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In this note it is constructed an entire function that interpolates a prescribed pair of
sequences in the complex plane, and with the property that its values are controlled in some
sense on a given compact subset by those that it takes on finitely many prescribed nodes on
the boundary.

AMS Subj. Classification: Primary 30E05, Secondary 30E10.
Key Words: entire function, interpolation, strictly extremal point, boundedness.

Throughout this paper we will use the following standard notations: N
is the set of positive integers, R is the real line, C is the complex plane, B(a, r)
(B(a, r)) is the euclidean open (closed, respectively) ball with center a ∈ C and
radius r > 0. By a domain we mean a nonempty connected open subset of C.
A subset A ⊂ C is said to be convex if and only if the segment [a, b] joining a to
b lies on A whenever a, b ∈ A. Finally, if A ⊂ C then ∂A denotes its boundary
in C.

A well-known interpolation theorem due to Weierstrass (see [2, Chapter
15]) asserts that if a sequence of distinct points (an) ⊂ C with limn→∞ an =∞
and an arbitrary sequence (bn) ⊂ C are prescribed, then there exists an entire
function f —that is, f is a complex-valued holomorphic function on C— such that
f(an) = bn for all n ∈ N.

An interesting question is whether additional conditions —for instance,
boundedness by a prescribed quantity on a prescribed subset of C— can be
imposed on our interpolating function f .

In this short note we obtain a positive answer to the latter question in a
concrete direction. Specifically, we get that we can assign by f arbitrary values
to finitely many nodes on the boundary of a compact subset K, so that |f | is
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‘almost controlled’ on G by the maximum of such values. This result is more
precisely stated in the theorem below, but before this we need to establish the
following geometrical notion.

If A ⊂ C and z0 ∈ A, then z0 is said to be a strictly extremal point of A
whenever there is a straight line Λ such that z0 ∈ Λ and A\{z0} is contained in
one of the open halfplanes determined by Λ. Note that this is a more restrictive
notion than the one of extremal point. Recall that if A ⊂ C (or even A ⊂ X,
where X is a linear space) then a point z0 ∈ A is called an extremal point of A
if and only if [a, b ∈ A and ta+ (1− t)b ∈ A for all t ∈ (0, 1)] implies a = b, see
[3, Chapter 3]. Of course, if z0 is extremal for A then z0 ∈ ∂A. Let us remark
that even if A is convex we may have that a point z0 ∈ A is extremal but not
strictly extremal. For instance, if A = {z = x + iy ∈ C : 0 ≤ x ≤ 1, 0 ≤ y ≤
1} ∪ {z = x+ iy ∈ C : x ≥ 1, y ≥ 0, (x− 1)2 + y2 ≤ 1} then its set of extremal
points is {0, i, 2, 1 + i} ∪ {1 + eiθ : 0 < θ < π/2}, while the set of its strictly
extremal points is {0, i, 2} ∪ {1 + eiθ : 0 < θ < π/2}.

We are now ready to state our theorem.

Theorem. Let K ⊂ C be a compact subset with connected complement.
Assume that N ∈ N and that z1, . . . , zN are distinct strictly extremal points of
K and that (an) is a sequence of distinct points of C\K with limn→∞ an =∞.
Suppose also that w1, . . . , wN , b1, b2, . . . , bn, . . . are complex values. Let us fix a
number α > max1≤j≤N |wj |. Then there exists an entire function f satisfying
the following properties:

(a) f(zj) = wj for all j = 1, . . . , N ,

(b) f(an) = bn for all n ∈ N, and

(c) |f(z)| < α for all z ∈ K.

P r o o f. We define our entire function f as

f := ϕ+ F,

where ϕ and F are adequate entire functions to be constructed.

Since the points zj (j = 1, . . . ,N) are strictly extremal for K, we can
select open halfplanes Πj (j = 1, . . . , N) such that

(1) zj ∈ ∂Πj and K \ {zj} ⊂ Πj (j = 1, . . . , N).

For each j ∈ {1, . . . , N}, let tj be a suitable unimodular constant —which carries
a rotation— such that the mapping z 7→ tj(z − zj) takes Πj isomorphically onto
the open left halfplane Π := {Re z < 0}. Since |ez| < 1 on Π we obtain that if

ej(z) := exp(tj(z − zj)) (h = 1, . . . , N)
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then ej(zj) = 1 and

(2) |ej(z)| < 1 for all z ∈ Πj (j = 1, . . . , N).

Now, consider the Lagrange interpolation polynomials

Lj(z) :=
Y

k∈{1,...,N}\{j}

z − zk
zj − zk

(j = 1, . . . , N).

Observe that

Lj(zk) =

½
1 if j = k
0 if j 6= k.

Next, we define the function

(4) ϕ(z) :=
NX
j=1

wjLj(z)(ej(z))
m,

where m is a positive integer to be defined later. It is clear that ϕ is entire
and that, from (3),

(5) ϕ(zj) = wj for all j = 1, . . . , N.

Let us specify the natural number m. Choose any

β ∈ ( max
1≤j≤N

|wj |, α) .

From (1) and (2) we obtain for each j ∈ {1, . . . , N} that

(6) |ej(z)| < 1 for all z ∈ K \ {zj}.

On the other hand, we can fix ε > 0 so small that

(1 +Nε) max
1≤j≤N

|wj | < β .

Therefore (3) and the continuity of each polynomial Lj allows us to select a
radius r > 0 such that the balls B(zj , r) are mutually disjoint and, for every
j ∈ {1, . . . ,N},

(7) |Lj(z)| < ε for all z ∈
N[
k=1
k 6=j

B(zk, r)
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and

(8) |Lj(z)− 1| < ε for all z ∈ B(zj , r).

Let us define the set eK := K \B, where B :=
SN
j=1B(zj , r). Then

eK is
compact and, from (6), there exists μ ∈ (0, 1) such that

(9) |ej(z)| ≤ μ
³
z ∈ eK, j ∈ {1, . . . , N}

´
.

Hence we can choose m ∈ N satisfying

(10) μm <
1

N max
1≤j≤N

sup
z∈K

|Lj(z)|
.

Next, we estimate |ϕ| on K. If z ∈ K ∩B then z belongs to exactly one
ball B(zj , r). Consequently, by (4), (7) and (8) we get

|ϕ(z)| ≤ |wj |(1 + ε) +
NX
k=1
k 6=j

|wk|ε ≤ (1 +Nε) max
1≤j≤N

|wj | < β.

And if z ∈ eK then (9) together with (10) apply to yield

|ϕ(z)| ≤
NX
j=1

|wj | sup
K
|Lj |μm ≤ max

1≤j≤N
|wj | < β.

Summarizingly,

(11) |ϕ(z)| < β for all z ∈ K.

The next step is to define F . Such function will be constructed by
modifying suitably the standard proof of Weierstrass’ interpolation theorem
in order to control its size on K. Firstly, Weierstrass’ factorization theorem
guarantees the existence of an entire function h having zeros at the points
z1, . . . , zN , a1, . . . , an, . . ., such that the zeros an are simple. Therefore h

0(an) 6= 0
for all n ∈ N. For each n ∈ N we define

cn := bn − ϕ(an) and An =
cn

h0(an)
.

Pick any point a ∈ C\{an : n ∈ N} (for instance, a ∈ K). Since an →∞
(n→∞), there exists n0 ∈ N with K ⊂ B(a, |an − a|/2) for all n > n0. Let us
denote

Kn =

(
K if n ∈ {1, . . . , n0}

B(a, |an − a|/2) if n > n0.
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Then the function An/(z−an) is holomorphic in the open set C\{an}, which con-
tains the compact set Kn. But Kn has connected complement. Thus, Runge’s
approximation theorem (see [1] or [2, Chapter 13]) guarantees the existence of
a polynomial Pn such that

(12).

¯̄̄̄
An

z − an
− Pn(z)

¯̄̄̄
<

α− β

2n(1 + supK |h|)
for all z ∈ Kn.

Since any compact set L ⊂ C is contained in Kn for all n large enough, a stan-
dard argument using Weierstrass’ M-test and Weierstrass’ convergence theorem
reveals that the series

(13) g(z) :=
∞X
n=1

µ
An

z − an
− Pn(z)

¶
defines a function which is holomorphic in C \ {an : n ∈ N} and has at most
(simple) poles at the points an.

Let us define F as F = gh. Since h has zeros at the points an, we have
that F is an entire function. We now study its properties:

• For every j ∈ {1, . . . ,N}, F (zj) = g(zj)h(zj) = 0.

• For every n ∈ N, F (an) = limz→an F (z) = limz→an(z − an)g(z)
h(z)− h(an)

z − an
= (Resang)h

0(an) = Anh
0(an) = cn.

• For every z ∈ K we obtain from (12) and (13) that

(14) |F (z)| ≤ sup
K
|h|

∞X
n=1

α− β

2n(1 + supK |h|)
< α− β.

Finally, we had defined our function f as f = ϕ + F . Then f is entire and
satisfies: f(zj) = ϕ(zj) + F (zj) = wj + 0 = wj (j = 1, . . . , N) by (5); f(an) =
ϕ(an)+F (an) = ϕ(an)+cn = bn (n ∈ N); for all z ∈ K, |f(z)| ≤ |ϕ(z)|+|F (z)| <
β + α− β = α, due to (11) and (14). This concludes the proof.

We remark that if we do not impose the interpolation on the nodes zj then
an argument similar to the construction of F in the last part of the proof shows
the following: Let K ⊂ C be a compact subset with connected complement.
Assume that (an) is a sequence of distinct points of C\K with limn→∞ an =∞.
Suppose also that b1, b2, . . . , bn, . . . are complex values. Then there exists a
sequence (fk) of entire functions such that fk → 0 (k → ∞) uniformly on K
and fk(an) = bn for all k, n ∈ N.
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To finish, the next consequence is obtained just by considering the real
part of an adequate entire function.

Corollary. Let K ⊂ R2 be a compact subset with connected complement.
Assume that N ∈ N and that z1, . . . , zN are distinct strictly extremal points of
K and that (an) is a sequence of distinct points of R2 \K with limn→∞ an =
∞. Suppose also that w1, . . . , wN , b1, b2, . . . , bn, . . . are real values. Let us fix a
number α > max1≤j≤N |wj |. Then there exists a harmonic function u : R2 → R
satisfying the following properties:

(a) u(zj) = wj for all j = 1, . . . , N ,

(b) u(an) = bn for all n ∈ N, and

(c) |u(z)| < α for all z ∈ K.

Under a physical point of view, if one takes into account that the temper-
ature on a plain domain behaves as a harmonic function, one can interprete the
corollary as follows: It is possible to establish on the two-dimensional space a
temperature scalar field T with prefixed values on infinitely many points tending
to infinity such that, in addition, T is controlled as much as one desires on any
prefixed ‘reasonable’ bounded region.
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