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ABSTRACT

We study the clustering of galaxies as a function of spectral type and redshift in the range 0.35<z<1.1 using
data from the Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey.
The data cover 2.381 deg2 in 7 fields, after applying a detailed angular selection mask, with accurate photometric
redshifts z0.014 1z[ ( )]s < + down to IAB<24. From this catalog we draw five fixed number density redshift-
limited bins. We estimate the clustering evolution for two different spectral populations selected using the
ALHAMBRA-based photometric templates: quiescent and star-forming galaxies. For each sample we measure the
real-space clustering using the projected correlation function. Our calculations are performed over the range [0.03,
10.0] h−1 Mpc, allowing us to find a steeper trend for r h0.2p

1 - Mpc, which is especially clear for star-forming
galaxies. Our analysis also shows a clear early differentiation in the clustering properties of both populations: star-
forming galaxies show weaker clustering with evolution in the correlation length over the analyzed redshift range,
while quiescent galaxies show stronger clustering already at high redshifts and no appreciable evolution. We also
perform the bias calculation where similar segregation is found, but now it is among the quiescent galaxies where a
growing evolution with redshift is clearer (abrigatted). These findings clearly corroborate the well-known color–
density relation, confirming that quiescent galaxies are mainly located in dark matter halos that are more massive
than those typically populated by star-forming galaxies.

Key words: cosmology: observations – galaxies: distances and redshifts – large-scale structure of universe –

methods: data analysis – methods: statistical

1. INTRODUCTION

It has been well established that different types of galaxies
cluster in different ways (Davis et al. 1988; Hamilton 1988;
Domínguez-Tenreiro & Martínez 1989; Einasto 1991; Loveday
et al. 1995; Guzzo et al. 1997; Li et al. 2006; Phleps et al. 2006;
Martínez et al. 2010). Elliptical galaxies are preferentially
located at the cores of rich galaxy clusters, i.e., in high-density
environments, while spiral galaxies are the dominant popula-
tion in the field (Davis & Geller 1976; Dressler 1980;
Giovanelli et al. 1986; Cucciati et al. 2006). This phenomenon,
called galaxy segregation, has been confirmed in the largest
galaxy redshift surveys available up to date: the 2dF Galaxy
redshift survey (2dFGRS, Madgwick et al. 2003), the Sloan

Digital Sky Survey (SDSS, Abbas & Sheth 2006; Zehavi et al.
2011), and the Baryonic Oscillation Spectroscopic Survey
(BOSS, Guo et al. 2013). The dependence of clustering on
different galaxy properties such as stellar mass, concentration
index, or the strength of the 4000Åbreak has been studied by
Li et al. (2006).
Since segregation is a consequence of the process of

structure formation in the universe, it is therefore very
important to understand its evolution with redshift or cosmic
time. Several works have extended the analysis of segregation
by color or spectral type to redshifts in the range z∼0.3–1.2
using recent spectroscopic surveys such as the VIMOS-VLT
Deep Survey (VVDS, Meneux et al. 2006), the Deep

The Astrophysical Journal, 818:174 (13pp), 2016 February 20 doi:10.3847/0004-637X/818/2/174
© 2016. The American Astronomical Society. All rights reserved.

1

http://dx.doi.org/10.3847/0004-637X/818/2/174
http://crossmark.crossref.org/dialog/?doi=10.3847/0004-637X/818/2/174&domain=pdf&date_stamp=2016-02-17
http://crossmark.crossref.org/dialog/?doi=10.3847/0004-637X/818/2/174&domain=pdf&date_stamp=2016-02-17


Extragalactic Evolutionary Probe 2 survey (DEEP2, Coil
et al. 2008), or the PRIsm Multi-object Survey (PRIMUS,
Skibba et al. 2014). de la Torre et al. (2011), instead, used the
zCOSMOS survey to study segregation by morphological type
at z∼0.8. All these studies show that segregation by color or
spectral type was already present at z∼1. In particular,
Meneux et al. (2006) using a sample of 6500 VVDS galaxies
covering half a square degree, have unambiguously established
that early-type galaxies are more strongly clustered than late-
type galaxies at least since redshift z∼1.2. The correlation
length obtained by these authors for late-type galaxies is
r h2.50

1~ - Mpc at z∼0.8 and roughly twice this value for
early-type galaxies. They have also calculated the relative bias
between the two types of galaxies and obtained an approxi-
mately constant value b 1.3 1.6rel –~ for z0.2 1.2 
depending on the sample. This value is slightly larger than
the one obtained by Madgwick et al. (2003) b 1.45 0.14rel ~ 
for the 2dF Galaxy Redshift Survey with median redshift
z=0.1. The results obtained by Coil et al. (2008) for DEEP2
reinforced those outlined above, although the measured
correlation lengths for DEEP2 galaxies are systematically
slightly larger than the values reported for the VVDS sample by
Meneux et al. (2006). In addition, Coil et al. (2008) have
detected a significant rise of the correlation function at small
scales r h0.2p

1 - Mpc for their brighter samples. For the
zCOSMOS-Bright redshift survey, de la Torre et al. (2011) also
found that early-type galaxies exhibit stronger clustering than
late-type galaxies on scales from 0.1 to 10h−1 Mpc already at
z 0.8 and that the relative difference increases with cosmic
time on small scales but does not significantly evolve from
z=0.8 to z=0 on large scales. A similar result is reported by
Skibba et al. (2014). These authors show that the clustering
amplitude for the PRIMUS sample increases with color, with
redder galaxies displaying stronger clustering at scales
r h1p

1 - Mpc. They have also detected a color dependence
within the red sequence with the reddest galaxies being more
strongly correlated than their less red counterparts. This effect
is absent in the blue cloud.

Several broadband photometric surveys have extended these
studies to even larger redshifts (e.g., Hartley et al. 2010;
McCracken et al. 2015). Hartley et al., using data from the
UKIDSS Ultra Deep Survey, find segregation between passive
and star-forming galaxies at z  1.5 but find consistent
clustering properties for both galaxy types at z∼2.

In the present paper we use the high-quality data of the
Advanced Large Homogeneous Area Medium Band Redshift
Astronomical survey (ALHAMBRA; Moles et al. 2008;
Molino et al. 2014)21 to study the clustering segregation of
quiescent and star-forming galaxies. ALHAMBRA is very well
suited for the analysis of galaxy clustering and segregation
studies at very small scales. With a reliable calculation of the
projected correlation function we find a clear steepening of the
correlation at scales between 0.03 and 0.2h−1 Mpc (Phleps
et al. 2006; Coil et al. 2008), specially for the star-forming
galaxies. Moreover, its continuous selection function over a
large redshift range makes ALHAMBRA an ideal survey for
evolution studies. In Arnalte-Mur et al. (2014)
(hereafter AM14) the authors presented the results of the
evolution of galaxy clustering on scales r h10p

1< - Mpc for
samples selected in luminosity and redshift over ∼5 Gyr by

means of the projected correlation function w rp p( ). In this paper
we use the same statistic to study the evolution of galaxy
segregation by spectral type at 0.35<z<1.1.
Details on the samples used in this analysis are described in

Section 2. In Section 3 we introduce the statistic used in our
analysis, the projected correlation function, and the methods to
obtain reliable estimates of this quantity and to model the
results. Finally, in Section 4 we present our results and in
Section 5 the conclusions. Throughout the paper we use a
fiducial flat CDML cosmological model with parameters

0.27MW = , 0.73W =L , 0.0458bW = , and 0.8168s = based
on the seven-year Wilkinson Microwave Anisotropy Probe
(WMAP) results (Komatsu et al. 2011). All the distances used
are comoving and are expressed in terms of the Hubble
parameter h H 100 km s Mpc0

1 1º - - . Absolute magnitudes
are given as M h5 log10( )- .

2. ALHAMBRA GALAXY SAMPLES

ALHAMBRA (Moles et al. 2008; Molino et al. 2014) is a
project that has imaged seven different areas in the sky through
a purposely built set of 20 contiguous, non-overlapping,
310Åwide filters covering the whole visible range from
3500 to 9700Å plus the standard near-infrared JHKs filters.
The nominal depth (5σ, 3 aperture) is I 24.5AB ~ and the total
sky coverage after masking is 2.381 deg2. The final catalog,
which is described in Molino et al. (2014), includes over
400,000 galaxies with a photometric redshift accuracy better
than z1 0.014z ( )s + = . Full details on how the accuracy
depends on the sample magnitude, galaxy type, and bayesian
odds selection limits are given in that work. For the
characteristics of the sample that we use in this paper the
authors quote a dispersion 0.014NMADs < and a catastrophic
rate 0.041h = %.22 There is no evidence of significantly
different behavior for galaxies with spectral energy distribu-
tions (SEDs) corresponding to quiescent or star-forming types.
Contamination by AGNs is minor (approximately 0.1% of the
sources could correspond to this class, which has not been
purged from the ALHAMBRA catalogs) and should be
dominated by low-luminosity AGN, which are in many cases
fit by strong emission-line galaxies with an approximately
correct redshift.
Object detection is performed over a synthetic image created

via a combination of ALHAMBRA filters that mimics the
Hubble Space Telescope F814W filter (hereafter denoted by I)
so that the reference magnitude is directly comparable to other
surveys. Photometric redshifts were obtained using the
template-fitting code BPZ (Benítez 2000) with an updated set
of 11 SED templates as described in Molino et al. (2014).
Although a full posterior probability distribution function in
redshift z and spectral type T is produced for each object, in this
work we take a simpler approach and assign to each galaxy the
redshift zb and type Tb corresponding to the best fit to its
observed photometry. We have checked that the errors induced
by the redshift uncertainties, which are partly absorbed by the
deprojection technique, are under control as long as we use
relatively bright galaxies with good quality photometric
redshift determinations. This makes ALHAMBRA a very
well-suited catalog: together with the high-resolution photo-
metric redshifts, the abundant imaging allows us both the

21 http://alhambrasurvey.com

22 Where NMADs is the normalized median absolute deviation and 2h is defined
as the proportion of objects with absolute deviation z z1 0.2∣ ∣ ( )d + > .
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reliable color segregation used in this work as well as a high
completeness in the galaxy population at small scale separa-
tions, which will be the specific object of a future work.

We have drawn different samples from the ALHAMBRA
survey to perform our analysis in a similar way as was done
in AM14. First, we cut the magnitude range at I<24 where
the catalog is photometrically complete (Molino et al. 2014)
and we do not expect any significant field-to-field variation in
depth. Second, stars are eliminated using the star-galaxy
separation method described in Molino et al. (2014). As
explained in AM14 the expected contamination by stars in the
resulting samples is less than 1%. Finally, we cleanse the
catalog using the angular masks defined in AM14, which
eliminate regions with less reliable photometry around bright
stars or image defects, or very close to the image borders. The
sample selected in this way contains 174633 galaxies over an
area of 2.381deg2, i.e., with an approximate source density of
7.3×104 galaxies per square degree.

Given the ALHAMBRA depth, we divide our sample into
five non-overlapping redshift bins. These redshift bins are
[0.35, 0.5[, [0.5, 0.65[, [0.65, 0.8[, [0.8, 0.95[, and [0.95,1.1].23

In this work we focus on the galaxy spatial segregation by
spectral type and use a luminosity selection to obtain a fixed
number density. In this way we guarantee that we are
comparing similar populations at different redshifts. To select
a sample that is complete up to z=1.1 we define a threshold
magnitude of M h0 5 log 19.36B

th ( ) ( )- = - for the highest
redshift bin. This limit determines the galaxy number density
(n h9.35 10 3 3¯ = ´ - Mpc−3) that we will keep constant for the
remaining redshift bins; this way our results do not rely on
measurements of the luminosity function. This will allow us to
study the evolution with redshift of the galaxy spectral
segregation. Figure 1 shows the luminosity and redshift
selections used in this work. We should remark on the non-
monotonic evolution of the faint limit of our samples with
redshift. This effect is not unexpected, as a combination of
cosmic variance in the large-scale structure and the artificial
redshift peaks that are induced by the photometric redshift
methods produce density changes that are observable at the

scales we are using. In any case the effect is very small and
represents a variation of only 0.1 mag per bin over a monotonic
evolution.
We classify our galaxies as “quiescent” and “star-forming”

according to the best-fitting template, Tb, obtained from the
BPZ analysis. Templates 1 to 5 correspond to quiescent
galaxies, 6 and 7 correspond to star-forming galaxies, and 8 to
11 correspond to starburst galaxies. We consider quiescent
galaxies to be those with a template value smaller than 5.5 and
star-forming galaxies to be those with a value greater than 5.5.
Therefore, we also include in the star-forming category those
galaxies classified as starbursts. Note that in the fitting process
interpolation between templates is performed.
In a previous work Pović et al. (2013) built a morphological

catalog of 22,051 galaxies in ALHAMBRA. We cannot,
however, use this catalog as the basis for our analysis as it
includes only a small subset of the galaxies in our sample; in its
cleanest version it is limited to AB F613W 22( ) < and redshift
z<0.5 for ellipticals. A cross-check showed that if we identify
quiescent galaxies as early-type and star-forming galaxies as
late-type, our SED-based classification agrees with the
morphological one for over 65% of the sample. Taking into
account that the nominal accuracy of the morphological catalog
is 90%, that we are actually using only the objects close to its
detection limit and that, as noted in Pović et al. (2013), the
relationship between morphological- and color-based classifi-
cations is far from being as direct as could naïvely be expected,
we consider that these figures prove that the classification is
accurate within the expected limits.
In Figure 2 we show how our classification of quiescent and

star-forming galaxies performs on a color-luminosity diagram.
We plot Mr and Mu, which correspond to the absolute
magnitudes in the SDSS rest-frame broadband filters r and u
and were estimated from ALHAMBRA data by Stefanon

Figure 1. Selected samples with fixed number density in the photometric
redshift vs. absolute B-band magnitude diagram. The quiescent and star-
forming galaxy samples are plotted in red and blue, respectively. The solid
lines mark the boundaries of our selected samples described in Table 1.

Figure 2. Absolute rest-frame broadband color–magnitude diagram for
galaxies with redshifts between 0.35 and 0.75. Quiescent and star-forming
galaxies (selected by their best-fit spectral type) are shown, respectively, as red
and blue percentile contours. We have used SDSS absolute magnitudes derived
from the ALHAMBRA photometry as described in the text. Our classification
by (photometric) spectral type closely matches the usual broadband color
selection.

23 Note that the redshift bins used here are different from those in AM14 where
overlapping bins were allowed.
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(2011) for galaxies with redshift 0.35<z<0.75 and good
quality photometric redshifts. We see how well the ALHAM-
BRA spectral type classification reproduces the expected
behavior (Bell et al. 2004): quiescent galaxies correspond to
the “red sequence” in the diagram while star-forming galaxies
form the “blue cloud.” In addition to the clear segregation in
color, we see that quiescent galaxies show on average slightly
brighter luminosities than star-forming ones. This shows that
our selection by (photometric) spectral type is almost
equivalent to a selection in broadband color.

In Figure 3 we show the projection of two fields, ALH-2 and
ALH-4/COSMOS, onto the plane of the sky. The coherent
superstructure in the ALH-4/COSMOS field at 0.6<z<0.8

is well appreciated. The skeleton of the structures that form the
cosmic web is perfectly delineated by the red quiescent
galaxies, while blue star-forming ones tend to populate the field
or lower density regions. A similar trend was also visible in the
redshift versus R.A. diagram of Guzzo & The Vipers Team
(2013). We will further study this color–density relation
(Cucciati et al. 2006) in the following sections by means of
the projected correlation function.
Finally, we remove the north–west ALH-4 frame from the

analysis (the top right section on the bottom panel of Figure 3).
As seen in AM14, there exists an anomalous clustering in the
ALH-4 field, which overlaps with the Cosmic Evolution
Survey (COSMOS, Scoville et al. 2007b). It is well known that

Figure 3. Projection onto the sky of the z0.73 sample (0.65<z<0.8) for two ALHAMBRA fields: ALH-2 (top) and ALH-4/COSMOS (bottom). Galaxies have
been colored according to their type: blue circles correspond to star-forming galaxies and red circles to quiescent galaxies with the size of each circle proportional to
the luminosity of the corresponding galaxy. North is to the top and east is to the left. The diagram shows the geometry of the ALHAMBRA fields with the angular
mask described in the text displayed as a light gray background. The scale of 10 h−1 Mpc at z=0.7 is indicated as a vertical bar. A heavy concentration of red circles
(quiescent galaxies) corresponding to the big coherent structure described in the text is patent in the NW quadrant of the ALH-4/COSMOS field.
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the COSMOS survey presents higher clustering amplitude than
similar surveys (see, e.g., McCracken et al. 2007; de la Torre
et al. 2010) due to the presence of large overdense structures in
the field (Guzzo et al. 2007; Scoville et al. 2007a). This
overdensity of structures is also observed in ALHAMBRA
when comparing this peculiar region of the ALH-4 field with
the rest of the fields (Molino et al. 2014; Ascaso et al. 2015).
In AM14 the authors showed that ALH-4/COSMOS is an
outlier in terms of clustering. We have seen that not only does
this region introduce anomalies in the measurement of the
clustering statistics, but it also affects the error estimation of
these statistics. In AM14 the authors also identified ALH-7/
ELAIS-N1 as an outlier field (although the significance of the
anomaly was smaller in this case). However, here we do not
find any significant change in our results when removing the
ALH-7/ELAIS-N1 field, so we keep it in for all our
calculations.

For each redshift bin we will analyze the clustering for the
full selected population and separately for quiescent and star-
forming galaxies. Table 1 summarizes the different samples in
each redshift bin. Columns NQ and NSf are the number of
quiescent and star-forming galaxies, respectively, and the last
column is the fraction of quiescent galaxies in each of the
redshift subsamples.

We see that the fraction of quiescent galaxies decreases with
redshift. This behavior is expected qualitatively, as blue star-
forming galaxies are dominant at earlier cosmic times while red
quiescent galaxies appear late once star formation stops. This
trend was also observed in a similar redshift range by e.g.,
Zucca et al. (2009) for the zCOSMOS 10k bright sample. They
found that the population of bright late-type galaxies becomes
dominant at higher redshifts and therefore the fraction of early-
type galaxies decreases with redshift accordingly.

3. METHODS

The method used for the correlation analysis of our data
follows closely the one used in AM14, where it is discussed in
detail. We present here a summary of the methods and some
points where the details differ. We estimate the correlation
function using the estimator proposed by Landy & Szalay
(1993) and the projected correlation function to recover real-
space clustering from our photometric redshift catalogs as
described by Davis & Peebles (1983) and Arnalte-Mur et al.
(2009). We use the delete-one jackknife method for the error
estimation and linear regression to fit the different model
correlation functions to our data.

3.1. Estimation of the Projected Correlation Function

The method introduced by Davis & Peebles is based on the
decomposition of pair separations in distances parallel and
perpendicular to the line of sight, r r, p( ) . Given two galaxies, if
we define their radial vectors to the observer as s1 and s2, then
their separation vector is s s s1 2º - and the line of sight
vector is l s s1 2º + . From these we can now calculate the
transverse and radial distances as

s l
l

s sr r r, . 1p
2∣ · ∣

∣ ∣
· ( )º º - 

Once r r, p( ) are defined for each galaxy pair we can proceed to
calculate the two-dimensional correlation function, r r, p( )x  in
an analogous way to r( )x (Martínez & Saar 2002). With this
method, for every galaxy pair we define a plane passing
through the observer and containing the vectors s1 and s2.
Therefore, we only need to assume isotropy in the plane that is
perpendicular to the line of sight.
To estimate the projected correlation function we need a

random Poisson catalog with the same selection function as our
data. We create this auxiliary catalog in each case using the
software MANGLE (Hamilton & Tegmark 2004; Swanson et al.
2008) to apply the angular selection mask defined in AM14. In
addition, the random points are distributed so that they follow
the redshift distribution of each of the galaxy samples used (see
Section 2). We estimate the two-dimensional two-point
correlation function as (Landy & Szalay 1993)

r r
N

N

DD r r

RR r r

N

N

DR r r

RR r r
, 1

,

,
2

,

,
, 2p

R

D

p

p

R

D

p

p

2
ˆ ( )

( )
( )

( )
( )

( )x = + -








⎛
⎝⎜

⎞
⎠⎟

where DD r r, p( ) , DR r r, p( ) , and RR r r, p( ) correspond to
pairs of points with transverse separations in the interval
r r dr,p p p[ ]+ and radial separations in the interval
r r dr,[ ]+   . DD counts pairs of points in the data catalog,
RR counts pairs in the random Poisson catalog, and DR counts
crossed pairs between a point in the data catalog and a point in
the Poisson catalog. ND is the number of points in the data
catalog and NR (=20 ND) is the number of points used in our
random Poisson catalog.
We can define the projected correlation function as

w r r r dr2 , . 3p p p
0

( ) ˆ ( ) ( )ò x=
¥

 

As wp depends only on rp and the angle between any pair of
points is small, it will not be significantly affected by redshift

Table 1
Characteristics of the Galaxy Samples Used

Quiescent Galaxies Star-forming Galaxies

Sample z Range V h Mpc3 3( )- NQ n h Mpc3 3¯ ( )- MB
med z̄ NSf n h Mpc3 3¯ ( )- MB

med z̄
N

N N
Q

Q Sf+

z0.43 0.35–0.5 3.48×105 1650 4.74×10−3 −20.53 0.43 1605 4.61×10−3 −20.26 0.43 0.51
z0.57 0.5–0.65 5.42×105 1818 3.35×10−3 −20.77 0.58 3258 6.01×10−3 −20.35 0.57 0.36
z0.73 0.65–0.8 7.33×105 2291 3.12×10−3 −20.87 0.73 4570 6.23×10−3 −20.56 0.73 0.33
z0.88 0.8–0.95 9.09×105 2509 2.75×10−3 −21.06 0.87 6002 6.6×10−3 −20.82 0.88 0.29
z1.00 0.95–1.1 1.06×106 2182 2.05×10−3 −20.91 1.02 7768 7.30×10−3 −20.74 1.03 0.22

Note. V is the volume covered by ALHAMBRA in each redshift bin. For each of the samples selected by spectral type we show the number of galaxies N, the mean
number density n̄, the median B-band absolute magnitude MB

med, and the mean redshift z̄ . The last column gives the fraction of early-type galaxies in the bin. NW
ALH-4 frame is not included.
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errors as these will mainly produce shifts in rP. For
computational reasons we have to fix a finite upper limit,
r ,max , for the integral in Equation (3). The authors showed
in AM14 that the optimal value for our samples
is r h200,max

1= -
 Mpc.
We further correct our measured w rp p( ) for the bias

introduced by the integral constraint (Peebles 1980). This
effect arises because we are measuring the correlation function
with respect to the mean density of a sample instead of the
global mean of the parent population. We base our correction
on the effect of the integral constraint on the 3D correlation
function r( )x . This function is biased to first order as

r r K, 4true( ) ( ) ( )x x= -

where K is the integral constraint term. Using Equation (3) the
effect on w rp p( ) is then

w r r w r r Kr, , 2 . 5p p p p
true

,max ,max ,max( ) ( ) ( )= +  

Given a model correlation function, K can be estimated as
(Roche et al. 1999)

K
RR r r

RR r

RR r r

N N 1
. 6i i i

i i

i i i

R R

model model( ) ( )
( )

( ) ( )
( )

( )å
å

åx x
=

-


We proceed in an iterative way to introduce this correction for
each of our samples. We first fit our original w rp p( )
measurements to a double power-law model, A x C x· ·+b d.
We use the model r( )x obtained from this fit to estimate K
using Equation (6) and obtain our corrected values of w rp p( )
from Equation (5). We use the corrected values to perform the
model fits described in Sections 4.1 and 4.2, and for all the
results reported in Section 4. In any case, the effect of the
integral constraint in our measurements is always much smaller
than the statistical errors.

To estimate the correlation function errors for each bin in rp,
we used the jackknife method (see, e.g., Norberg et al. 2009).
We divided our volume in N 47jack = equal sub-volumes,
corresponding to the individual ALHAMBRA frames (see
Molino et al. 2014), and constructed our jackknife samples
omitting one sub-volume at a time. We repeated the full
calculation of w rp p( ) (including the integral constraint correc-
tion) for each of these samples. Denoting by wpi

k the correlation
function obtained for bin i in the jackknife sample k, the
covariance matrix of the projected correlation function is then

N

N
w r w r w r w r

1
,

7

ij
k

N

p
k

i p i p
k

j p j
jack

jack 1

jack

( ( ) ¯ ( )) · ( ( ) ¯ ( ))

( )

åS =
-

- -
=

where wpi¯ is the average of the values obtained for bin i. The
errors for individual data points (shown as error bar in the
plots) are obtained from the diagonal terms of the covariance
matrix as

. 8i ii ( )s = S

4. RESULTS AND DISCUSSION

In this section we first present the results of the calculation of
the projected correlation function w rp p( ) for the different
samples described in Section 2. This is done in Section 4.1. We

also present the analysis of the bias (Section 4.2). The
calculation has been performed for scales from 0.03 to 10.0
h−1 Mpc for the projected correlation function and from 1.0 to
10.0 h−1 Mpc for the bias. Figure 4 shows the projected
correlation function for the full samples. The first remarkable
result that deserves to be pointed out is a clear change of the
slope of the w rp p( ) functions around r h0.2p

1~ - Mpc, as
already mentioned by Coil et al. (2006, 2008).
In this section we compare our results with previous works

that studied the galaxy clustering and its dependence on
spectral type or color in the redshift range z 0, 1[ ]Î as
mentioned in the introduction. Given the luminosity selection
of our sample (see Section 2), in each case we use for
comparison the published results for volume-limited samples
with number density closest to n h10 Mpc2 3 3= - - . The
number density of the samples shown in our comparisons are
within 20% of this figure with two exceptions: the PRIMUS
sample at z 0.4 (with number density of
n h1.6 10 Mpc2 3 3= ´ - - , Skibba et al. 2014) and the
VIPERS sample at z 0.6 (with number density of
n h0.33 10 Mpc2 3 3= ´ - - , Marulli et al. 2013). In the case
of Meneux et al. (2006), they use a flux-limited sample
resulting in a evolving number density with redshift in the
range n h0.33 1.2 10 Mpc2 3 3–= ´ - - .

Figure 4. Projected correlation function for the full population sample in each
of the redshift bins (points with error bars). Top: small scales
(0.03<rp<0.2). Bottom: large scales (0.2<rp<10.0). Error bars are
calculated with the delete-one jackknife method and values at the same rp are
shifted for clarity. Solid lines with matching colors show the best-fit power law
in each case. The black segment represents the mean slope of the curves.
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4.1. Power-law Modeling

Power laws are simple and widely used models that describe
the correlation function of the galaxy distributions, as they
provide a very good approximation over a large range of scales
with only two free parameters. The observed change of the
slope mentioned above forced us to model the projected
correlation function wp by means of two power laws, one that
fits the function at small scales and the other one at large scales.
A similar treatment was done by Coil et al. (2006) in their
analysis of the clustering in the DEEP2 survey at z=1. The
departure from power-law behavior at small scales can be
explained naturally in the framework of the halo occupation
distribution (HOD) model that considers the contribution to the
correlation function of pairs within the same halo (one-halo
term), which is dominant at short scales, and the transition to
the regime where the function is dominated by pairs from
different halos (two-halo term) at large scales. We will present
HOD fits to the ALHAMBRA data in a separate paper.
Therefore, we fit two power laws as

w r Ar r r, if 9p
s

p p p s( ) ( )= b

for the small scales, and

w r Cr r r, if 10p
l

p p p s( ) ( )= d

for the large ones. We fix value r h0.2s
1- Mpc. An abrupt

change in the projected correlation function has also been
detected at this scale by Phleps et al. (2006) for the blue
galaxies of the COMBO-17 sample. A, β, C, and δ are the free
parameters. We treat each power law independently and
express them in terms of the equivalent model for the 3D
correlation function ξ.

r
r

r
. 11pl

0
( ) ( )x =

g-⎛
⎝⎜

⎞
⎠⎟

A and β (analogously, C and δ) can be related to the parameters
γ (power-law index) and r0 (correlation length) as shown in
Davis & Peebles (1983):

A r
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G
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We have performed the fitting of this model to our data using
a standard 2c method, by minimizing the quantity
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where Σ is the covariance matrix. We fit this model to our data at
scales r h0.03 0.2p

1  - Mpc and r h0.2 10.0p
1  - Mpc

for each sample using the covariance matrix computed from
Equation (7) to obtain the best-fit values of r0, γ and their
uncertainties (see Table 2). This fitting has been performed using
the POWERFIT code developed by Matthews & New-
man (2012).

We must remark that the statistical errors of the correlation
function at different separations rp are heavily correlated
because a given large-scale structure adds pairs at many
different distances. The higher the values of the off-diagonal
terms of the covariance matrix, the stronger the correlations

between the errors. When this happens the best-fit parameters
r0 and γ might be affected as has been illustrated by Zehavi
et al. (2004) for the SDSS survey. One could ignore the error
correlations and use only the diagonal terms, but this is not
justified if these terms are dominant. The parameters of the fits
are listed in Table 2.

4.1.1. Full Samples

Figure 4 (top panel) shows the measurements of the
projected correlation function w rp p( ) for the full samples at
the small scales ( r h0.03 0.2p

1  - Mpc). The bottom panel
shows the same function for large scales ( r h0.2 10.0p

1  -

Mpc). Looking at both diagrams, we confirm the rise of the
correlation function at small scales already detected by Coil
et al. (2008) with values of 2.2g ~ (for the slope of the three-
dimensional (3D) correlation function). We can also appreciate
in the top panel of Figure 4 that the correlation functions are
steeper for the high-redshift samples with values of γ
increasing from ∼2.1 for the closest redshift bin (z∼0.4) to
∼2.3 for the farthest (z∼1). The correlation length signifi-
cantly decreases with increasing redshift (see also Table 2).
For the large scales r h0.2 10.0p

1  - Mpc, the slope of
the correlation function is rather constant for all samples with
values around 1.8g = , while again the correlation length
decreases with redshift from r 4.1 0.50 =  for z∼0.4 to
r0=3.5±0.3 for z∼1. The evolution of the amplitude
indicates that the change in clustering is mainly driven by the
overall growth of structure in the matter density field. As we
use for the fits the scales r h0.2 10.0p

1< < - Mpc (the 2-halo
term becoming important at scales r h1.0p

1> - Mpc) the fact
that the slope γ does not significantly change also implies that
the 2-halo contribution for this population does not signifi-
cantly change its profile over this redshift interval. All these
effects were studied in detail in AM14 and extended to samples
with different luminosities (see e.g., their Figure 7). We have
seen that this is only broken at shorter scales where the curve
presents slightly higher values.
The overall trend can be visualized in Figure 5 where we

show the evolution of the best-fit parameters of the 3D
correlation function r( )x for small and large scales in the full
population samples. Despite the great uncertainties, the
diagram shows evolution with r0 decreasing for both scale
ranges as redshift grows. In addition, at small scales, the slope
γ also increases with redshift. The evolution at large scales of
the correlation length extrapolates well to lower redshift with
the value reported by Zehavi et al. (2011) for the SDSS and by
Madgwick et al. (2003) for the 2dF galaxy redshift survey.
Zehavi et al. (2011) analyzed the SDSS Main catalog by means
of the projected correlation function. They obtained values for
the parameters r0 and γ by the same method used here, over the
scale range r h0.1 50p

1< < - Mpc. The values correspond to
the galaxies selected in the luminosity bin M20 19r- < < -
and z0.027 0.064< < , with a number density
(n h10.04 10 Mpc3 3 3= ´ - - ) and typical luminosity
(L L 0.4med  = ) similar to the ALHAMBRA sample used in
this work, so qualitatively this is a valid comparison. As we can
see in Figure 5 the slope of the correlation function for the full
SSDS main sample is 1.78 0.02g =  compatible within one
σ with the values obtained for the ALHAMBRA survey at
higher redshift within the range of large scales analyzed here
and the correlation length r0=4.89±0.26 follows the
evolutionary trend delineated by the ALHAMBRA higher
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redshift samples: r0 increases at lower redshifts. Very similar
results have been obtained by Madgwick et al. (2003) for the
2dFGRS with 1.73 0.03g =  and r0=4.69±0.22 within
the range r h0.2 20.0p

1< < - Mpc in the redshift interval
0.01<z<0.015. At larger redshift our results can be
compared with the ones reported by Skibba et al. (2014) for
the PRIMUS survey. They have analyzed two bins of redshift
0.2<z<0.5 and 0.5<z<1 with Mg<−19. In Figure 5
we have displayed their results for the correlation function

parameters. We also plot a point corresponding to the VIMOS
Public Extragalactic Redshift Survey (VIPERS) from Marulli
et al. (2013) and another point corresponding to the DEEP2
survey from Coil et al. (2006). All these results for the three
high-redshift surveys show perfect agreement with our own
ALHAMBRA results.
It is important to understand the correlation between

parameters γ and r0, as its interpretation can be delicate. If,
for instance, γ grows with the redshift of the sample, r0 will
tend to reduce its value, as r 1( )x = for shorter distances, as it
can be appreciated in the top-left points (short rp scales)
displayed in Figure 5 We must have this in mind for a proper
understanding of our results. On the other hand, the decrease of
r0 with increasing redshift when γ does not change, as we find
in bottom-right points (large scales) in Figure 5, can be
interpreted as a self-similar growth of the structure at the
calculated scales. This effect is specially reflected in the tilt of
the confidence ellipses in Figure 5, which shows the negative
correlation between r0 and γ.

4.1.2. Segregated Samples

Figure 6 shows the projected correlation function w rp p( ) for
the quiescent and star-forming galaxies at the five redshift bins
compared with the full population. As expected, the full
population result occupies an intermediate position at low
redshift but evolves with redshift toward star-forming posi-
tions. This is expected due to the higher abundance of the latter
in our samples, specially at high redshift. A visual inspection of
Figure 6 suggests that the projected correlation function shows
the double slope corresponding to the 1-halo and the 2-halo
terms specially for the star-forming galaxies, due to their
tendency to cluster in lower mass halos with smaller virial radii
(Seljak 2000).
Quiescent galaxies show a higher clustering at every redshift

bin. To study the change of the clustering properties with

Table 2
Results of the Different Fits to w(rp): Power-law and Bias Models

Sample Full Population
rs0 sg rl0 lg b

z0.43 3.1±0.6 2.1±0.13 4.1±0.5 1.87±0.12 1.21±0.14
z0.57 2.9±0.4 2.11±0.1 4±0.5 1.85±0.1 1.23±0.17
z0.73 2.8±0.5 2.12±0.12 3.7±0.4 1.94±0.1 1.25±0.14
z0.88 2.5±0.4 2.18±0.1 3.2±0.7 1.94±0.15 1.2±0.5
z1.00 2±0.3 2.3±0.11 3.5±0.3 1.72± 0.06 1.3±0.13

Quiescent Galaxies

z0.43 4±1.2 2.11±0.17 4.9±0.7 1.89±0.16 1.26±0.19
z0.57 2.3±0.5 2.62±0.18 5.4±0.8 1.85±0.11 1.8±0.2
z0.73 3.6±0.7 2.29±0.14 4.3±0.7 2.15±0.16 1.4±0.2
z0.88 4±0.9 2.25±0.13 4.2±0.8 2.14±0.17 1.6±0.3
z1.00 3.5±0.9 2.28±0.16 4.8±0.8 1.8±0.13 1.9±0.3

Star-forming Galaxies

z0.43 2.4±1.7 2±0.5 4.3±0.5 1.66±0.13 1.33±0.18
z0.57 2.2±0.7 2.1±0.2 3.6±0.4 1.73±0.12 1.21±0.17
z0.73 2.8±0.9 2.1±0.2 3.5±0.4 1.86±0.14 1.18±0.14
z0.88 1.8±0.5 2.3±0.2 3±0.4 1.7±0.12 1.2±0.4
z1.00 1.7±0.3 2.34±0.13 3.2±0.3 1.69±0.09 1.25±0.13

Note. Results of the fits of the power-law model and the bias model to the data for each of our samples. r0
s and sg correspond to the scales r h0.03 0.2p

1< < - Mpc,
and r0

l and lg to the scales r h0.2 10.0p
1< < - Mpc. These parameters have been calculated using the methods described in Sections 4.1 and 4.2.

Figure 5. Parameters r0, γ obtained from the power-law fit to the projected
correlation functions of our full population samples. In black, the1s confidence
regions of the large scales fit ( r h0.2 10.0p

1< < - Mpc) and in gray, the 1s
confidence regions of the small scales fit ( r h0.03 0.2p

1< < - Mpc). For
clarity we show only the regions for the first and last redshift bin. Lines link the
best-fit results for each sample accross different redshift bins. For comparison
we show as points with error bars the results of Madgwick et al. (2003) (2dF),
Zehavi et al. (2011) (SDSS), Coil et al. (2006) (DEEP2), Marulli et al. (2013)
(VIPERS), and Skibba et al. (2014) (PRIMUS) (see the text for details). The
parameters and their 1-sigma variation have been calculated using the method
described in Section 4.
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redshift and spectral type, we fit the projected correlation
function w rp p( ) of each sample with a power-law model using
the method described above.

The amplitude of their correlation functions as well as their
slope is higher than that for the star-forming galaxies in all
cases. As for the full population we have modeled the
correlation function with two different power laws at scales
larger and smaller than r h0.2p

1= - Mpc. Star-forming
galaxies show for all redshift bins a clear rise in their
correlation function at small separations. As mentioned in the
introduction, Coil et al. (2008) found the same result for the
bright blue galaxies of the DEEP2 galaxy redshift survey. They

found that the effect is more pronounced at higher redshift
corresponding to brighter galaxies. For the quiescent galaxies
we would have fitted a single power law for the whole range, in
particular for some redshift bins. However, we have proceeded
in the same way for the two galaxy types to simplify the
analysis of the segregation. The comparison of the best-fit
model with the data in each case is shown in Figure 6 and we
see an excellent agreement in all cases. The parameters
obtained from the fits are listed in Table 2.
As we have done for the full population, to visualize if there

is any evolution of the correlation function parameters we show
the diagram of γ versus r0 in Figures 7 and 8 for the segregated

Figure 6. Projected correlation functions for quiescent (red) and star-forming (blue) galaxies (points with error bars). Solid lines with matching colors show the best-fit
power law in each case. For reference we also show the results for the full population with the continuous black line. From top to bottom, left to right, the five redshift
bins: (0.35<z<0.5), (0.5<z<0.65), (0.65<z<0.8), (0.8<z<0.95), and (0.95<z<1.1). Error bars are calculated with the delete-one jackknife method.
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populations with the corresponding confidence regions,
separated in the two scale regimes. In both cases (short and
large scales) the parameter space occupied by quiescent
galaxies can be clearly distinguished from the space occupied
by star-forming galaxies, the first ones showing a larger
correlation length for both scaling ranges with the difference
between both types well over 3σ for small scales and about 2σ
for large scales.

At short scales the exponent of the correlation function γ is
similar for both galaxy types with values around 2.2g ~

(Figure 7). The correlation length for star-forming galaxies
varies roughly in the range r h2, 30

1[ ]= - Mpc. A visual hint
of evolution could be appreciated for the star-forming galaxies,
with steeper correlation functions (and lower correlation
lengths) for higher redshifts; nevertheless, given the large error
bars (see Table 2), this trend is not really significant. The
parameters of the correlation function for quiescent galaxies at
small scales do not show any evolution at all with values for γ
in the range [2.1, 2.3] and correlation lengths in the range
r h3.5, 4.00

1[ ]= - Mpc for all redshift bins except for the
second bin (z=0.57), which displays a higher value of the
exponent γ and smaller r0. The ALHAMBRA survey has
allowed us to measure the behavior of the clustering properties
of the segregated samples at these very short scales. These
scales had not been previously studied with the detail that we
are showing here because other samples cannot reliably
estimate the correlation function at r h0.1p

1< - Mpc because
they are not deep enough or dense enough at these distance
due, for example, to fiber collisions in the case of spectroscopic
surveys (Guo et al. 2012).
Figure 8 shows the same results at scales

r h0.2 10.0p
1< < - Mpc. For this scale range we can compare

with the results from other authors. We see again that the
regions of parameter space occupied in the diagram for
quiescent and star-forming galaxies are different. Star-forming
galaxies present both lower exponent γ and lower correlation
length r0 than quiescent galaxies. These differences are
significant at the 2σ level. The value of γ, exponent of the
correlation function, is roughly constant for all redshift bins
and is ∼1.7. A hint of evolution can be seen in the correlation
length since r0 decreases from r0∼4.3 to r h30

1~ - Mpc with
increasing redshift, which corresponds to a 2s~ change in r0.
The values of the correlation function parameters reported by
other authors for different samples at lower and similar redshift
are compatible with the ALHAMBRA results shown here. In
the diagram we see that our fits are consistent with the points
corresponding to the correlation function parameters of the
active galaxies from the 2dFGRS (Madgwick et al. 2003) at
z∼0.01, a blue subsample drawn from the SDSS-main
(Zehavi et al. 2011) at z∼0.05, a blue population of the
DEEP2 redshift survey (Coil et al. 2008) at z∼0.9, and the
blue sample from the PRIMUS survey (Skibba et al. 2014) at
z∼0.4. This result also agrees with the qualitative behavior of
the evolution of the correlation length reported by Meneux
et al. (2006) from the VVDS sample in which they conclude
that the clustering amplitude of the late-type star-forming
galaxies remains roughly constant since z∼1.5, although they
found a slight rise of this amplitude at their larger redshift bin
1.2<z<2.0. However, one should bear in mind that Meneux
et al. (2006) use a flux-limited sample, so this evolution may be
affected by the change in luminosity of the samples. The values
of the correlation length reported by Meneux et al. (2006) are
slightly smaller than the values calculated here for the
ALHAMBRA survey.
Quiescent galaxies show stronger clustering than late-type

star-forming galaxies. Their correlation function parameters at
large scales are nearly compatible within the errors with fixed
values around r h50

1= - Mpc and 2g = , but the clustering
length is smaller than the one calculated at low redshift by
Madgwick et al. (2003) for passive galaxies in the 2dFGRS and
by Zehavi et al. (2011) for the red galaxies in SDSS. Instead the
values of the amplitude of the correlation function reported by

Figure 7. Parameters r0, γ obtained from the power-law fit to the projected
correlation functions of our spectral segregated samples for the small scales
(r h0.2p

1 - ). In red, the 1s confidence regions of the quiescent galaxies fit
and in blue, the 1s confidence regions of the star-forming galaxies fit. For
clarity we show only the regions for the first and last redshift bin. Lines link the
best-fit results for each sample across different redshift bins. The parameters
and their 1-sigma variation have been calculated using the method described in
Section 4.1.

Figure 8. Parameters r0, γ obtained from the power-law fit to the projected
correlation functions of our spectral segregated samples. In red, the 1s
confidence regions of the quiescent galaxies fit and in blue, the 1s confidence
regions of the star-forming galaxies fit. For clarity we show only the regions for
the first and last redshift bin. Lines link the best-fit results for each sample
across different redshift bins. For comparison we show as points with error bars
the results of Zehavi et al. (2011) and Coil et al. (2008) (see the text for details).
The parameters and their 1-sigma variation have been calculated using the
method described in Section 4.1. For comparison we plot the results obtained
by (1) Madgwick et al. (2003) (2dF) at z∼0.01, (2) Zehavi et al. (2011)
(SDSS) at z∼0.05, (3) Coil et al. (2008) (DEEP2) at z∼0.9 and (4) Skibba
et al. (2014) (PRIMUS) at z∼0.38 and z∼0.6.
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Skibba et al. (2014) at z∼0.4 for PRIMUS, by Coil et al.
(2008) at z∼0.9 for the DEEP2 and by Meneux et al. (2006)
agree with our results within the errors.

For both star-forming and passive galaxies the only
discrepant measurement in Figure 8 is that corresponding to
the PRIMUS samples at z∼0.6, which show values of r0
significantly larger than those obtained by ALHAMBRA at
similar redshifts (and also by DEEP2 at z∼0.9). This
difference may be due to the fact that the PRIMUS survey
includes the COSMOS field, which contains a large over-
density at this redshift affecting the clustering measurements
(see the discussion in Section 2).

This segregation is generally explained by the tendency of
red quiescent or early-type galaxies to form in dense
environments while blue star-forming or late-type galaxies
typically form in the field or in low-mass haloes (Dressler
1980; Goto et al. 2003; Bell et al. 2004; Thomas et al. 2005;
Zucca et al. 2009; McNaught-Roberts et al. 2014).

4.2. Dependence of the Bias on Spectral Type and Redshift

To disentangle the evolution of the galaxy clustering of
different populations from the overall growth of structure, we
study the bias b of our samples based on the projected
correlation function measurements. We use a simple linear
model with a constant and scale-independent bias. In this
model the galaxy projected correlation function is given by

w r b w r , 14p p p
m

p
2( ) ( ) ( )=

where b is the bias and w rp
m

p( ) is the theoretical prediction for
the projected correlation function of the matter distribution.
Our model for wm

p is based on ΛCDM with cosmological
parameters consistent with the WMAP7 results (Komatsu et al.
2011), including a normalization of the power spectrum

0.8168s = . The matter power spectrum at the median redshift
of each sample is obtained using the CAMB software (Lewis
et al. 2000), including the non-linear HALOFIT corrections
(Smith et al. 2003). We obtain the real-space correlation
function r( )x by a Fourier transform of the matter power
spectrum and the final projected correlation function wp using
Equation (3).

We fit this model to our data in the range
r h1.0 10.0p

1< < - Mpc, corresponding mainly to the two-
halo term of the correlation function. The best-fit value and
uncertainty of the bias is obtained by the same method as
described in Section 4.1 for the parameters of the power-law
model. The results of these fits for each of our samples are
listed in Table 2.

We show the evolution of the bias as a function of redshift
for our different populations in the top panel of Figure 9 (red
and blue squares). As expected we also see the effect of
spectral segregation in this case, as the bias of early-type
quiescent galaxies is consistently larger than that of late-type
star-forming galaxies. The bias observed for the full population
(not shown) is similar to that of the star-forming galaxies. For
comparison we show the bias for dark matter haloes of a fixed
mass (solid lines) according to the model of Tinker et al. (2005)
and the values obtained by previous works for samples at

similar redshift ranges and number densities. The bias values in
those cases were obtained by a similar method as here and
using compatible scale ranges.24

For the star-forming galaxies we obtain that their bias is
approximately constant, with values b 1.25 , over the range
we explore. This explains the evolution of r0 at large scales
observed in Figure 8. If the bias is constant the main driver for
the evolution of the galaxy clustering amplitude is the growth
factor, therefore r0 grows with cosmic time as observed. Given
the uncertainties and the relatively slow evolution of the halo
bias, the measured bias in this case is also consistent with the
evolution of the bias of haloes with mass in the range
M h M10 10h

11.5 12 1- - . As shown in Figure 9 our results
for the star-forming population are fully consistent with those
obtained for similar populations of blue galaxies in the the
DEEP2 (Coil et al. 2008) and PRIMUS (Skibba et al. 2014)
surveys.
The bias of quiescent galaxies shows a clear evolution,

increasing with redshift, that is remarkably similar to the
expected evolution of the bias for haloes of mass
M h M10h

12.5 1- . This clear evolution of the bias in this
case compensates the clustering evolution due to the growth
factor, resulting in an approximately constant value of r0, as
shown above in Figure 8. Our results for this population are
consistent with the observed bias for red galaxies in the DEEP2
and PRIMUS surveys. We note that the bias measurement for
the PRIMUS sample at z ; 0.6 may be affected by the presence
of a large overdensity in the COSMOS field as noted above.

Figure 9. Galaxy bias of our quiescent (q) and star-forming (sf) galaxies as a
function of their median redshift. Bias is estimated by a fit to Equation (14) as
described in Section 4.2. The solid lines correspond to the bias of haloes of a
fixed mass, according to the model of Tinker et al. (2005). These lines are
labelled with the corresponding halo mass in terms of M h Mlog10 h

1[ ( )]-
 . For

comparison we plot the results obtained by (1) Zehavi et al. (2011), (2) Coil
et al. (2008), (3) Skibba et al. (2014), (4) Madgwick et al. (2003), (5) Marulli
et al. (2013), (6) Meneux et al. (2006), and (7) de la Torre et al. (2011). Bias
values from different authors have been adapted for the assumed cosmological
parameters used in this paper.

24 In the case of Madgwick et al. (2003), as the bias values are not given
explicitly, we derived the bias using their power law best fit at a scale of
5h−1 Mpc.
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The larger number of bins in redshift used in this ALHAMBRA
analysis allows us to see more clearly this evolutionary trend.

In the bottom panel of Figure 9 we show the relative bias,
defined as the ratio of the bias of quiescent galaxies over the
bias of the star-forming ones, as a function of redshift. We also
show for comparison the results from previous surveys at
similar redshifts including, in addition to those shown in the top
panel, the VVDS survey (Meneux et al. 2006) and the
zCOSMOS-Bright survey (de la Torre et al. 2011). Meneux
et al. (2006) used flux-limited samples with evolving galaxy
density so their absolute bias measurements are not comparable
to ours. The analysis by de la Torre et al. (2011) only provided
values of the relative bias of their samples. At z∼0 we show
the results from the 2dFGRS survey (Madgwick et al. 2003)
and the SDSS (Zehavi et al. 2011). We note that in the two low
redshift cases, the relative bias is calculated using a slightly
different method: Madgwick et al. (2003) calculate it using the
ratio of the galaxy variances 8,gals of the samples, while we
have calculated the relative bias for SDSS as the ratio of the
best-fit power laws of the two samples at a scale r h5 Mpc1= -

(see, e.g., Equation (9) of Norberg et al. 2002).
We obtain values of the relative bias in the range

b 1 1.5rel – , consistent with all previous results at similar
redshifts. The relative bias shows a very faint evolution slightly
increasing with redshift. However, given the errors our results
are also consistent with being constant. A similar faint trend is
also seen for the VVDS results of Meneux et al. (2006).
However, if we include the z∼0 values this evolution is
broken and the best description of the results is a constant
relative bias with redshift.

Overall, our results indicate that for samples selected by the
same B-band luminosity and redshift, passive galaxies reside in
haloes up to 10 times more massive than those hosting active
galaxies. When studying the evolution with redshift, the
observed bias suggests that quiescent galaxies (following a
constant number density selection) reside in haloes of constant
mass while this is not clear in the case of star-forming galaxies.
In the latter case there seems to be an indication that they
populate slightly more massive haloes at lower redshift. We
will study the relation between galaxies and dark matter haloes
using a more detailed HOD modeling in a future work.

5. CONCLUSIONS

The ALHAMBRA survey allows us to perform accurate
clustering calculations with different segregation criteria. Its
23-filter photometry provides reliable galaxy parameters with
good completeness out to very high redshifts (z∼1.10),
opening the possibility to analyze the galaxy clustering of
different galaxy populations. In AM14 the authors chose to
select galaxy samples using different luminosity thresholds
while in this work we made a selection by spectral type. This
selection follows the spectral classification of the ALHAM-
BRA photometric templates and has been proved to match
remarkably well the usual selection by broadband color.

A rise of the correlation function at small scales is found as
already noticed by Coil et al. (2008). We have been able to
show that this trend holds at smaller scales and to characterize
its redshift evolution.

Our sample allows us to measure the clustering properties of
galaxy populations segregated by spectral type and their
redshift evolution in a homogeneous way. At scales larger
than 0.2 h−1 Mpc, quiescent galaxies cluster with a higher

amplitude than star-forming ones. The difference is significant
at the 2σ level. There is also a significant hint of evolution (2σ)
in the clustering amplitude of active galaxies while the
clustering of the passive ones remains constant. These results
are compatible with previous works in the literature, but in the
present work we have increased the redshift resolution.
Regarding the small scales (r h0.2p

1< - Mpc) we find
almost no change in the correlation function compared with the
large scales in the quiescent population. On the other hand, the
star-forming galaxies show a clear variation in the slope
between small and large scales, which is possibly decreasing
toward low redshifts.
Our measurements of the bias value for the different

populations show strong segregation between them. The bias
of the quiescent population clearly evolves with redshift
following the expected behavior for haloes of approximate
mass h M1012.5 1-

. The star-forming population bias remains
basically constant over our observed redshift range, but it can
still be compatible with the theoretical evolution of lower mass
haloes (M h M10h

11.5 12 1–~ -
). As a consequence, the relative

bias hints at a slow evolution, which would not be completely
consistent with observations at z∼0.
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