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Breakdown of the fluctuation-dissipation relations
in granular gases
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1 F́ısica Teórica, Universidad de Sevilla - Apartado de Correos 1065, E-41080 Sevilla, Spain, EU
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Abstract – A numerical molecular dynamics experiment measuring the two-time correlation
function of the transversal velocity field in the homogeneous cooling state of a granular gas
modeled as an ensemble of inelastic hard particles is reported. By measuring the decay rate and
the amplitude of the correlations, the accuracy of the Landau-Langevin equation of fluctuating
hydrodynamics is checked. The results indicate that although a Langevin approach can be valid,
the fluctuation-dissipation relation must be modified, since the viscosity parameter appearing in
it differs from the usual hydrodynamic shear viscosity.
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The hydrodynamic description of ordinary one-
component fluids is made by means of the local number
density, n(r, t), the flow velocity, u(r, t), and the temper-
ature, T (r, t) [1]. These fields are determined from some
closed macroscopic equations, e.g. the Navier-Stokes
equations, with the appropriate initial and boundary
conditions. On the other hand, the most detailed micro-
scopic description of the evolution of the fluid, in terms
of the properties of the particles forming it, is given
by non-equilibrium statistical mechanics. In this latter
formulation, the hydrodynamic fields appear as the
ensemble average of some associated microscopic fields,
being also possible to describe their stochastic properties,
at least formally. There is an intermediate level of descrip-
tion, often referred to as the mesoscopic description, in
which macroscopically fluctuating hydrodynamic fields
are considered.
The first formulation of fluctuating hydrodynamics

for equilibrium states was proposed by Landau and
Lifshitz [1]. Their equations describe the fluctuations of
the hydrodynamic fields about their equilibrium values,
and have the form of linear Langevin equations. The noise
terms are taken as white and Gaussian with the second
moments determined by the Navier-Stokes transport
coefficients of the fluid. This establishes a relationship
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between the fluctuations of the fields at equilibrium
and the dissipation by transport in the fluid, and so
are known as fluctuation-dissipation (F-D) relations of
the second kind [2]. Since the formulation of the theory,
the question of whether the same idea can be used to
describe fluctuations in systems that are far away from
equilibrium has attracted the attention of scientists. For
molecular fluids, it seems well established that the F-D
relations apply under the same conditions as the usual
Navier-Stokes hydrodynamic equations [3].
Granular fluids are always out of equilibrium due to

the kinetic energy dissipation in collisions. Evidence has
been accumulated during the last years that they provide
a unique proving ground for non-equilibrium statistical-
mechanics ideas and techniques. Nevertheless, the analogy
between granular and ordinary fluids must not be pushed
too far. Granular materials have many peculiar properties
arising from the macroscopic size of the particles and
the lack of kinetic energy conservation before and after a
collision [4]. In particular, the validity of the F-D relations
cannot be assumed a priori.
Here a definite test of the validity of the Landau and

Lifshitz F-D relations for granular gases, modeled as an
ensemble of inelastic hard particles moving freely and
independently between collisions, is carried out under
the most favorable and ideal conditions: the simplest
model, state, and hydrodynamic field. If the F-D fails
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in this case, it will also certainly fail for more “realistic”
conditions, in which additional effects, such as rotational
degrees of freedom and/or velocity-dependent restitution
coefficients, are included. More precisely, the behavior of
the transversal component of the flow field in the so-called
homogeneous cooling state (HCS) of a granular gas is
the topic addressed in this paper. Let us mention that
for driven models of granular fluids, in which the grains
are submitted to stochastic forces, the linear response
to an external perturbation [5] and also the validity
of the Einstein relation [6] have been investigated. No
direct relation of those works with this one seems clear.
The problem here might be somewhat closer to the
experimental situation investigated in ref. [7]. Although a
vibrated system is considered there, it is possible that the
results for the HCS be still locally applicable, similarly to
what happens in molecular systems with the equilibrium
fluctuation theory. The analogy between local equilibrium
and local homogenous cooling has already been found, for
instance, in the derivation of the hydrodynamic equations
for granular gases both from kinetic theory [8] and from
non-equilibrium statistical mechanics [9].
To start with, the Landau-Langevin formalism for the

transversal velocity field in an equilibrium ordinary fluid
will be briefly recalled. Consider the local fluctuations of
the velocity flow δu(r, t) around the equilibrium value
ue = 0, and introduce its Fourier representation δuq(t).
This vector can be decomposed into the component para-
llel to q and another component perpendicular to it:
δuq(t)= δuq,‖q̂+ δuq,⊥(t), with q̂≡ q/q and δuq,⊥ · q̂= 0.
The vector component δuq,⊥(t) is the vorticity or
transversal flow field and obeys the Langevin equation [1][

∂t+(mne)
−1
ηeq

2
]
δuq,⊥(t) = fq,⊥(t), (1)

where m is the mass of the fluid particles, ηe the Navier-
Stokes shear viscosity of the fluid, and fq,⊥(t) a randomly
fluctuating force that is a Gaussian white noise of zero
average. It verifies the fluctuation-dissipation relation

〈fq,⊥(t)fq′,⊥(t′)〉e = 2TeV
m2n2e

δ(t− t′)δq,−q′ηeq2I. (2)

In the above expressions, angular brackets denote average
over the noise realizations, the index e is used to indicate
quantities evaluated at equilibrium, V is the volume of the
system, I is the unit tensor in the subspace perpendicular
to q, and ηe a coefficient that according with the Landau
theory is the same as the viscosity, ηe = ηe. This is a main
physical assertion of the theory.
There is no equilibrium state for granular fluids. Instead,

the simplest state for a freely evolving granular fluid is
the HCS, mentioned above. At a macroscopic level, it
is characterized by a uniform density nH , a vanishing
flow velocity, and a monotonically decreasing granular
temperature, TH(t), that obeys the Haff law [10],

∂tTH(t) =−ζH(TH)TH(t), (3)

ζH(TH) being the cooling rate accounting for the energy
dissipation in collisions. The question addressed here
is whether eqs. (1) and (2) are also valid to describe
fluctuations of the vorticity in the HCS of a granular
fluid as, in fact, has been assumed sometimes in the
literature [11]. Of course, if the answer is negative, there
is little hope that those equations hold for stronger non-
equilibrium states, such as vibrofluidized granular media.
The simplest and most used model for granular fluids is

an ensemble of N smooth inelastic hard spheres (d= 3) or
disks (d= 2) of diameter σ [12]. Inelasticity is described
by means of a constant coefficient of normal restitution α,
defined in the interval 0<α� 1. For this model, expres-
sions for the transport coefficients have been obtained
by using the inelastic Boltzmann-Enskog equation and
the Chapman-Enskog procedure. In particular it has been
found that [8,13]

ηH =mnH�0vH(t)η
∗(α, nH), (4)

ζH(TH) = vH(t)�
−1
0 ζ

∗(α, nH), (5)

where �0 ≡ (nHσd−1)−1 is proportional to the mean free
path of the particles, vH(t)≡ [2TH(t)/m]1/2 is a thermal
velocity for the HCS, and η∗ and ζ∗ are dimensionless
functions of the density and the coefficient of restitution.
When eqs. (1) and (2) are applied to the HCS, the problem
arises that the viscosity and the second moment of the
noise term are time-dependent through the temperature
TH(t). It is then convenient to introduce dimensionless
length and time scales by �≡ r/�0 and ds≡ vH(t)dt/�0,
respectively. Moreover, a dimensionless velocity field is
defined by ω(l, s)≡ δu(r, t)/vH(t). Then, eqs. (1) and (2)
become (

∂s− ζ∗/2+ η∗k2
)
ωk,⊥(s) = ξk,⊥(s), (6)

〈ξk,⊥(s)ξk′,⊥(s′)〉H = V ∗2N−1δ(s− s′)δk,−k′η∗k2I, (7)
with k= �0q and V

∗ = V/�d0. In eq. (7), η
∗ is related with

ηH by a relation similar to eq. (4). For wave vectors k
such that λ⊥(k)≡ ζ∗/2− η∗k2 < 0, the long-time solution
of eq. (6) reads

ωk,⊥(s) =
∫ s
−∞
ds1 e

λ⊥(k)(s−s1)ξk,⊥(s1). (8)

Using the above expression and eq. (7), the two-time
correlation function of the transverse velocity field is easily
obtained,

Ck,k′(s, s
′) ≡ 〈ωk,⊥(s)ωk′,⊥(s′)〉H
= − V

∗2η∗k2

2Nλ⊥(k)
δk,−k′eλ⊥(k)(s−s

′)I, (9)

valid for s� s′� 1. At this point it is worth to stress that,
due to the isotropy of the system, eq. (7) can be extended
to all the components of the velocity, while eq. (9) is
restricted to the transversal components.
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In the following, MD simulation results testing eq. (9)
will be reported. Consider a square cell (d= 2) of side
L with periodic boundary conditions, so the minimum
value of k allowed is kmin = 2π�0/L. The value of L has
been always chosen such that kmin >k⊥ ≡ (ζ∗/2η∗)1/2, to
guarantee that the system be always in the parameter
region in which it is expected to be stable with respect
to vorticity fluctuations, i.e. λ⊥(kmin)< 0 and eq. (9)
holds for all the allowed values of k. In the simulations,
fluctuations corresponding to k= kminêx, where êx is the
unit vector in the direction of one of the sides of the
cell, have been measured. Therefore, ωk,⊥ = ωk,⊥êy, with
êy being a unit vector perpendicular to êx. The particle
representation of the transversal velocity field considered
here is

δuqminêx,⊥(t) =
N∑
j=1

e−2πiXj(t)/LVy,j(t), (10)

where the components of the position and the velocity
of particle i at time t have been denoted by Xi(t), Yi(t)
and Vx,i(t), Vy,i(t), respectively. In the MD simulations an
event-driven algorithm and the steady-state representa-
tion of the HCS [14,15] have been employed. In this repre-
sentation, the HCS is exactly mapped onto a steady sate
by means of a change in the time scale. More precisely, the
new time scale is a logarithmic function of the original one.
The fluctuations of the transverse velocity turned out to
be always Gaussian within the statistical errors. Moreover,
the imaginary part of the two-time correlation function
was found to vanish, as expected by symmetry consider-
ations and in agreement with eq. (9). The restriction to
the parameter region in which the HCS is stable implies
that the size of the system and, therefore, the number of
particles at a given density, is bounded from above. Conse-
quently, relevant size effects show up at low densities.
In fig. 1,

Φ(s, s′)≡ Ckminêx,−kminêx(s, s
′)

Ckminêx,−kminêx(s′, s′)
(11)

is plotted as a function of s− s′ for α= 0.8, nHσ2 = 0.01,
and several values of N , as indicated. In all cases, an
exponential decay is observed, in agreement with eq. (9),
that predicts Φ(s, s′) = exp [λ⊥(kmin)(s− s′)]. From the
data, values for λ⊥(kmin) are obtained. Of course, similar
results are found when the labels of the two axis are
interchanged. The simulations also provide the value of
the cooling rate, that is independent of N and in good
agreement with the theoretical prediction given in [8,13].
Then, by subtracting ζ∗/2 from the obtained values of
λ⊥(kmin), simulation results for the parameter η∗ follow.
From the analysis of the data, it follows that the value
obtained depends on the number of particles N (size L)
employed in the simulation. The theoretical prediction
corresponds to the formal limit N →∞, L→∞, with nH
constant. In fig. 2, the values of η∗ obtained from the data
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Fig. 1: MD simulation results showing the exponential decay
of the two-time correlation function of the transversal velocity
for α= 0.8 and nHσ

2 = 0.01.
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Fig. 2: Values of the parameter η∗/η∗e = 2
√
2πη∗, obtained

from the exponential decay of the correlation function of the
transversal velocity field, as a function of the inverse of the
number of particlesN . The density and coefficient of restitution
are the same as in fig. 1. The symbols are from MD simulations
and the solid line is the best linear fit.

in fig. 1 are plotted as a function of N−1. A linear fit leads
to the result limN→∞η∗ = (1.059± 0.004)η∗e , where η∗e =
(2
√
2π)−1 is the low-density (Boltzmann) elastic limit.

The theoretical prediction for the Navier-Stokes shear
viscosity obtained from the Boltzmann equation in the
first Sonine approximation is η∗ = 1.057η∗e . Moreover, if
a “size-dependent viscosity” is measured by considering
the decay of a small macroscopic sine perturbation of
the velocity field [16] in systems of different sizes, the
values are in good agreement with those reported in fig. 2.
Therefore, it can be concluded that, for the system being
investigated, eq. (9) predicts accurately the decay of the
correlation function, with η∗ being the (inelastic) Navier-
Stokes shear viscosity.
Focus next on the amplitude of the fluctuations. From

eq. (9), it follows that

Ckminêx,−kminêx(s, s) =−
V ∗2η∗k2min
2Nλ⊥(kmin)

. (12)
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Fig. 3: Values of the parameter η∗/η∗e = 2
√
2πη∗, obtained from

the amplitude of the fluctuations of the transversal velocity
field, as a function of the inverse of the number of particles.
The density and coefficient of restitution are the same as in
fig. 1. The symbols are from MD simulations and the solid line
is the best linear fit.

Since λ⊥(kmin) was determined from the time decay of the
correlation function, the coefficient η∗ can be computed
from the measurements of the above quantity. Again, a
clear dependence on the number of particles N is observed
in the results reported in fig. 3, that correspond to the
same system as in figs. 1 and 2. By means of a linear
fit, the asymptotic N →∞ value η∗ = 1.29± 0.02 is found.
It differs from both the shear viscosity of the system
measured by the procedures described above and the
theoretical prediction in more than 20%.
The above analysis has been repeated for different

values of the coefficient of restitution, keeping the density
small to allow comparison with the kinetic theory predic-
tions. In particular, the results plotted in fig. 4 correspond
to the case previously discussed and to α= 0.85, 0.90, and
0.95, with nHσ

2 = 6× 10−3, 0.018, and 0.02, respectively.
It is observed that the discrepancy between the shear
viscosity η and the coefficient η characterizing the second
moment of the fluctuations, increases as the inelasticity
increases, vanishing in the elastic limit, as required. In the
simulations, attention has been paid to assure that kmin
is neither too large nor too small. In the former case, the
Navier-Stokes approximation is expected to fail, while in
the latter instability effects show up.
Two main physical conclusions follow from the study

presented here. The Landau-Langevin fluctuating hydro-
dynamic equations cannot be directly extended to
granular fluids. But, on the other hand, it seems possible
to separate slow and fast degrees of freedom and to model
granular systems in the spirit of the Langevin approach. A
similar conclusion was reached from the study of the fluc-
tuations of the total energy of the system [17]. The open
and relevant question is to understand the physical origin
of the violation of the Landau and Lifshitz fluctuation rela-
tions. Answering this question requires to derive Langevin-
like equations for the hydrodynamic fields of granular
fluids stating from kinetic theory or statistical-mechanics
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Fig. 4: Coefficients η∗/η∗e (circles) and η
∗/η∗e (squares)

measured from the MD simulations and extrapolated to
N→∞, as functions of the coefficient of restitution α. The
density is always very small. The solid line is the Chapman-
Enskog prediction in the first Sonine approximation.

descriptions. This program has been carried out and
the predicted results agree very well with the simulation
data. This study will be published elsewhere [18], but
let us point out that the discrepancies are due to the
combination of the cooling and the presence of velocity
correlations in the system. Moreover, the emerging picture
is more complicated than what could be expected from
the results reported here, since the noise turns out to be
non-white. Also, and closely related with the above, the
exponential decay of the time correlation function Φ(s, s′)
is seen to hold after a transient interval s− s′.
The qualitative discrepancy found here between the

elastic and inelastic forms of the F-D relations seems
consistent with the previous findings that the Green-
Kubo expressions for the transport coefficients in fluids
composed of inelastic particles do not coincide with
the corresponding expressions for elastic, molecular
systems [19–21].
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