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Analytical expressions for the dispersive contributions to the nucleon-nucleus optical potential
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Analytical solutions of dispersion relations in the nucleon-nucleus optical model have been found for both
volume and surface potentials. For the energy dependence a standard Brown-Rho function has been assumed
for both the volume and surface imaginary contributions multiplied in this later case by a decreasing expo-
nential function. The solutions are valid for any even value of the powers appearing in these functional forms.
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Mahaux and co-workersl—5] have shown how the study tive strengthsAV(E) andW(E). Both of these factors con-
of the nuclear mean field may benefit from the use of dispertain, we note, volume and surface contributions.
sion relations. These are mathematical expressions that link It is customary to represent the variation with energy of
certain contributions to the real and imaginary componentshe volume and surface components of the imaginary poten-
of the optical model potentialOMP). The constraint im- tial by functional forms that are suitable for an optical model
posed by these dispersion relations helps in reducing amb&nalysis that exploits dispersion relations. An energy depen-
guities in the construction of phenomenological potentialsdence for the imaginary volume term has been suggested by
from fits to the experimental data. We refer specifically to theBrown and Rho in studies of nuclear matfét,
so-called dispersive contributiakV, which adds dynamical
content to the otherwise stafiand real Hartree-Fock poten- (E—Ep)"
: Wy(E)=Ay , ()
tial term Ve . (E—Eg)"+(By)"

Under favorable conditions of analyticity in the complex
E plane, the real paciV can be constructed from the knowl- \where A,, and By, are constants. Brown and Rho proposed
edge of the imaginary pak of the mean field on the real n=2, while Mahaux and Sartdi2] suggest, for the same

axis through the dispersion relation expressionn=4. An energy dependence for the imaginary-
surface term has also been investigated by Delarethed
P (= W(r,E") [7], who use the form
AV(rE)=—| ——dE/, (1)
T ECE (E-Ep)"
Ws(E)=A exp(—CgE—Eg]), (@)

S
where we have explicitly indicated the radial and energy de- (E—Ep)™+(Bg)™

pendence of these quantities. Assuming thaft(r,E= EF) wherem=2,4 andAs,Bs, Cg are constants.

=0, whereE_is the Fermi energy, Eq1) can also be writ- According to Eqgs(3) and (4) the imaginary part of the
ten in the subtracted form OMP turns out to be zero &=E and nonzero elsewhere.
A more realistic parametrization ofW,(E) and Wg(E)
1 ) forces these quantities to be zero in some interval around the
dE’.

E'-E E' —Ef

Fermi energy. A reasonable range for such a region is mea-

7) ©
AV(r,E)= ;j W(r,E")
o 5 sured by the average energy of the single-particle states
(2) [4] and a new definition for the imaginary volume part of the

. e . , . OMP can thus be written as
This transformation is difficult to implement in practice if the

geometry of the dispersive potential depends on the energy. 0, Ef<E<Ep
To simplify the problem, however, the shapes of the different
components of the OMP are usually assumed to be energy Wy(E) = A (E—Ep)" _ ()
independent and they are expressed in terms of a Woods- V(E—Ep)”+(BV)”’ -
Saxon functionfyg or its derivative. In such case the radial
functions factorize out of the integrals and the energy depen:ikewise, for the surface term we have
dence is completely accounted for by two overall multiplica-
0, Er<E<Ep
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The symmetry condition

W(2E—E)=W(E) 7)

defines the imaginary part of the OMP for energies below the fo U—

Fermi energy.

In a recent work we have presented a numerical solution
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As was pointed out by Rayn4lLQ], the contribution of
each complex polg; to the surface dispersive integ(d) is

=Regp;)e” " »  exp—2)

dU=Re$pj)e‘CSpJf ————dz
e 2

=Regp;)e “PIE;(—Cgp)), (14

J

of the dispersion integral relations between the real and the

imaginary parts of the nuclear optical potenti&l. In this
contribution we obtain analytic solutions of E) for the
particular functional form of the imaginary potentil(E)

given above by Eq45)—(7). Following Ref.[9], we adopt a
notation where the offset energylis=Ep— Ef, the excita-
tion energyE,=E—E and introduce the convenient quan-

titesE, =E,+Ey, E_=E,—E,.
For the surface potenti&l/s(E) given by Egs(4) and(7),
we can write the dispersive integr@) for evenm as
» Wg(E')
= (E'—E)(E'~Ep)

!

Ex
AV§(E)=—P

E. (= U™Mexp(— CgU)
7™ Jo (U™+BJ)(U—-E_)(U+Ep)

E, Jw UMexp(—CsU)
0 (UM+BZ)(U+E,)(U+Ey)

8

The integrand can then be replaced by its expression in terms
of poles and residud4.0], and therefore we can also write

A Ex um
S (UM+BT)(UTE.)(U+E)
_1[ & Regp)) ResiEi)+Res{E0)
I F=TVET UTE. U+E, |

9

In the previous expressiqn are them zeros ofu™+ Bg and
Res(p;) represent their corresponding residues,

2j—1
p,:Bsexp<i—Jm 77), (10
Resgp):5 P . (11)
7 m (pj*E3)(pj+Eop)

Here *E; and —E, are the poles oU¥E-. andU +E,,
whereas Resf E-) and Res{-E,) are their residues,

Reg+E. =rﬂ, (12
(Ex)™+BY
(Eo)™
Res —Eyj)=F——. 13
$B)=F g (13)

whereE,(z) is theexponential integral function F11]. The
contribution of the real poles corresponding to the second
term in the right-hand side of Eq9) is

»Reg TE. )e CsY
j M N Ty
0 U—l—EI
_ = exp—X
=Res{:Ei)e*CsE:7Df p(—)dx
FCE: X
——Re§TE.)e E-Ei(+CE), (19

whereE,(x) is theexponential integral function H11]. Fi-
nally, the contributions from the third term on the right-hand
side of Eq.(9) in integral (8) cancel.

For the volume potential\y,(E) given by Egs.(5) and
(7), the dispersive integral for evencan be written as

avyE)=p " WED
ETE L EreE e

E, (= um
=Ay—P du
7 Jo (UM+BM(U—E_)(U+Ey)

E o um
X
+AV—7>f du
7™ Jo (U™BY)(U+E,)(U+E)
(16)

According to Eq.(9), the contribution of each pole (either
real or imaginary in integral (16) diverges as

oo

d—U—l' IN(U—p)—In(— 1
OU_p—UILTLn( p)—In(—p). (17)

Obviously, their sum is a finite quantity, which is calculated
by taking its limit.

We quote, below, exact expressions for the surface and the
volume dispersive integrals for any even valugoéndn in
the potentials. These forms have no limitations regarding
their range of validity. The dispersive contribution of the
surface imaginary potentidaVg(E), according to Eqs(6)
and(7), is

Aslw o o
AVS(B)="71 2, Zie Py (~piCo)
—Reg—E,)eCsF+Ei(—CgE.)

—ResE_)e ®sE-Ei(CsE_) ¢, (18
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whereZ; comes from the sum of the residues Rg}(n the  (18) and (20) has been recently published by the authors

two integrals(8) and is given by [12].
In conclusion, we have found analytical solutions of the
Ex pi(2p;+E, —E_) (19) dispersion relations for the volume and surface terms of the

IT'm (p,+Eo)(p; TE)(p;—E_)

For the dispersion relation corresponding to the volum
imaginary potentialWy,(E), calculated with Eqs5) and(7),
the real contribution yields

OMP when they are parametrized in the form given by ex-
ressions(5)—(7). The formulas are compact and easy to
mplement in current codes for the optimum parameter
search defining the nucleon-nucleus OMP. Usually these
searches for elastic scattering data are performed by adjust-
Ay n ing simultaneously the real and imaginary parts of the OMP.
AVy(E)=— —[ 2 Zjin(—pj)+Reg—E,)InE, In particular, the fact of having available a functional form of
=t AV(E) in terms of the parameters that define the imaginary
potentials, makes it possible to implement a convenient al-
+Reg E_)In|E_|] , (200  ternative to the ordinary search procedures by adjusting only
volume and surface real parts of the OMP.

wherep; is calculated according to E(LO) usingB, andn This work was supported by Junta de Andatuand the
instead ofBg andm andZ; is calculated by Eq(19) usingn ~ Spanish CICYT under Contract Nos. PB19BBE],
instead ofm. FPA2001-0144-C05-03, and FPA2001-4960-E and by the

A computer code to calculate the analytical expression&European Union under Contract No. FKIW-CT-2000-00107.
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