωi,t at
the suitable entries in ξt and Ωt.

Next, the robot checks if Ωt satisfies the SEIF sparsification bound. If not, the beacons with the
weakest links are deactivated as described in [18].

The final step performed by the robot is to distribute the number of measurements NMmax

between bi ∈ BSr. NMmax is considered an input to our scheme. It can be static or dynamic,
computed by an online resource allocation tool, for instance analyzing the capacity of the channel
using link quality estimators, see e.g., [24]. Measurement distribution is performed proportionally to
IGi,t, the usefulness of the measurements from beacon bi to reduce the uncertainty of the SLAM state.
bi has impact on the SLAM state only if its update contribution reaches the robot, i.e., if bi receives
the UpdateReq message sent by the robot and if the robot receives the UpdateResp message with the
update contribution from bi. These two events are statistically independent. Taking pr,i as the Packet
Reception Rate (PRR) from the robot to bi and assuming symmetric PRRs, IGi,t can be estimated as:

IGi,t = p2
r,i uii,t, (8)
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where uii,t estimates the capability of the measurements gathered by bi to reduce the uncertainty in
the SLAM state. Transmission errors in sensor networks are not infrequent. This criterion naturally
assigns more measurements not only to the most informative beacons, but also to those with better
communication with the robot.

Each bi computes its own uii,t, described in Section 5, and transmits it to the robot in an UpdateResp
message. The robot can measure pr,i to each bi ∈ BSr by simply analyzing message transmission
success. Next, the robot allocates the NMmax measurements among beacons bi ∈ BSr proportionally to
IGi,t and creates LM, the list with the number of measurements assigned to each beacon bi ∈ BSr.

5. Operation of Beacons

The operation of beacons is summarized in Algorithm 2. Once beacon bi has received the
UpdateReq message it performs as follows: (1) executes measurement allocation and selects the most
informative measurements; (2) gathers and integrates in SLAM the selected measurements and; (3)
transmits to the robot its update contribution in an UpdateResp message.

Algorithm 2: Summary of the operation of beacon bi

1: Receive UpdateReq message. Extract evi and LMi
2: Measurement allocation. Compute Ji,j and uii
3: Gather the LMi measurements with the highest Ji,j. Create MSi
4: if (bi is at “state vector phase”) then

5: Compute ξi,t and Ωi,t with MSi as in (15)–(16)
6: else

7: Use MSi to update the PF of bi
8: end if
9: Create UpdateResp message and transmit it to the robot

5.1. Measurement Allocation

UpdateReq messages include LM. Once beacon bi has received an UpdateReq message, it extracts
LMi, the number of measurements it was assigned with. Let BSi be the set of beacons bj within the
sensing region of bi. In measurement allocation each beacon bi selects which measurements zi,j, bj ∈ BSi
it should gather and integrate in SLAM. We adopt a common approach in information-driven
measurement selection and formulate the problem as the greedy optimization of a utility function that
establishes a trade-off between information gain and resource consumption:

Ji,j = ri,j − αci,j (9)

ci,j is the cost of the resources consumed in gathering and integrating measurement zi,j. In sensor
networks energy is maybe the most constrained resource. We take ci,j as the energy consumed by
bi in gathering and integrating zi,j. ci,j could be different for each beacon, e.g., depending on the
remaining energy in its batteries. For simplicity, ci,j was assumed the same for all measurements.
The reward ri,j = uii,j is the expected SLAM uncertainty improvement resulting after integrating zi,j.
α is a weighting factor that balances the cost the reward. Its effects will be evaluated in Section 6.3.
This cost-reward approach has been used in the literature, like in [25], where they used it to make
decisions on a robot exploration problem. In our work, α was determined experimentally.

The reward ri,j = uii,j is determined as follows. In our distributed scheme each beacon maintains
its own local state. Ωi,t is the predicted information matrix for time t of the local state of bi. Ωi,t was
computed by bi at t− 1. It is easy to notice that the updated information matrix of the local state of bi
that would result after integrating measurement zi,j is:

Ω‘i,t = Ωi,t + Ωi,j,t (10)
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where Ωi,j,t is the expected contribution of zi,j and is computed as follows:

Ωi,j,t = HT
i,j,tR

−1Hi,j,t, (11)

where R is the covariance matrix of the measurement noise and Hi,j,t is the Jacobian of the observation
model of measurement zi,j computed with evi, just received from the robot in the UpdateReq message.

On the other hand, in case of not integrating zi,j, the updated information matrix for bi would
be Ωn

i,t = Ωi,t. The uncertainty improvement uii,j is the difference of the uncertainty in Ω‘i,t and in
Ωn

i,t. Entropy is maybe the most widely-used metric for the uncertainty in a probability distribution.
It is adopted in our scheme. Entropy can be used to measure the uncertainty of beacons in the “state
vector phase” and also of beacons in the “initialization phase”, giving the same treatment to both cases.
If beacon bi is in the “state vector phase”, its state follows a Gaussian probability distribution and its
entropy can be computed using an exact expression. In this case uii,j is as follows:

uii,j =
1
2

log

(
|Ωi,t|

|Ωi,t + Ωi,j,t|

)
(12)

If bi is in the “initialization phase”, i.e., its PF has not converged, its probability distribution
is approximated by the set of PF particles. In this case, there is not an exact expression and each bi
computes its uii,j using the approximate calculation described in [26].

It should be noticed that if bj is in the “initialization phase”, it is still not in the state vector of its
neighbor bi. Hence, zi,j is not useful to update the local map of bi, either if bi is in the “initialization
phase” or in the “state vector phase”. Hence, the uncertainty improvement uii,j is taken as zero.

Long-term optimization of Ji,j involves high computational burden and bad scalability.
We adopted a simple but efficient greedy approach: At each time bi selects the LMi beacons bj ∈ BSi
that achieve the highest value in Ji,j. Of course, measurements with negative gain-cost utility, Ji,j < 0,
are not selected.

Each beacon bi receiving the UpdateReq message also computes uii, which will be used by the robot
in measurement distribution. uii estimates how good it is to assign measurements to bi, i.e., the expected
improvement in the uncertainty of the local state of bi if bi integrates one measurement to each beacon
bj ∈ BSi. Similarly, the updated information matrix for bi that would result after integrating one
measurement to each beacon bj ∈ BSi is:

Ω“i,t = Ωi,t + ∑
j∈BSi

Ωi,j,t (13)

As above, if no measurement is integrated, the updated information matrix is Ωi,t−1. Thus, uii is
computed as follows:

uii =
1
2

log

(
|Ωi,t|

|Ωi,t + ∑j∈BSi
Ωi,j,t|

)
(14)

5.2. Integration of Measurements

At this step, beacon bi has already gathered one measurement to the robot and to each of the
beacons selected in measurement allocation. Let MSi be the set of gathered measurements. The next step
is to integrate them. If beacon bi is in the “initialization phase”, it updates its PF with the measurements
in MSi. If bi is in the “state vector phase”, it integrates them in its local state and computes its update
contribution as follows:

ξi,t = ∑
j∈MSi

HT
i,j,tR

−1[zi,j − hi,j(evi) + Hi,j,tevi], (15)
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Ωi,t = ∑
j∈MSi

HT
i,j,tR

−1Hi,j,t, (16)

where hi,j(evi) and Hi,j,t are respectively the predictions and Jacobians for each measurement in MSi,
either robot-beacon or inter-beacon measurement. Finally, bi transmits an UpdateResp message to the
robot with its contribution to the SEIF update (ξi,t and Ωi,t) and to measurement distribution (uii).

6. Experiments

The validation of the proposed scheme was performed in sets of 3D SLAM outdoor experiments
with AMUSE UAS, an octorotor developed in the UE-FP7 ARCAS project for maintenance and repairing
of industrial facilities [27], see Figure 5. Maintenance of industrial facilities is currently performed
using sensor nodes that gather measurements for process monitoring and anomaly detection. In these
complex scenarios GPS is often unavailable or has bad quality. UAS are suitable tools for confirming
and eventually repairing the anomalies detected but they require accurate localization. The proposed
resource-constrained RO-SLAM scheme is very interesting in this problem. Besides the typical
technological constraints of UAS and beacons, in these scenarios there are often a high number
of sensors and wireless devices involving significant bandwidth limitations. Besides, the energy
consumed by nodes (beacons) is constrained in order to avoid frequent battery replacements.

Figure 5. AMUSE UAS flying during one experiment at the School of Engineering of Seville.

A total of 24 beacons were deployed at random locations and different heights in a 20 × 20 m
scenario, beacons are marked in Figure 5. Each beacon was comprised of a RaspberryPi running Linux
connected through USB to a Nanotron nanoPAN 5375 [28] Time-of-Flight (ToF) range sensor and to a
WiFi USB adapter, all powered by an external battery, see Figure 6b. The performance of Nanotron
sensors in outdoors was characterized experimentally. Their range error can be modeled as a Gaussian
PDF with zero mean and a standard deviation of σm = 0.6 m, see Figure 6c. The resolution of these
sensors is 0.01 m. It should be noticed that measurements from two or more different beacons can
always be distinguished because the measurements are tagged with a unique identifier for each beacon.
Each beacon run an independent ROS (Robots Operating System) node. The ROS node implements
the beacon algorithm, gathers range measurements with the Nanotron ToF range sensor using an
ad-hoc developed ROS driver and communicates with the other beacons using WiFi. One beacon was
mounted on the landing skid of AMUSE, see Figure 6a. In the experiments the proposed SLAM scheme
was executed at a rate of 1 Hz, one iteration per second. The robot beacon transmitted UpdateReq
messages at a rate of 1 Hz. In these experiments the main resource constraint was imposed by the
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sensing channel bandwidth. NMmax = 80 was the maximum number of range measurements per
iteration that we could gather without interference in the experiments.

(a) (b)
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Figure 6. (a) Picture of AMUSE octorotor during one experiment; (b) Picture of a beacon comprised of
a Nanotron ToF range sensor connected through USB to a RaspberryPi module powered by a battery; (c)
Experimental outdoor characterization of Nanotron nanoPAN 5375 sensors.

In these experiments AMUSE was in manual flight. The objective was not to use the proposed
scheme for real-time navigation. AMUSE is equipped with a Novatel OEM6 GPS unit with 2 cm
accuracy. We used GPS only as ground truth for accuracy assessment. SLAM provides the generated
map and robot location in a local coordinate frame. To compare with the ground-truth, an affine
transform is performed on the final beacon locations, re-aligning the local solution into the same global
coordinate frame. UAS odometry obtained from Inertial Measurement Units is often too noisy to be
used in SLAM. Like most works in 3D SLAM, e.g., [29], we opted for employing some beacons, 5 in
the experiments performed, as anchors for correcting the UAS localization.

The auxiliary PFs for beacon initialization were set with 500 particles. Each beacon executes its
own PF, initializes the PF when it receives the first measurement and decides that it has converged
when the maximum eigenvalue of the covariance matrix is lower than 0.4. The eigenvalues of the
covariance matrix are directly proportional to the variance along the corresponding eigenvectors.
Thus, the maximum eigenvalue is a measure of the volume (or at least the largest axis) of the confidence
ellipsoid of the distribution. Using the eigenvalues puts the convergence condition on each axis.
Our scheme has only two parameters: NMmax and α. We used NMmax = 80 and α = 7.5 in all the
experiments. For simplicity in these experiments the cost of measurement zi,j in Ji,j was taken constant
and equal to the energy consumed by beacons when taking one measurement ci,j = 6.6 mJ.

6.1. Validation

The result of the proposed scheme in one experiment in XY (left) and 3D (right) views is shown
in Figure 7. Blue lines and stars represent respectively the ground truth UAS trajectory and beacon
locations. Red lines and triangles are the resulting estimates. The total number of measurements
integrated at each iteration along the experiment is shown in Figure 8a. At the beginning all beacons
gathered all the measurements they were assigned with: In total NMmax = 80 between all the beacons.
As the experiment advanced the beacon local states had lower and lower uncertainty and inter-beacon
measurements became less and less informative. From t = 108 s on, some measurements achieved
Ji,j < 0; their reward was lower than the cost, and were not gathered anymore. In average the number
of measurements per iteration in this experiment was 61, lower than NMmax. The proposed scheme
ensures the given NMmax bound avoiding reward-cost inefficient measurements.
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Figure 7. Results of the proposed scheme in a 3D SLAM experiment with AMUSE UAS: XY (a) and 3D
views (b).
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Figure 8. (a) Number of measurements integrated at each iteration along the experiment; (b) Evolution
of beacon localization errors; (c) Number of measurements gathered by three beacons along the
experiment; (d) Values of IGi along the experiment for the beacons in (c).

The evolution of beacon localization errors along the experiment is shown in Figure 8b.
The drawing for each beacon starts when its PF converged. The majority of the PFs converged
between t = 6 s and t = 16 s, shortly after the start of the experiment. The UAS localization errors in
the three coordinates are shown in Figure 9. The red dashed lines represent the 3σ bounds showing
the consistency of the estimations.
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Figure 9. Evolution of UAS localization error in the experiment.

The cumulative number of inter-beacon measurements gathered by three beacons along the
experiment is shown in Figure 8c. Similar curves were obtained for all beacons. The shape of each curve
is a ramp with almost constant slope until the beacon stops gathering measurements. This evolution
is useful to analyze the performance of measurement distribution and measurement allocation. At the
beginning each beacon gathers all the measurements it is assigned with. Measurement distribution
assigns measurements to bi proportionally to IGi. More measurements are assigned to beacons with
higher uncertainty. Hence, measurement distribution naturally balances the values of IGi of all the
beacons. Figure 8d shows that the three beacons represented in Figure 8c have similar evolution in IGi.
This can be observed for all beacons. As a result all beacons are assigned with a similar number of
measurements, resulting in similar slopes in Figure 8c. Beacon bi gathers and integrates zi,j as long
as Ji,j > 0. The uncertainty of bi will be lower as it integrates more measurements. After a while, the
measurements gathered by bi will not satisfy Ji,j > 0 and it will stop taking measurements, the lope
becomes zero in Figure 8c. Each beacon has its own different situation (number of neighbors, time of
PF convergence, etc.) hence, they will reach zero-slope at different times.

The proposed scheme can dynamically adapt to different values of NMmax. The previous
experiment was repeated simulating that during interval t ∈ [90, 105] the number of measurements
was bounded by NMmax = 30, see Figure 10. In this case the robot RMS error was 0.516 m, very similar
to that with NMmax = 80 along the entire experiment, which was 0.51 m. The difference in the map
error was even smaller. The scheme selects the most informative measurements reducing the impact of
changes in NMmax. The only effect is that beacons stop gathering inter-beacon measurements, reaching
Ji,j < 0, later in the experiment. They keep gathering measurements and at the end of the experiment
the number of measurements integrated are the same in both cases.
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Figure 10. Experiment in Figure 8 taking NMmax = 30 during t ∈ [90, 105].
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6.2. Performance Comparison

The proposed scheme was evaluated and compared with other methods in 20 sets of real
experiments with different beacon settings and UAS trajectories. Method M1 is a conventional
SEIF SLAM scheme that integrates only robot-beacon measurements. Method M2 is the distributed
SEIF SLAM reported in [13]. It integrates robot-beacon and all inter-beacon measurements. Method M3
is M2 combined with a tool that selects the NMmax measurements that best improve the uncertainty in
the global state: This tool is necessarily centralized at the robot. In the proposed distributed scheme
each beacon selects the best measurements to improve its local uncertainty. Comparing with method
M3 allows evaluating how far our distributed measurement selection is from the centralized selection.
The data from the sets of experiments was logged and the four methods were executed offline with
the same parameters. Their performance is compared in Table 1, which analyzes robot and map RMS
errors, convergence times of auxiliary PFs, number of measurements actually integrated per iteration,
average energy consumed by beacons and average robot CPU time consumed evaluated in percentage
w.r.t. that of M1. Recall that the number of measurements integrated per iteration is proportional to
the energy consumed by beacons (shown in the table) and to the beacon computational time required
for measurement integration (not shown in the table).

Table 1. Comparison of the proposed scheme versus methods M1, M2 and M3.

M1 M2 M3 Proposed

Map RMS error (m) 0.49 0.33 0.34 0.34
Robot RMS error (m) 0.59 0.49 0.50 0.51

PF convergence times (s) 25.2 5.4 5.6 5.7
# of measurements/iteration 33.2 206.9 80 61.7

Beacon energy consumption (J) 43.7 272.2 105.2 81.1
Robot CPU time (% of M1) 100 65.6 265.5 58.6

M1 does not integrate inter-beacon measurements and hence had the poorest errors and PF
convergence times. M2 integrates inter-beacon measurements, which significantly reduces PF
convergence times, 78%, and map and robot RMS errors, 32% and 16%, respectively, over M1. On the
other hand, M2 gathered and integrated 523% more measurements, which largely increased beacon
energy consumption. M2 distributes computation between the robot and beacons and hence reduces
the robot CPU times over M1. M3 is M2 combined with a centralized tool that selects the NMmax

measurements that best improve the uncertainty of the global state. M3 integrated 80 measurements per
iteration, 61% lower than M2, and achieved similar RMS errors (difference <3%) and PF convergence
times (<4%). However, it required much larger robot CPU times: It uses the information matrix
of the global state to select the most informative measurements and computing determinants has
O(n3) complexity.

The proposed scheme obtained similar RMS errors, PF convergence times and robot CPU times
to M2 [13] requiring 70% less measurements and 70% lower beacon energy consumption. Besides,
our scheme achieved similar RMS errors and PF convergence times to M3 but required 23% less
measurements (and beacon energy consumption). Each beacon uses the information matrix of its local
state for measurement selection, requiring 78% lower robot CPU burden than M3. Besides, in our
scheme each beacon maintains a local version of its map, which can be useful in some cases. Once
beacons have built their local map, they can transmit it to any robot, which can immediately recover
the full map applying map-joining techniques.

6.3. Discussion

In the following we discuss on the scalability of the proposed scheme and analyze the impact of
transmission errors and of the parameters of the method: NMmax and α.
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The proposed method preserves the scalability of the distributed SEIF presented in [13].
Measurement distribution involves only the beacons within the robot sensing region, whereas
measurement allocation, performed by each beacon bi, involves only the beacons within the sensing
region of bi. Thus, the computational complexity depend on the beacon density, not on the map size.
Beacons are used as landmarks in RO-SLAM: Highly inhomogeneous local beacon densities are not
suitable in RO-SLAM. It is often more interesting if beacons are deployed in densities with some
homogeneity, leading to constant time execution regardless of the map size.

NMmax is taken as an input to our scheme. The performance of the proposed scheme with
different values of NMmax is summarized in Table 2. The measurements from all the experiments were
logged and the proposed scheme was offline executed with NMmax. The integration of measurements
is critical for PF convergence and low values of NMmax decelerate PF convergence. On the other
hand, the estimation accuracy was only slightly affected, which is attributed to its capability to
select informative measurements. With NMmax = 80 the average number of measurements actually
integrated in SLAM was similar to that with NMmax = 60. The explanation is the role of α. In the
experiments all measurements are assumed to have the same cost. Thus, α acts as a threshold since
measurement zi,j is gathered only if Ji,j = ri,j − αci,j > 0.

Table 2. Average performance of the proposed scheme with different values of NMmax.

N Mmax = 40 N Mmax = 60 N Mmax = 80

Map RMS error (m) 0.35 0.346 0.34
Robot RMS error (m) 0.52 0.51 0.51

PF convergence times (s) 15.8 9.5 5.7
# of measurements/iteration 40 56.5 61.7

The performance of the proposed scheme with different values of α is summarized in Table 3.
α allows setting our scheme to prevent integrating measurements that are not very informative.
With α = 1.5, almost all measurements satisfy Ji,j > 0 and the number of measurements integrated
in SLAM is almost NMmax. With α = 15, many measurements do not satisfy Ji,j > 0 soon in the
experiments and in average only 49.3 measurements were integrated per iteration. These were the
two extremes in the range of α, an intermediate value α = 7.5 was used. Despite the difference in the
number of measurements, the value of α affects accuracy very slightly as shown in Table 3.

Table 3. Average performance of the proposed scheme with different values of α.

α = 1.5 α = 7.5 α = 15

Map RMS error (m) 0.34 0.34 0.37
Robot RMS error (m) 0.51 0.51 0.52

PF convergence times (s) 5.7 5.7 5.9
# of measurements/iteration 78.9 61.7 49.3

The proposed distributed scheme needs communication between the robot and beacons. In this
sense the transmission errors in sensor networks cannot be ignored. Its performance assuming
different PRR levels is summarized in Table 4. Our method explicitly considers PRR in the estimation
of IGi and assigns more measurements to the beacons that have better link quality with the robot.
As expected, it exhibits good robustness to PRR. Even with PRR = 40%, transmission error rate of 60%,
its performance is very slightly perturbed.
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Table 4. Average performance of the proposed scheme with different PRR levels.

PRR = 40 PRR = 60 PRR = 80 PRR = 100

Map RMS error (m) 0.4 0.37 0.35 0.35
Robot RMS error (m) 0.57 0.53 0.52 0.51

PF convergence times (s) 9.6 7.1 6.4 5.7
# of measurements/iteration 44.8 51.4 57.1 61.7

7. Conclusions

RO-SLAM has some characteristics that make it more suitable than visual SLAM in a wide
range of robot-sensor node cooperative missions. Most RO-SLAM methods consider beacons as
passive landmarks and do not exploit the capabilities with which beacons are actually endowed.
The accuracy of RO-SLAM estimations improves with the number and variety of measurements that
are integrated in SLAM. However, using more measurements requires consuming more resources
to gather, transmit and integrate the measurements in SLAM, which often contrasts with existing
technological or application constraints.

This paper presents a scalable robot-beacon distributed RO-SLAM scheme for resource-constrained
operation. The objective is to improve SLAM performance while meeting a given resource consumption
bound expressed as the maximum number of measurements that can be integrated in SLAM per
iteration. In our problem, the number of measurements is a good metric for resource consumption
since it directly impacts the sensing channel capacity used, the beacon energy consumed and the
computational capacity employed, among others.

The proposed scheme efficiently combines a distributed SEIF SLAM method that integrates
robot-beacon and inter-beacon measurements, together with a distributed information-driven tool
that selects the measurements to be integrated in SLAM balancing uncertainty improvement
and resource consumption. The scheme has a robot-beacon distributed approach where beacons
actively participate in measurement selection, gathering and integration in SLAM. Our scheme
ensures resource-constrained operation with static or dynamic bounds, showing significant flexibility.
It achieves higher accuracy and lower beacon initialization times than conventional SLAM methods.
Besides, it can be executed in constant time regardless of the map size.

Its performance was validated and compared with existing methods in sets of 3D SLAM
experiments. Robustness analysis confirmed its stable and predictable performance against
transmission errors and different values of its parameters.
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Nomenclature

Σt Covariance matrix of the SLAM global state at time t
µt Mean of the SLAM global state at time t
Ωt Updated information matrix of the SLAM global state at time t
ξt Updated Information vector of the SLAM global state at time t
Ω̄t, ξ̄t Predicted information matrix and predicted information vector of the SLAM global state for time t
ξi,t, Ωi,t Update contribution of beacon bi to ξt

zr,i, zi,j Measurement gathered by the robot to beacon bi. Measurement gathered by beacon bi to bj
hr,i, hi,j Observation models for robot-beacon and inter-beacon measurements
Hr,i, Hi,j Jacobians of the observation models for robot-beacon and inter-beacon measurements
BSr, BSi Sets of the beacons that are currently within the sensing region of the robot and beacon

bi, respectively
LM List with the number of measurements assigned to each beacon in BSr in measurement distribution
MSi Set of measurements gathered by beacon bi
NMmax Maximum number of measurements that can be gathered and integrated per SLAM iteration
Ji,j Utility function for measurement zi,j
ri,j, ci,j Reward and cost for measurement zi,j
α Weighting factor between reward and cost
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