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Floquet analysis of Kuznetsov-Ma breathers: A path towards spectral stability of rogue waves
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In the present work, we aim at taking a step towards the spectral stability analysis of Peregrine solitons, i.e.,
wave structures that are used to emulate extreme wave events. Given the space-time localized nature of Peregrine
solitons, this is a priori a nontrivial task. Our main tool in this effort will be the study of the spectral stability of
the periodic generalization of the Peregrine soliton in the evolution variable, namely the Kuznetsov-Ma breather.
Given the periodic structure of the latter, we compute the corresponding Floquet multipliers, and examine them
in the limit where the period of the orbit tends to infinity. This way, we extrapolate towards the stability of
the limiting structure, namely the Peregrine soliton. We find that multiple unstable modes of the background
are enhanced, yet no additional unstable eigenmodes arise as the Peregrine limit is approached. We explore the
instability evolution also in direct numerical simulations.
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I. INTRODUCTION

The study of extreme events and rogue (or freak) waves
is a topic that has gained tremendous momentum during the
last decade [1–4]. Part of the appeal of the subject lies in
the emergence of a diverse array of relevant experimental
observations in systems ranging from hydrodynamics [5–7] to
superfluid helium [8], from nonlinear optics [9–14] to plasmas
[15], and from Faraday surface ripples [16] to parametrically
driven capillary waves [17]. On the theoretical side, candidate
structures related to extreme events in prototypical, nonlinear
Schrödinger (NLS) type models, have emerged from the
seminal works of Peregrine [18], Kuznetsov [19], Ma [20], and
Akhmediev [21], as well as Dysthe and Trulsen [22]. In turn,
the existence of relevant structures and their wide experimental
realizability has motivated a broad array of theoretical works,
now summarized in many reviews [23–25].

Perhaps the most notable example among the theoretically
analyzed solutions in the form of a rogue wave is the so-called
Peregrine soliton (PS) [18]. Its algebraic decay in both space
and time renders it a natural candidate for a wave that “appears
out of nowhere and disappears without a trace” [26]. Given
its significance and emergence in a broad array of physical
settings, a natural question that arises for the PS is that of

its stability. To examine the robustness of the PS, various
approaches have been considered. One of them is to explore
to what extent the existence of such a rogue wave will be
preserved under perturbations; in that context, it was found
[27] that the PS can still be identified in Hirota-type variants
of the original NLS equation (see also Ref. [28] for relevant
work in higher-order NLS models).

Another approach for the study of robustness of extreme
waves relies on the connection with the so-called Kuznetsov-
Ma breather (KMb) [19,20]. This latter state is periodic in
the evolution variable and, in the limit of infinite period,
reduces to the PS. The dynamical robustness of the KMb
against dispersive or diffusive (dissipative) perturbations was
studied by means of an adiabatic approximation [29] and,
more recently, by means of a perturbed inverse scattering
transform approach [30]. In the latter work it was shown that
the KMb is rather robust against dispersive perturbations, but
it is strongly affected by dissipative ones. Notice that direct
numerical simulations with perturbed initial data have also
been used to explore the robustness of the PS [31] and the
KMb [32].

On the other hand, the modulational instability (MI) of the
background plane wave (which hosts the KMb or the PS) leads
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to homoclinic-type solutions, which can also be considered as
candidates for rogue waves [28,33]. The study of the criteria for
the emergence and stability of such homoclinic-type solutions
revealed that spatial phases of a multimode homoclinic orbit
can be optimally selected, so that the modes coalesce at a given
time, leading to significant wave amplification beyond that
predicted by the typical MI. This approach has been effectively
applied to a variety of extended NLS models involving higher-
order dissipative or dispersive effects, including the Dysthe
model [34].

Another possibility, more proximal to the spirit of our
considerations, was that of considering the spectral stability
analysis around a PS [35]; for a similar attempt both around the
PS and around the KMb, see the works of [36,37]. However, in
that case, the fundamental complication consists of assigning
a meaning to the linearization around a time-dependent state.
While in other problems, especially dissipative ones [38], a
“frozen time” spectrum and its usefulness have been made
more precise, in our setting this is not sufficiently clear, to the
best of our understanding; hence, we will not follow such an
approach here.

In the present work, we will instead focus on a variant of
the problem (of the PS stability) for which the notion of a
spectrum is well defined. In particular, we will consider the
KMb which, due to its periodicity in the evolution variable, is
amenable to spectral analysis by means of Floquet methods. At
the same time, the KMb solution encompasses the case of the
PS solution in the special limit of infinite period, as mentioned
above. Our plan is then a natural one: we will consider the
Floquet analysis of the KMb, varying the period, in an effort
to appreciate the trend towards the limiting case of the PS.
By following the relevant multipliers as the KMb gradually
morphs into the PS (for a visually appealing demonstration of
this process, see, e.g., [39]), we expect to acquire a sense of
the relevant limit case as far as spectral stability is concerned.
We find, as can arguably be anticipated, that the KMb carries
instability modes associated to the MI of its nonvanishing
background. Intriguingly, the growth rates of a number of
the relevant modes are found to be higher than those in the
absence of the PS. However, we also observe that no additional
instabilities arise on top of the background instabilities. We
illustrate results of detailed numerical continuations, as well as
explore the dynamical evolution of the associated instabilities
in direct numerical simulations.

The paper is structured as follows. In Sec. II, we present
the model, the KMb and PS solutions and report results of our
numerical simulations; these include Floquet spectral analysis
and evolution simulations. Finally, in Sec. III, we summarize
and discuss the implications of our results with an eye towards
future work.

II. NUMERICAL RESULTS

A. Theoretical and numerical setup

We consider the stability of the KMbs in the prototypical
setting of the focusing NLS equation [40,41]:

i∂tu + 1
2∂2

xu + (|u|2 − 1)u = 0. (1)

Here, u denotes the complex order parameter (which repre-
sents, e.g., the electric field envelope in optics), subscripts

denote partial derivatives, while it should be noted that
the evolution variable in this setting is t (representing the
propagation distance in optics).

The NLS Eq. (1) possesses the exact analytical KMb
solution, which is of the following form:

uKM(x,t) = 1 + 2(1 − 2a) cos(ωbt) − iωb sin(ωbt)√
2a cosh(bx) − cos(ωbt)

, (2)

where a = (1 +
√

ω2
b + 1)/4 and b = 2

√
2a − 1, for temporal

frequency ωb > 0. In the limit ωb → 0 (corresponding to
temporal period T = 2π/ωb → ∞), i.e., for a = 1/2, the
KMb reduces to the PS which is given by

uPS(x,t) = 1 − 4(1 + 2it)

1 + 4x2 + 4t2
. (3)

Notice that the NLS equation (1) admits a Galilean invariance,
i.e., each solution u(x,t) provides the one-parameter family of
solutions

ũc(x,t) = ei [c x−(c2/2) t] u(x − c t,t), (4)

where c is an arbitrary constant. Consequently, Eq. (1) also
admits traveling KMb and PS solutions.

Linear stability of the KMb can be analyzed by means of
Floquet analysis—cf. details in the Appendix. To this effect,
the time evolution of a small perturbation ξ (x,t) to a given
time-periodic solution, in our case the KMb, must be traced.
This perturbation is introduced in Eq. (1) as

u(x,t) = uKM(x,t) + δξ (x,t),

where δ is a formal small parameter. The resulting equation at
order O(δ) reads(

i∂t + 1
2∂2

x + 2|uKM|2 − 1
)
ξ + u2

KMξ̄ = 0, (5)

where ξ̄ denotes the complex conjugate of ξ .
In the framework of Floquet analysis, the stability proper-

ties of periodic solutions are determined by the eigenvalues of
the monodromy matrix, M, which is defined as[

Re(ξ (x,T ))
Im(ξ (x,T ))

]
= M

[
Re(ξ (x,0))
Im(ξ (x,0))

]
, (6)

where it is reminded that T = 2π/ωb. Due to the Hamiltonian
structure of the system, linearly stable periodic solutions are
neutrally stable. More precisely, in the neutral stability case,
all the eigenvalues λ of the monodromy matrix M [also called
Floquet multipliers (FMs)], lie on the unit circle. Furthermore,
for such systems, the set of Floquet exponents σ satisfying
λ = exp(σT ) is symmetric with respect to both the real and
imaginary axes, in the complex plane. Consequently, the set
of Floquet multipliers (the Floquet spectrum) is symmetric
with respect to both transformations λ �→ λ̄ and λ �→ 1/λ.
Therefore, when instabilities arise, they can be of two types:

(a) due to eigenvalues coming out of the unit circle (at
λ = 1) in real pairs (λ,1/λ), in which case the instability is
exponential (the relevant Floquet exponent σ is real and the
growth is purely exponential);

(b) due to eigenvalues coming out in complex quartets, in
which case the instability possesses both a growing and an
oscillatory part and, hence, is referred to as an oscillatory one.
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In order to numerically implement the monodromy calcu-
lation, one must integrate the perturbation equation (5). As the
KMb solution possesses a relatively steep peak, this equation
is mildly stiff. Therefore we use, as a suitable option for
the numerical integration, the exponential time differencing
fourth-order Runge-Kutta method (ETDRK4), with Fourier
spectral collocation; this implies periodic boundary conditions
in the domain [−L,L] [42]. This method, upon splitting the
problem into a (potentially stiff) linear and (likely nonstiff)
nonlinear part uses the Duhamel formula and an RK4 method
to approximate the relevant resulting time integral. Details
of the method (originating from the work of [43]), including
issues of stabilization and relevant de-aliasing are discussed in
an intuitive way in [44].

We have chosen a discretization parameter 	x = 0.05 and
a time step 	t = (	x)2/4, which ensures the stability of the
numerical integrator. Below we present results for domains
with L = 5 and L = 10. We also compare these with the
findings for L = 15 in order to showcase the trend of the
relevant stability results as the domain size is increased.

B. Stability analysis

As is evident from Eq. (2), KMbs are time-periodic
solutions with a localized spatial structure. In particular, the
analytical expression in Eq. (2) shows that as the spatial
variable |x| → ∞, a KMb solution exponentially converges
towards the constant (representing a plane wave) u∞ = 1. The
latter is also the asymptotic state of the PS. By analogy to
the case of localized steady, or traveling waves, we therefore
expect that the Floquet spectrum of a KMb consists of
an “essential” spectrum, which is the same as the one of
the asymptotic state u∞ = 1, and possibly some additional
isolated eigenvalues popping out of this spectrum or associated
with symmetries of the solution. In particular, instabilities of
u∞ = 1 should induce instabilities of KMbs.

The plane wave background u∞ = 1 is known to be
modulationally unstable [45]. The frequency ω0 and wave
number k of a perturbation around u∞ = 1, as obtained from a
standard modulational instability (MI) analysis, are connected
through the dispersion relation:

ω0 = ± 1
2k (k2 − 4)1/2. (7)

The MI analysis on the real line gives rise to an instability
band, namely a band of unstable frequencies, for wave numbers
k ∈ [−2,2]. The frequency ω0 is related to the FMs as

λ = exp(2iπω0/ωb). (8)

It turns out from Eq. (8) that the Floquet spectrum of u∞ = 1
consists of the unit circle, together with a band of positive
Floquet multipliers arising in pairs (λ,1/λ), due to wave
numbers k ∈ [−2,2].

The Floquet analysis of KMbs numerically shows the
existence of double pairs (λ,1/λ) of positive FMs different
from 1. These FMs correspond to the MI of the plane wave
background, and are very close to the prediction from the MI
analysis, taking into regard the quantization of wave num-
bers k = πn/L (n ∈ Z) arising from the periodic boundary
conditions. The corresponding unstable eigenmodes present a
substantial “hybridization” with the breather. By this notion,
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FIG. 1. (a) Floquet multiplier spectrum of the KMb for L = 5 and
ωb = 15; open (red) circles correspond to the unstable eigenvalues,
theoretically predicted via the MI analysis. The unstable and neutral
modes of the linearization are presented with (black) dots, while
the neutrally stable ones on the unit circle are given by (blue) ×’s.
(b) Dependence of the unstable eigenvalues σ on the frequency
ωb, for L = 5. The solid line corresponds to the KMb numerically
obtained multipliers, and dashed lines to the eigenvalues, once again
theoretically predicted by the MI.

it is meant that the spatial profile of these eigenmodes is
not identical to the one of eigenmodes associated with the
linearization around the background, but rather carries also a
local imprint at the center due to the presence of the breather.

Apart from these modes, there are three pairs at λ = 1: one
of them corresponds to the translational mode, and another
one to the phase mode (due to the conservation of the L2

norm, i.e., the power in optics). The third pair stems, as is
customary for breathers in Hamiltonian systems, from the time
translational invariance. Finally, the remaining modes lie on
the circle and correspond to background modes with a rather
weak hybridization with the breather.

Figure 1(a) shows a summary of the above results, illus-
trating a typical example of the obtained FM spectrum and the
instability eigenmodes, in the case L = 5 and ωb = 15. This
case leads to three double unstable multipliers for large ωb

(as the domain expands, the number of unstable eigenmodes
increases). One of these eigenvalues returns to the unit circle
when ωb ≈ 23.9. Figure 1(b) depicts the dependence of the
Floquet exponents σ associated with the unstable modes, on
the frequency of the breather. Notice that in the limit of large
ωb, the unstable Floquet exponents approach their asymptotic
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values predicted by the MI analysis above. On the other hand,
for the FMs, |λ| → 1, as ωb → ∞. This limiting behavior of
the FM modulus can be explained as follows: for x �= 0, it
follows from Eq. (2) that in the limit ωb → ∞, the solution
uKM converges to u∞ = 1, of FM modulus |λ| = 1. However,
the convergence of uKM to the asymptotic state u∞ = 1 is
not uniform. For x = 0, in the limit ωb → ∞, the solution
uKM diverges. Hence, the KMb solution, being continuous
itself as a function of the parameter ωb, gives rise in the
limit of large ωb, via a slow, square-root rate divergence, to a
“solitonic excitation” around x = 0. This solitonic excitation
is of finite localization width (for large, but finite ωb) and of
increasing (to infinity) amplitude. In accordance with Eq. (2),
the limiting solitonic excitation on top of the unit background
should consist of time-periodic peaks of vanishing period
T = 2π/ωb → 0, as ωb → ∞. This, however, does not affect
the asymptotic behavior of the FM modulus |λ| → 1.

Of particular importance is the opposite limit where the
KMb approaches the PS. This is shown in Fig. 1(b). It can be
seen there that the lowest pair of the unstable modes returns to
the unit circle when ωb ∼ 23.9, as stated previously. However,
there are also modes like the second (blue solid curve) mode in
that panel whose growth rate monotonically increases as ωb de-
creases. This is suggestive that the structure becomes progres-
sively more unstable as the PS limit is approached—-although
it should be clarified that our computations are never able to
precisely capture the limit; they can merely be characterized as
strongly suggestive of the approach to it. There are also modes,
like the one associated with the top-most (blue solid) curve in
the panel, which may have a nonmonotonic dependence on
ωb, yet are still larger, for all values of the breather frequency,
than their plane wave limit. Overall, this suggests that the
presence of the KMb (and by virtue of the limiting process,
the PS) enhances the instability of the background. Our results
suggest that this conclusion extends towards the PS state which
is approximated by the KMb as ωb → 0.

To explore how our results depend on the size of the domain,
we repeat the computationally expensive FM computation in
the case of a domain twice as large, i.e., L = 10 (and have
confirmed the conclusions also by extending considerations
even to L = 15). In the case of L = 10, we observe a similar
scenario aside from the feature that there now exist six double
unstable multipliers for high frequency. This is due to the
fact that the increase of the domain size results in a “finer”
quantization of wave numbers which, in turn, means that more
of the resulting wave numbers find themselves in the unstable
band of the MI spectrum.

Figure 2 summarizes the aforementioned results for L =
10, similarly to Fig. 1. A key feature becomes evident in both
Figs. 1(b) and 2(b): there exist multiple unstable modes that
have a stronger instability growth rate in the presence of the
localized pattern (i.e., the KMb), rather than in its absence. This
is true overall even though one pair of modes disappears into
the unit circle for ωb ≈ 5.7. Most of the rest of them (e.g., three
clearly discernible examples in the bottom of Fig. 2) increase
for decreasing ωb, while a couple may have nonmonotonic
or even decreasing dependence over ωb, although the overall
growth rate is always higher in the presence of the KMb in
comparison to the limit predicted by MI of the background
state (dashed lines in the relevant panel). This is an interesting

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1 (a)

Im
(λ

)

Re(λ)

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2
(b)

σ

ω
b

FIG. 2. Same as Fig. 1, but for L = 10. It is clear that in this case
the number of unstable modes is larger [in particular, there are six,
as can be counted in panel (b), shown by blue solid line, with their
respective limiting values from the MI analysis given by red dashed
line].

finding, indicating that the instability of the background is,
in fact, overall enhanced by the presence of the KMb, and is
strongly suggestive that this feature persists as the frequency
is decreased towards the PS limit. On the other hand, that
being said, it should be highlighted that there are no new
unstable modes emerging solely due to the presence of the
KMb: specifically, there is no point spectrum (no localized
eigendirections) associated with the instability of the KMb.

In confirming these results for larger values of L, such as
L = 15, we have identified in the latter case eight unstable
pairs (say, for ωb < 2). Among these, five pairs are found
to show an increasing tendency, two to be decreasing, while
one remains nearly invariant over our variation of ωb. Once
again, no new unstable eigenmodes arise over the parametric
scan—see Fig. 3.

When ωb is small, the Floquet exponents σ approach
finite values—see Fig. 2(b)—and we have checked that their
unstable eigenmodes approach a limiting profile (data not
shown). As computational power used for this problem is
further enhanced, the Peregrine limit of ωb → 0 of the KMb
will become progressively more accessible. Nevertheless, it is
important to appreciate that while going to lower frequencies,
the periods of the breathers start growing to high values,
and hence performance of the relevant computation becomes
exceptionally demanding. This is not so much true at the level
of the direct time integration, but most notably at that of the
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FIG. 3. Same as Fig. 2(b), but for L = 15.

solution of the variational equations for the stability analysis
which constitute a system of size N2 × N2 (where N is the
number of grid points used). While this is usually done for
discrete breathers [46], typically the number of nodes can
be restricted to N ≈ 100 or so. However, in our case this
being a continuum computation, the number of grid points to
resolve the solution—even more notably so because of the
space-time decay of a Peregrine soliton—is particularly large.
More specifically, here we use N = 40L (typically L = 10 is
implemented), in accordance with the discretization parameter
	x = 0.05 of the numerical integrator.

While we cannot fully extrapolate our results to the
Peregrine limit, we do note that the trend of the instabilities
observed is such that they only stem from the background and
not from the localized core of the solution, a feature suggestive
towards the relevant limit.

C. Direct numerical simulations

To elucidate the role of the above found instabilities on
the dynamics, we have performed a series of direct numerical
simulations for the NLS Eq. (1). The simulations concern the
evolution of the KMb, being set as initial condition [at t = 0,
as uKM(x,t = 0)], perturbed along the direction of different
unstable eigenmodes ξ ; that is, the initial conditions used are
of the form u(x,t = 0) = uKM(x,0) + δξ (x,0), with δ = 10−3.
Simulations have been performed for L = 10 and ωb = 15,
although, for the sake of clarity, the figures only show the
interval [−5,5]. Notice that for the value of ωb taken in
the simulations, if δ = 10−3 then |u(±L,0) − 1| ∼ 10−5, so
boundary effects are negligible.

Before presenting our numerical findings, it is worth
discussing at first the structure of the eigenmodes associated
with the unstable and neutral eigenvalues. Generally, we have
found that to each unstable eigenvalue corresponds a pair
of degenerate, parity symmetric eigenmodes, with each one
possessing even or odd symmetry. Both eigenmodes fea-
ture, asymptotically (for large |x|), an extended—periodic—
structure, and are characterized by the presence of a localized
peak (or dip) at the location of the KMb (at x = 0); this peak is
either even or odd for the respective even and odd eigenmode.
Typical spatial profiles of the real and imaginary parts of
even and odd eigenmodes, corresponding to λ = 1.5132, are
depicted Figs. 4(a) and 4(b), and 5(a) and 5(b), respectively.
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FIG. 4. KMb with L = 10 and ωb = 15. Panels (a) and (b): The
spatial profiles, Re[ξ (x,0)] (a) and Im[ξ (x,0)] (b), of the unstable
even eigenmode corresponding to λ = 1.5132. (c) Contour plot of
the evolution of the density |u(x,t)|2, corresponding to a KMb
initial condition (at t = 0), perturbed along the direction of the
unstable eigenmode portrayed in panels (a) and (b). The instability
results in a modulation, as well as frequency change of the breather.
(d) Comparison of the evolution of the center density (at x = 0) of the
breather [dark grey (blue) line], associated with the density evolution
of the middle panel, against the respective evolution of the exact
analytical KMb solution [light grey (red) line].

For the limiting case of the neutral exponent with λ = 1, the
eigenmodes become localized in the vicinity of the KMb,
tending asymptotically to zero.
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FIG. 5. Same as in Figs. 4(a)–4(c), but for the unstable odd
eigenmode, corresponding to λ = 1.5132. Here it is observed that,
due to the instability, the KMb performs a small-amplitude oscillation
around its original location.

We now proceed by investigating the effect of the above
types of eigenmodes on the dynamics of the KMb. We observe
that a perturbation along spatially even modes, such as the one
pertinent to the unstable eigenvalue λ = 1.5132 [cf. Fig. 4(a)
and 4(b)] leads to the evolution depicted in Figs. 4(c) and 4(d),
where a modulation of the breather, as well as a change
of its frequency, are observed. Similar dynamics, although
accompanied by a small-amplitude oscillation in the position
of the breather, is also observed when the perturbation is along
an odd mode eigendirection, such as the one corresponding to
λ = 1.5132 [cf. Fig. 5(a) and 5(b)]. Notice that, in this case,
the even KMb is perturbed by an odd eigenmode, which results
in the emergence of this small-amplitude oscillation. The latter
is evident in the density evolution plot, shown in Fig. 5(c).

If the KMb is perturbed along the translational mode, it
becomes mobile, as shown in Fig. 6. However, its evolution
cannot be considered as following the typical traveling wave
profile (4): the maximum amplitude of the breather changes
in an oscillatory fashion when moving along the domain
because of the interaction of the breather with the deformed
background.

Notice that the dynamics of the KMb in all of the above
cases takes place on top of the modulationally unstable
background, as is evident in all space-time contour plots of
Figs. 4–6. Thus, while the KMb does not itself get destroyed,
the underlying background gets distorted (as a result of the
instability) during the evolution.
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FIG. 6. Same as Fig. 5, but for the translational mode, correspond-
ing to λ = 1. Panel (d) shows the KMb profile at t = 0 and when the
breather has oscillated 10 and 20 periods. Notice the deformation of
the background and the change of the maximum breather amplitude.

III. CONCLUSIONS AND FUTURE CHALLENGES

In the present work, we took a step towards exploring the
spectral stability of rogue waves. In particular, we argued that
given that these extreme events are limiting cases of other
periodic (in the evolution variable) structures, it is possible to
perform at first a Floquet stability analysis of the latter, and
then try to a posteriori obtain suitable clues for the limiting
case. This way, we focused on the spectral stability of the
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Kuznetsov-Ma breather (KMb), which—in the limit of infinite
period—reduces to the Peregrine soliton (PS).

Our conclusions are twofold. On the one hand, we dis-
covered that the unstable modes commonly have a stronger
instability growth rate in the presence of the KMb rather than
in its absence, a conclusion which seems to be persisting as
a trend as the frequency is decreasing towards the PS limit
ωb ≈ 0. In other words, this finding suggests that as the
frequency decreases, the structure is more unstable than the
background itself. This may be interpreted as stemming from
the additional energy and the “seeding” of the instability of
the background induced by the presence of the KMb. On the
other hand, we observed the absence of any additional point
spectrum (localized eigendirections), under the continuation
of the KMb towards the Peregrine limit. This absence of
point spectrum intriguingly suggests the following: if some
additional terms (linear or nonlinear) were incorporated in
the original NLS model, such that a partial stabilization
of the background was achieved, then the PS state would
be more robust and, hence, more easily observable. Indeed,
such a partial stabilization of the PS seems to be the case in
water waves, and similar experimentally tractable examples
[1–17]. Moreover, the perturbations that lead to dynamical
instability, as shown in Figs. 4–6, may modify the frequency
of the KMb or result in its mobility, but are not detrimental to
the localized component of the structure per se. Based on the
above arguments, we believe that, indeed, it is the above PS
stabilization scenario which is relevant to the observability of
the, otherwise unstable, rogue waves.

The present study, opens a number of paths for future
exploration. Given the availability of the KMb in an explicit an-
alytical form, while technically challenging, it is worthwhile to
potentially ponder on the analytical tractability of the Floquet
multiplier problem (especially in light of the integrability of
the 1D NLS model). Another interesting and relevant direction
is to explore the possibility of generalizing KMb solutions
(and thereafter, their stability properties) to other models,
such as extended NLS equations incorporating higher order
effects [27,47]. Finally, exploring whether Peregrine soliton
solutions (and by extension, Kuznetsov-Ma breathers) may
exist in higher-dimensional systems is an intriguing topic in
its own right, that merits further investigation. Some of these
aspects are currently under consideration, and will be reported
in future work.
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APPENDIX: ON THE FLOQUET STABILITY THEORY

In this Appendix, we provide brief information on the
definition of the monodromy matrix M defined in Eq. (6), and
its relevance to the stability problem of time-periodic solutions
as the Kuznetsov-Ma breather (KMb) of Eq. (1).

The linearized equation (5), can be written in the form of a
system of first-order, linear evolution equations as follows:

d

dt
V =

[
0 L−

−L+ 0

]
V = J (t)V, (A1)

where V = [Re(ξ (x,t)),Im(ξ (x,t))]T . The linear differential
operators in the matrix J (t) of Eq. (A1) are defined as L− =
− 1

2∂2
x − 2|uKM|2 + 1 + u2

KM and L+ = − 1
2∂2

x − 2|uKM|2 +
1 − u2

KM. Due to the presence of the KMb solution uKM(x,t),
the matrix J (t) is time-periodic with period T = 2π/ωb, i.e.,
J (t + T ) = J (t).

By numerical integration of (A1) as described in Sec. II,
we find its numerical (fundamental) solution V (t), satisfying
the relation

V (t + T ) = V (t)V −1(0)V (T ). (A2)

Equivalently to Eq. (6), the monodromy matrix is defined by
Eq. (A2), as M = V −1(0)V (T ). On the other hand, Floquet’s
theorem [48,49] allows us to reduce the fundamental solution
of Eq. (A1) in the form V (t) = 
(t) exp(tR), where R is a
constant matrix, and 
(t) is periodic. Due to periodicity, it
holds that

V (t + T ) = 
(t + T ) exp[(t + T )R]

= V (t) exp(T R). (A3)

Then, comparing Eq. (A2) to Eq. (A3), we may relate the
monodromy matrix M with the matrix R, by the formula

exp(T R) = V −1(0)V (T ) = M. (A4)

It is evident from Eq. (A4) that the eigenvalues of the
monodromy matrix M, the Floquet multipliers (FMs), de-
termine the stability of the KMb [as they are associated
through Eq. (A4) to the eigenvalues of R, the corresponding
Floquet exponents]. The possibilities for FMs, and the induced
instabilities, are as discussed in Sec. II.
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