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Excitation modes of 6He from proton collisions
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I. INTRODUCTION

The Borromean two-neutron halo nuclei 11Li and 6He have
been attracting many theoretical and experimental studies
since the ground state and the excited modes are not both well
understood yet, and knowledge of the continuum properties
will contribute to our understanding of the properties of
these nuclei. To illustrate the puzzling features half-unveiled
in this field, various theories [1–3] predict a variety of
excitation/resonance modes at low energies in the continuum
of the above Borromean nuclei, but up to now there is only a
clear evidence of a Jπ = 2+ resonance for 6He [4]. Thus, for
more than a decade the existence and the understanding of the
excitation modes is far from being achieved, now a detailed
study of the resonances in the continuum sea is one of the
priority tasks of radioactive beam research.

From a theoretical point of view, structure calculations
predict a rich continuum. Within few body cluster models that
include the three-body dynamics of the Borromean system
[5], two kinds of phenomena have been predicted: (i) true
three-body resonances, with three-body phase shifts crossing
π/2 in all partial waves, and (ii) not-fully-fledged resonant
contributions with fast growing three-body phase shifts up to
π/2 in some partial waves. These few-body cluster models rely
on fitted effective interactions between the cluster constituents.
In addition, the simultaneous treatment of the Pauli principle
and continuum pairing in these approaches remains today
an open problem. Shell model approaches have also been
developed but the coupling to the continuum presents a
difficult problem. Most often, excited states may appear to
be resonances in some structure models, in particular for
the soft dipole mode in Borromean nuclei. This calls for an
improvement of the structure approaches, and for new work to
test the structure theories by means of reaction observables.
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The low lying excited states of the Borromean nuclei have
also been experimentally investigated. These very difficult
studies have also often led to some contradictory results in
particular with respect to existence of a dipole excitation [6].
It is thus fair to say that our theoretical and experimental
knowledge of the Borromean resonant continuum sea is today
still very inconclusive.

Inelastic scattering may be a useful process to study the
excitation modes of halo nuclei, if it is possible to single
out particular multipole excitations. Recently the excitation
modes of 11Li were studied from inelastic collisions with
protons making use of the Multiple Scattering expansion of
the total Transition amplitude (MST) [7]. In this work good
agreement with the experimental data [8] was obtained with a
structure model in which there is a pronounced 1− peak at low
continuum energies but yet in which there is not a fully-fledged
resonance in this breakup channel.

Excitation of the 6He continuum by inelastic collisions
from protons has been predicted using a distorted wave
few-body method [9–11]. This method has the disadvantage
of the ambiguity in the choice of the optical potential for
the final excited states. The calculated inelastic observables
show the contribution from the first well known 2+

1 low energy
resonance. The predicted higher energy spectrum results from
a composition of overlapping soft modes of multipolarities
1−, 2+

2 , 1+, 0+
2 .

We present here a study of inelastic scattering of 6He from
protons within a few body picture description of this nucleus,
assumed well described by a core and two valence neutrons.

We shall review the structure approach, namely the method
used to obtain the bound and scattering solutions of a three-
body problem. At the same time we shall describe in detail
the scattering framework, that is, the Multiple Scattering
expansion of the total Transition amplitude (MST) [12], which
explicitly incorporates the halo degrees of freedom. We shall
make a study of the calculated observables using different
interactions between the few-body clusters. In addition the
role of spin interactions in the excitation will be analyzed.
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II. SCATTERING FORMALISM

The halo degrees of freedom can be explicitly incorporated
in the scattering framework in a convenient way within the
MST approach [7,12].

We consider then the scattering of a nucleon (particle 1)
from a weakly bound system of N subsystems. The total
transition amplitude T can be written as a multiple scattering
expansion in the transition amplitudes t̂I for proton scattering
from each projectile subsystem I [12]

T =
∑
I

t̂1I +
∑
I

t̂1IG0

∑
J �=I

t̂1J + · · · , (1)

where the proton - I subsystem transition amplitude satisfies

t̂1I = v1I + v1IG0 t̂1I , (2)

with v1I the interaction between the nucleon and I subsystem
(here the core and valence neutrons). The propagator G0 =(
E+ − K

)−1
, within the impulse approximation, contains the

kinetic energy operators of the projectile and all the target
subsystems [13,14]. Here E is the kinetic energy, E = h̄2k2

2µNA

in the overall center of mass frame, and µNA is the proton-
projectile reduced mass. As follows from Eq. (1), in the
MST expansion the few-body dynamics is properly included,
and excitations of the nucleus which involve changes in the
relative motion of the subsystems are taken into account. The
contribution of these to the calculated elastic scattering cross
section was investigated in Refs. [12,15].

We are interested here in the study of Borromean halo
systems assumed well described by a three-body model of
two valence nucleons (labeled 2 and 3) and a core (labeled 4)
in a bound state at energy ε0. Within the single scattering
approximation, as will be used here, the total transition
amplitude for the scattering of a nucleon from the Borromean
nucleus system Eq. (1) reduces to

T =
∑
I=2,4

t̂1I . (3)

Energy conservation relates the scattered momentum k of
excited states at continuum energy ε as

h̄2

2µNA

k2 + ε = h̄2

2µNA

k2
0 + ε0. (4)

III. STRUCTURE

A. The solution of the three-body problem

For completeness we describe here the hyperspherical
harmonics (HH) method used to describe the ground state
and the continuum states of the two-neutron (three-body)
Borromean systems, such as 6He represented in Fig. 1. The
total wave function, �JM

ε satisfies

(T̂ + V̂ + V̂core − ε)�JM
ε = 0, (5)

where V̂ = ∑
I
∑

J �=I V̂IJ + V̂ 3B includes binary interac-

tions between the clusters V̂IJ and also a possible effective
three-body potential, V̂ 3B, that takes into account other closed
channels.

Assuming the core is inert and spinless, the three-body
bound state and continuum wave functions can be written as

�JM
ε (�r, �R, �ξc) = ϕJM

ε (�r, �R) ⊗ ϕcore(�ξc), (6)

where ϕcore(�ξc) is the core internal wave function and
ϕJM

ε (�r, �R) the three-body valence wave function relative to
the core either bound or in the continuum, that in Jacobi
coordinates can be written in the general form

ϕJM
ε (�r, �R) =

∑
γ

FJε
γ (r, R)Ŷ JM

γ (�), (7)

with � = {r̂ , R̂}, γ = {�x�yLS},
Ŷ JM

γ (�) = {[
Y�x

(r̂) ⊗ Y�y
(R̂)

]
L

⊗ [
χs2 ⊗ χs3

]
S

}
JM

, (8)

and χs the neutron spin functions.
However, for the purpose of evaluating the wave functions,

the nature of the Borromean system makes it convenient to
introduce a set hyper-radial coordinates: the hyperradius ρ

and five hyperspherical polar angles �5 = {α, θx, φx, θy, φy}.
The hyper-radius ρ is defined as ρ =

√
x2 + y2 with scaled

coordinates �x = 2−1/2�r from the relative coordinate between
the valence nucleons, and �y = (2Ac/(2 + Ac))1/2 �R from the
relative to the core position of the neutron pair. The angle
α = arctan(x/y) is the hyperangle and θx, φx, θy, φy the angles
associated with the unit spatial vectors x̂ and ŷ.

The hyperspherical harmonics (HH) method expands both
the bound and continuum wave functions using hyperspherical
harmonic basis functions [16]

ϒJM
Kγ (�5) = {

YK�x�yL(�5) ⊗ [
χs2 ⊗ χs3

]
S

}
JM

, (9)

with

YK�x�yLML
(�5) = ψK�x�y

(α)
[
Y�x

(x̂) ⊗ Y�y
(ŷ)

]
LML

. (10)

The quantum number K = �x + �y + 2n (n = 0, 1, 2, . . .)
is called hyperangular momentum. The function ψK�x�y

(α),
has an explicit form in terms of Jacobi polynomials of the
hyperangle α [16]. The HH exploits the feature that the wave
function tends to be concentrated in only a few components
which correspond to the lowest hyperangular momenta of the
system.

The three-body valence wave function relative to the core
has then the general form

ϕJM
ε (�r, �R) = ρ−5/2

∑
Kγ

F Jε
Kγ (ρ)ϒJM

Kγ (�5). (11)

The radial wave functions FJε
Kγ (ρ) are found by solving a

coupled channels Schrödinger problem with a three-body
effective centrifugal barrier V centrif

L (ρ) and coupling potentials
V

coup
K′γ ′,Kγ (ρ). The centrifugal barrier

V centrif
L (ρ) = h̄2

2m

L(L + 1)

ρ2
, (12)

with L = K + 3/2, is generated by the hyperangular momen-
tum K and does not vanish even if the angular momentum
�y and �x of the subsystems are equal to zero. The coupling
potentials take into account all the interactions between the
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bodies I and J and the effective 3B interaction

V
coup
K′γ ′,Kγ (ρ) = 〈ϒKγ (�5)|

∑
I

∑
J �=I

VIJ (ρ,�5)|ϒK′γ ′ (�5)〉

+ 〈ϒKγ (�5)|V 3B(ρ,�5)|ϒK′γ ′(�5)〉. (13)

It follows from Eqs. (7) and (11) that the radial wave functions
in Jacobi coordinates can be obtained from the radial wave
functions in hyperspherical coordinates according to

FJε
γ (r, R) =

∑
K

ρ−5/2ψK�x�y
(α)FJε

Kγ (ρ). (14)

There are two methods of finding the solution of coupled
equations which differ essentially in the asymptotic behavior
of the continuum wave functions: the scattering method and
the pseudostates method.

1. The scattering method

Within this approach, the appropriate boundary conditions
of the three-body wave function are introduced. The bound
state at energy ε0 has the asymptotic behavior such that

lim
ρ→∞ F

Jε0
Kγ (ρ) → 0, (15)

and the continuum wave functions are written as

ϕε,m1m2 (�x, �y, k̂x, k̂y, α
κ ) = (κρ)−5/2

×
∑

JMKK′γ γ ′
FJ
Kγ ;K′γ ′(κρ)ϒJM

K′γ (�5)

×
∑

MLMS

〈LMLSMS |JM〉

×〈S2m2S3m3|SMS〉YML

K�x�yL

(
�κ

5

)
,

(16)

where m1 and m2 are the initial asymptotic spin projections,
h̄2κ2/2m = ε and tan ακ = kx/ky . The radial part of the wave
function has the asymptotic normalization of an incoming and
outgoing wave in the hyper-radius

lim
ρ→∞ FJ

Kγ ;K′γ ′(κρ) = i

2
δ��′ exp(−iκρ) − i

2
S�;�′ exp(iκρ),

(17)

with � = {K, γ } and where S�;�′ is the S-matrix for the
3 → 3 scattering for an incoming wave in the channel K′γ ′.
The continuum functions are then obtained either by using
radial integration of coupled equations [17], or using R-matrix
expansions [18].

2. Pseudostates method

An alternative approximate method, if only the interior part
of the wave functions is required, and if some averaging over
energy is permitted, is to solve the coupled equations by finding
pseudostates in a hyper-radial box. This involves expanding
the wave function with an square-integrable basis, and then
diagonalizing the Hamiltonian matrix. To make the number
of states finite, only eigenstates below a certain excitation

energy are retained. Then the Hamiltonian is diagonalized in
this truncated basis. The set of these energy eigenfunctions
will be a good representation of continuum states at least in
the interior region. For the present purposes we use the Gauss-
Laguerre hyper-radial basis, Rn(ρ),

Rn(ρ) = ρ0
−3[n!/(n + 5)!]1/2L5

n(z) exp(−z/2) (18)

with z = ρ/ρ0, orthonormalized such that∫ ∞

0
dρρ5Rn(ρ)Rn′(ρ) = δnn′ , (19)

and ρ0 a parameter to set the radial scale of the basis.
The eigenstates for positive energies εi are then the discrete

quasibound states, ϕ̂JM
εi

(�x, �y)

ϕ̂JM
εi

(�x, �y) = ρ−5/2
∑
Kγ

F̂
Jεi

Kγ (ρ)ϒJM
Kγ (�5) (20)

with

F̂
J εi

Kγ (ρ) = ρ5/2
N∑

n=1

c
Jεi

nKγ Rn(ρ). (21)

The width associated with each pseudo-state can be calculated
following the methods in Refs. [19,20] giving

�Jεi = 2π
h̄2

2m

∑
Kγ

∣∣BJεi

Kγ

∣∣2
(22)

with the decay amplitudes given by

B
Jεi

Kγ =
∑
M

〈
ξJM
εiKγ (ρ,�5)

∣∣V24 + V34

∣∣ϕ̂JM
εi

(�x, �y)
〉
, (23)

where

ξJM
εiKγ (ρ,�5) = ρ−2JK+2(κiρ)ϒJM

Kγ (�5) (24)

with the momentum κi given by h̄2κ2
i /2m = εi .

B. The potentials

In these few-body nuclear models, the needed interactions
are those between the valence neutrons and the valence neutron
and the core. Between the neutrons, we use the GPT n-n
potential [21] with spin-orbit and tensor components and we
take the n-4He core potential from Ref. [22]. In order to
overcome the underbinding of 6He caused by omitting other
closed channels, most important of which is the t + t , an
additional effective three-body (V 3B

J ) interaction is introduced.
We consider two different forms of this potential. The first is
the model (R5) of Ref. [16] with matrix elements of the form

V 3B
�′,�(ρ) = δ�′�V 3B

J

1 + (ρ/5)3
, (25)

and the second is model (R2) of Ref. [23] with matrix elements

U 3B
�′,�(ρ) = δ�′�U 3B

J exp(−(ρ/ρ0)3). (26)

The J = 0 strength of this effective potential is tuned
to reproduce the experimental three-body separation en-
ergy, with V3B

0 = −1.60 MeV and U3B
0 = −293.5 MeV

with ρ0 = 1 fm, and the J > 0 strength tuned to give the 2+
1
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resonance at the experimental energy: V3B
J = −0.85 MeV and

U3B
J = −293.5 MeV with ρ0 = 1.25 fm. The first model (R5)

predicts a two-neutron separation energy of S2n =0.975 MeV
and, with an α particle rms matter radius of 1.49 fm, yields
a 6He rms matter radius of 2.50 fm. Model (R2) predicts a
similar S2n, but produces a 6He nucleus with a much smaller
rms matter radius of 2.35 fm.

C. The Borromean continuum sea

Following Ref. [16], we define a fully fledged resonance
when the phase shifts rise rapidly and cross π/2 in at
least one partial wave. These are in general associated with
pockets in the corresponding diagonal interaction. The wave
function behaves approximately in the interior for all dominant
components as

F̂ J ε
Kγ (ρ) ∼ CJεF̂J

Kγ (ρ) (27)

for a resonance at energy εR , with the Breit-Wigner form

|CJε |2 = �JεR

(ε − εR)2 + [�JεR ]2/4
. (28)

We also define a resonance like excitation when the phase
shifts rise rapidly above threshold but not cross π/2 in any of
the partial waves. These are often caused by resonant and/or
virtual systems in binary subsystems.

Both the dynamical models here considered (R2 and R5)
reveal, in the continuum sea up to the 3H + 3H threshold,
the well known Jπ = 2+

1 , resonance and also a variety
of other excitation modes with excitation energies slightly
shifted: a broad resonance Jπ = 1+, and resonance like
excitations at Jπ = 1−, 0+

2 , 0−. The characteristics of the
excitations/resonance states are summarized in Table I.

The Jπ = 1− excitation has a dominant component
|K[�x�y]LS〉 = |1[01]10〉, which corresponds to a spatially
extended dineutron in the nn S-wave with P motion relative
to the core. The strong nn attraction in the relative S-wave is
responsible for the accumulation of the excitation strength at
low continuum energies. The Jπ = 0+

2 is the first excitation,
and the Jπ = 2+

1 is a narrow resonant state at energy
0.727 MeV and width � = 0.058 MeV, with a dominant

TABLE I. 6He ground state and excitation modes.

J π K[�x�y]L, S εi (MeV) �Jεi (MeV) %

0+ 2 [0 0] 0, 0 −0.957 — 83
2 [1 1] 1, 1 12

0+
2 2 [0 0] 0, 0 1.095 — 95

2 [1 1] 1, 1 4
0− 1 [1 0] 1, 1 1.765 — 84

1 [1 2] 1, 1 18
1+ 2 [1 1] 1, 1 1.787 1.1 86

2 [1 1] 0, 1 3
1− 1 [0 1] 1, 0 1.030 — 72

1 [2 1] 1, 0 16
2+ 2 [0 2] 2, 0 0.727 0.058 45

1 [1 1] 1, 1 32

TABLE II. 6He types of excitation.

J π Type of excitation Core contribution Valence contribution

0+
2 �S = 0, �L = 0 Y Y

0− �S = 1, �L = 0 N Y
1+ �S = 1, �L = 1 N Y
1− �S = 0, �L = 1 Y Y
2+ �S = 0, �L = 2 Y Y

component |2[0 2] 20〉. The Jπ = 1+ is a broad resonant state
at energy 1.787 MeV and width � = 1.1 MeV, with a dominant
component |2[1 1] 11〉. It corresponds to a reorientation of the
g.s. with the same quantum numbers.

The 0+ → 0− and 0+ → 1+ excitations involve spin flip
transitions and thus proceed through the scattering from
valence nucleons as summarized in Table II. Therefore, these
transitions are expected to give a small contribution to the
scattering.

IV. THE REACTION FRAMEWORK

Let us consider the general problem of the scattering of a
nucleon (1) from a subsystem I with spin σI (0 or 1/2).

The nucleon-subsystem I scattering amplitude can be
conveniently described by the tensor representation [24]. In
this representation, the matrix elements of the scattering
amplitudes are written as

〈�q ′
1I |t1I (ω)|�q1I〉 =

∑
κqab

t (ab)
κq (ω, �q ′

1I , �q1I )T †
κq(a, b), (29)

where T †
κq(a, b) is a tensor of rank κ given in terms of a linear

combination for the spherical components of the spin operators
of the two interacting systems:

Tκq(a, b) =
∑
αβ

(aαbβ|κq)τaα(s1; 1)τbβ (sI ; I). (30)

In this equation τaα(s1; 1) is the irreducible tensor operator for
the projectile particle 1 with spin s1 (a = 0, . . . 2s1 ); τbβ (sI ; I)
is the irreducible tensor operator for the struck subsystem (I)
with spin sI (b = 0, . . . 2sI ). For nucleon scattering then since
s1 = 1

2 , τ00( 1
2 ; 1) = 1 and τ1β( 1

2 ; 1) = σβ(1), with σβ(1) the
spherical components of �σ1 with respect to the chosen z-axis.
We note that for a two body interacting system of spin 1/2, the
tensor of rank κ = 0 can be obtained either when a = b = 0
and a = b = 1.

The transition amplitude t (ab)
κq can be written in terms of the

relative incoming and outgoing momenta t (ab)
κq (ω, �q ′

1I , �q1I ) or

in terms of the transferred momentum �Q1I = �q ′
1I − �q1I and

total momentum. On the energy shell then

t (ab)
κq (ω, �q ′

1I , �q1I ) = t (ab)
κq (ω,Q1I ). (31)

We consider now the scattering process of 6He, originally in
a |�J0M0

0 〉 state, to a final |�JM
εi

〉 state, with JM the total
momentum of the valence pair, by means of its interaction
with a proton, with initial momentum �k1 (final momentum
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�k′
1) in the nucleon-nucleus center-of-mass frame, and initial σ

(final σ ′) spin projection. The proton momentum transferred
is �� = �k′

1 − �k1.
In this case we have to consider the scattering from valence

nucleons and a spin zero α core. Explicitly then for the
scattering from valence nucleon I = 2

〈�q ′
12|t12(ω12)|�q12〉 =

∑
κqab

t (ab)
κq (ω12, �q ′

12, �q12)T †
κq(a, b), (32)

with 0 � κ � 2, and similarly for the scattering from valence
nucleon I = 3. For the scattering from the spin zero core

〈�q ′
14|t14(ω14)|�q14〉 =

∑
aα

t (a0)
aα (ω14, �q ′

14, �q14)τaα(s1; 1), (33)

with 0 � a � 1. Within the impulse approximation the con-
tribution to the scattering from one valence nucleon can be
written as a sum in terms of spin transfer:〈�k′

1χ
σ ′
s1

; ϕJM
εi

∣∣t̂12

∣∣�k1χ
σ
s1

; ϕJ0M0
0

〉
=

∑
bβ

t[bβSpS ′
p](ω12,�) × ρ[bβ;ST S ′

T εi ]

(
m3

M23

��,
m4

M234

��
)

,

(34)

where Sp = {s1σ } (S ′
p = {s1σ

′}) are the incoming (outgoing)
spin of the nucleon and its projection and,ST = {J0M0} (S ′

T =
{JM}) the incoming (outgoing) total spin of the halo valence
pair. M23 = m2 + m3,M234 = m2 + m3 + m4. The amplitude
t[bβSpS ′

p] is given in terms of the tensor components of the
nucleon-nucleon transition amplitude as

t[bβSpS ′
p](ω12,�) =

∑
κqaα

(−)q
ŝ2

b̂
〈s1|

∣∣τa

(
1
2 ; 1

)∣∣|s1〉

× 〈s2|
∣∣τb

(
1
2 ; 2

)∣∣|s2〉(s1σaα|s1σ
′)

× (aαbβ|κq)t (ab)
κq (ω12,�). (35)

The appropriate energy parameter is

ω12 = µ12

µ1,234
E, (36)

with µ12 = m1m2/(m1 + m2),µ1,234 = m1M234/(m1 + M234).
The density form factor is given as a sum in terms of d the
total spin transfer �J , and c the angular momentum transfer
��y ,

ρ[bβ;ST S ′
T εi ]

(
m3

M23

��,
m4

M234

��
)

=
∑
cd

ρ̂
JJ0εi

[bdc]

(
m3

M23
�,

m4

M234
�

)

× �̂
JMJ0M0
[bβdc] (�̂) (37)

with ρ̂
JJ0εi

[bdc] calculated from the radial wave functions of the
valence halo pair

ρ̂
JJ0εi

[bdc]

(
m3

M23
�,

m4

M234
�

)
=

∑
i−�−�′G

∫
r2drR2dR

× F̂
εiJ
K′γ ′(r, R)F̂ ε̂0J0

Kγ (r, R)

× j�

(
m3

M23
�r

)
j�′

(
m4

M234
�R

)
(38)

and

�̂
JMJ0M0
[bβdc] (�̂) =

∑
δγ

(−)(M+M0−δ)(bβdδ|cγ )(JMdδ|J0M0)

×
√

4πYcγ (�̂). (39)

In Eq. (38) G is a geometric factor given by

G = (−)J+J0+s2−s3+L+L′+�+�′+b+c+d

(−)2(S+S ′−�′
y−�x−γ+d−b) �̂

2�̂′2d̂2b̂ŜŜ ′�̂x �̂yL̂L̂′Ĵ
ĉ

×W (Ss2S
′s2; s3b)

× (�0�x0|�′
x0)(�0�′0|c0)(�′0�y0|�′

y0)

×



b d c

S ′ J L′
S J0 L







� �′ c

�x �y L

�′
x �′

y L′


 . (40)

The following triangle relations follow from the geometric
coefficients:

{
�′

y, �y, c
}
, {J, J0, d} ,

{
S ′, S, b

}
. The scattering

from the core assumed here as spinless can equivalently be
written as〈�k′

1χ
σ ′
s1

;ϕJM
εi

∣∣t̂14

∣∣�k1χ
σ
s1

;ϕJ0M0
0

〉 = t[00SpS ′
p](ω14,�)

× ρ[00;ST S ′
T εi ]

(
0,

M23

M234

��
)

.

(41)

The amplitude t̂[00SpS ′
p] is given in terms of the tensor

components of the nucleon-nucleon transition amplitude as

t[00SpS ′
p](ω14,�) =

∑
aα

(−)α〈s1|
∣∣τa

(
1
2 ; 1

)∣∣|s1〉

× (s1σaα|s1σ
′)t (a0)

aα (ω14,�). (42)

The appropriate energy parameter is similarly given as

ω14 = µ14

µ1,234
E. (43)

The density form factor is

ρ[00;ST S ′
T εi ]

(
0,

M23

M234

��
)

=
∑

c

ρ̂
JJ0εi

[0cc]

(
0,

M23

M234
�

)

× �̂
JMJ0M0
[00cc] (�̂). (44)

The cross section for the transition to each pseudostate of
associated energy εi is evaluated from the transition matrix
elements according to

dσJJ0

d�
(εi) = 1

(ŝ1)2

1

(Ĵ0)2

[
h̄2

4π2µ1A

]2 ∑
σσ ′

∑
MM0

×
∣∣∣∣∣〈�k′

1χ
σ ′
s1

; ϕJM
εi

∣∣∑
I

t̂1I
∣∣�k1χ

σ
s1

; ϕJ0M0
0

〉∣∣∣∣∣
2

. (45)

In order to get a continuum distribution for the double cross
section it must be convoluted with the associated widths:

d2σJJ0

d�dE
=

∑
εi

f (E, εi, �
Jεi )

dσJJ0

d�
(εi). (46)
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FIG. 1. (Color online) 6He Borromean nucleus.

For the convolution kernels we use a Gaussian function

fgauss(E, εi, �
Ĵ εi ) = 1√

π�Jεi
exp[−((E − εi)/�Ĵεi )2] (47)

with the widths taken from Eq. (22).

V. RESULTS

As discussed in Sec. II, according to MST, one needs
the matrix elements for the transition amplitude that desc-
ribe the scattering from the valence neutrons and the α core.
The former is obtained from a realistic NN Paris interaction.
The transition amplitude for proton scattering from the 4He
core was generated from fitting the differential cross section
elastic scattering data p+4He at Ep = 700 MeV [25,26]
and 800 MeV [27] shown in Fig. 2(a). We have taken a
phenomenological potential of Woods-Saxon (WS) shape, i.e.,

U (r) = V0f (r, r0, a0) + iWif (r, ri, ai) (48)
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FIG. 2. (Color online) Elastic differential cross section for
p-4,6He at 700 MeV. In the upper figure, the solid line represents
an optical model fit of the data.

with f (r, rx, ax) = [1 + exp[(r − Rx)/ax]−1, where Rx =
rxA

1/3. The best-fit analysis of the data yields the values
V0 = +72 MeV, Wi = −115 MeV, r0 = ri = 1.14 fm, and
a0 = ai = 0.31 fm [13].

The elastic differential cross section for p-6He shown in
Fig. 2(b) reproduces reasonably well the scattering data up to
15◦ (−t = �2 = k2

0(1 − cos θ ) = 0.0657 (GeV/c)2). At larger
scattering angles higher order multiple scattering terms be-
come important in the description of the elastic scattering [28].
The calculated cross section using the R2 model (dashed line)
decays slightly slower than the observable calculated using
the R5 model. This is expected since the rms of 6He obtained
from the R2 model is smaller than the one obtained from
the R5 model. Also within a simplified shakeoff picture we
expect that the single scattering approximation underestimates
the breakup cross section at very large momentum transfer.
Nevertheless, it will give us an indication of what type of
excitations are relevant at this high energy regime.

Within the MST scattering framework the double differ-
ential cross section d2σ/d�dE for all final state contribu-
tions can be evaluated explicitly after convolution with the
associated widths. If integration is made over the angular
acceptance of the proton telescopes, the energy spectrum
dσ/dE is obtained; on the other hand, the angular distribution
of a particular final state can be singled out. We shall separately
analyze the two cases.

The calculated contributions from each final state to the
inelastic differential cross sections for p-6He using the R2
(light lines) and R5 (dark lines) models are shown in Fig. 3.
The nonresonant dipole excitation Jπ = 1− (dashed line) is
the dominant contribution between 10◦ and 20◦ in agreement
with Ref. [9]. The resonant excitation Jπ = 2+ (thin solid
line) becomes significant at larger angles. There is also
some contribution from the Jπ = 0+

2 transition (dotted line).
In addition, the contribution from the Jπ = 1+ excitation
is comparatively much smaller and that of the Jπ = 0−

10 20 30 40

θc.m.(degrees)

10
-1

10
0

10
1

10
2

dσ
/d

Ω
(m

b/
sr

)

2+
1-
1+
0+
Total (R2)
Total (R5)

R2
R5

FIG. 3. (Color online) Calculated contributions for the inelastic
differential cross section at 700 MeV for the final states J π =
2+ (thin solid line), J π = 1− (dashed line), J π = 1+ (dashed
dotted), J π = 0+

2 (dotted), J π = 0− (dashed double dotted) using the
R2 model. The thick lines represent the sum of all contributions for
the R2 and R5 models.
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FIG. 4. Calculated energy spectrum for p-6He inelastic scattering
at 700 MeV.

excitation negligible. This shows that spin flip transitions
give a small contribution to the scattering at high energies.
In fact, spin-flip transitions are only significant in forward
scattering and high energy scattering probes large momentum
transferred.

The sum of all transitions to final resonant/nonresonant
states is also shown in Fig. 3. The R2 model (light thick solid
line) predicts a slightly broader inelastic cross section than the
R5 model (dark thick solid line).

For the purpose of analysing the energy spectrum we
integrate the angular distribution up to 60◦. Figure 4 shows
the Jπ = 2+ energy excitation (solid line) which is a true
resonance with a narrow peak at E∗ = εi + ε0 = 1.7 MeV.
Thus the wave function and therefore the transition has a
Breit-Wigner form in all the components Eq. (27). We can also
see some low lying strength accumulation background for the
transition to the Jπ = 1− state (dashed line). This is due to the

strong nn attraction in the relative S-wave. The contribution
from the Jπ = 0+ state (dotted line) is very small.

VI. CONCLUSIONS

We have shown detailed formal expressions for the MST
multiple scattering expansion formalism within the single
scattering approximation applied to inelastic excitations. As
an advantage to other scattering frameworks that can be found
in the literature the spin nucleon-nucleon interactions are
included.

The low-lying 6He continuum was generated using the
hyperspherical harmonics pseudostate method. A Gauss-
Laguerre square integrable basis was used in the expansion
of the wave function for the excited states.

This formalism was used to study proton inelastic scattering
from 6He at 700 MeV. We have found that the dominant
contribution to the inelastic cross section is the dipole tran-
sition 0+ → 1−. Significant contributions from the resonant
excitation 0+ → 2+ at larger angles and also from the non
resonant excitation 0+ → 0+

2 are found. The cross section
is therefore a complex mixture of several excitations at this
energy. We have also shown that the spin flip transitions give
a small contribution to the scattering at high energies.
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