New results on the Stackelberg-Nash exact control of linear
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Abstract

This paper is concerned with Stackelberg-Nash strategies to control parabolic equations. We have one
control, the leader, that is responsible for a null controllability property; additionally, we have a couple of
controls, called the followers, that provides a Nash equilibrium for two cost functionals. This is a classical
situation in many fields of science and, in mathematics, leads to a lot of interesting questions and open
problems and possesses many applications. In the main result, we prove the existence of a leader such
that the corresponding controlled system is driven to zero. This way, we improve some questions that
were left open in previous works.

1 Introduction

There are plenty of situations where several controls are required in order to drive a system to one or more
objectives. Usually, if we assign different roles to the controls, we speak of hierarchic control. In the case of a
system governed by a PDE, this concept was introduced by J.-L. Lions (see [15, 16], where some techniques
are presented). These works motivated the study of the subject and a lot of other results appeared; see for
instance [4, 5, 12, 19, 20].

All these previous works combine the multicriteria optimization concepts and arguments and approximate
controllability. In the context of null controllability, few is known; see [1] for some first results.

In this paper, we solve a question that was left open in [1]. The solution requires some careful computa-
tions based on new Carleman estimates. Let us be more precise.

Let 2 C R™ be a bounded domain whose boundary I' is regular enough. Let T" > 0 be given and define
Q = Qx(0,T), with lateral boundary 3 := 9 x (0,T). In the sequel, we will denote by C' a generic positive
constant which may differ from line to line. Sometimes, we will write C'(2), C(Q,T), etc. to indicate the
data on which C' depends. The usual norm and scalar product in L?(2) will be respectively denoted by | - ||
and (-,-).

Let us consider the linear system

Yt —Ay+a(x,t)y: flo +Ull(/)1 +’U21(92 in Qv
y=0 on X, (1)
y(-,0) =4° in Q,

where y = y(z,t) is the state, a € L>(Q) and y° = y°(x) is prescribed. In (1), the set O C  is the main
control domain and 01,02 C Q are the secondary control domains (all of them are supposed to be small);
lo, 1o, and 1p, are the characteristic functions of O, O; and Os, respectively; the controls are the leader
f = f(x,t) and the followers v! = v!(x,t) and v? = v?(x,t).
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Let O1,4, Oz, C Q2 be open sets, representing observation domains for the followers. We will consider
the (secondary) functionals

Ji(f;vl,v2) ::%// \y—yi7d|2 d:rdt—l—g// |vi|2d:rdt, 1=1,2,
Oi,dX(O/T) OiX(O,T)

and the main functional )
1=y [ P deat
Ox(0,T)

where the a;; > 0 and p > 0 are constants and the y; ¢ = y;.4(x,t) are given functions.
The structure of the control process can be described as follows:

1. For each leader f, the followers v! and v? intend to be a Nash equilibrium for the costs J; (i = 1,2).

In other words, once f has been fixed, we look for a couple (v!,v?) with v¢ € L?(O; x (0,T)) such that

T(fi0 %) = min J(f:00,0%), o (fi0'0?) = min Jo(fi0,02). (2)

Note that, if the functionals J; (i = 1,2) are C* and convex, then (v!,v?) is a Nash equilibrium if and
only if 4
Ji(f;vh,0*)(01,0) =0, Vo' € L (01 x (0,T)), o' € L*(0; x (0,T))

and
Jo(f;01,02)(0,0%) =0, Vo* € L2 (03 x (0,T)), v € L*(0; x (0,T)).

(In fact, this is also true if J; is C! and convex in the i-th variable.)

2. Let us fix an uncontrolled trajectory of (1), that is, a sufficiently regular solution to the system

Uy — Ay +a(z,t)y=0 in Q,
7=0 on X, (3)
y(-0)=7° in Q.

Once the Nash equilibrium has been identified and fixed for each f, we look for an optimal control
f € L*O x (0,7T)) such that
J(f) = min J(f),

subject to the exact controllability restriction
In [1] it is proved that, if u is large enough, for every f € L?(O x (0,T)) there exists a unique Nash
equilibrium (v!,v?) for (J1, Ja), given by

1
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where (y, ¢!, ¢?) is the unique solution to the optimality system

2
1 .
v — Ay +ale,tly=flo— Y J#lo, i Q
=1

—¢ — A(?Si_ +a(z,t)¢" = ai(y — via)lo,, in @, (5)
y= Oa ¢’L = O on Z,
y(-,0) =9° ¢'(T)=0 in Q.

The main result of this paper concerns the exact controllability to the trajectories of (1)—(2). It is the
following:



Theorem 1. Suppose that
0iaNO#0, i=1,2. (6)

Also, assume that one of the following two conditions holds:
O1,0=024 (7)
or
017(1 no 7& Ozﬁd nao. (8)

Then, there exists jig > 0, only depending on Q, O, T, O;, O; 4, o; and ||al| =) and a positive function
p = p(t) blowing up at t =T such that, if p > po, the y;q are such that

// P27 — yial? dedt < 400, i=1,2
Oi,dX(O,T)

and § 1is the unique solution to (3) associated to the initial state y° € L2(Q), there exist controls f €
L?(0 x (0,T)) and associated Nash equilibria (v',v?) such that the corresponding solutions to (1) satisfy

(4).

Remark 2. It is worth mentioning that, in [1], the authors have proved this result in the particular case
in which (6) and (7) are satisfied. Fig. 1-3 illustrate some situations where this fails and (6) and (8) hold
simultaneously. O

O

Figure 1 Figure 2 Figure 3

Note that, if we introduce the new variable z = y — g, (5) can be rewritten in the form

2
1 .
Zt*AZJFa(Ivt)Z:flO*Z;qﬁzloi in @,

i=1

—¢t — A¢' + a(x, t)p' = a;(z — zia)lo,, in  Q, 9)
z2=0, ¢'=0 on X,
2(,0) =2 (-, T)=0 in Q,

where z; ¢ = y;.9 — ¥ and 20 = y% — 7% and (4) is equivalent to the null controllability property for z, that is,
z(,T)=0 in €. (10)

The proof of Theorem 1 relies on some duality arguments which reduce the null controllability property
of a linear system to an observability inequality for the solutions to the associated adjoint system. In our
case, the adjoint of (9) is

2
— = AV +a(z, ) =Y _an'le,, in Q,
=1

) ) . 1

7= Ay + a(z, b)Y = —;w@ in Q, (11)
=0, =0 on X,

(-, T) =T, ~4(-,0)=0 in Q.



For the proof of the observability of (11), as usual, we must use Carleman estimates. Thus, the task is
to estimate globally all the variables v, v and 42 by just one observation (3 in O x (0,T)). This is not
trivial, especially when O; g # Oz 4. In fact, in [1], the assumption O; 4 = Oz 4 was needed.

The main idea in this paper is to use not one Imanuvilov function, but two. This is possible thanks to
Lemma 5 (see below, in Section 2). Actually, we believe that this lemma, used together with the arguments
in the proof of Proposition 11, can be a useful tool for the solution of other control problems. For instance,
to control a 3 x 3 system with one scalar control.

The observability estimate for (11) is given in the following result:

Theorem 3. Under the assumptions of Theorem 1, there exists a constant C' > 0, depending only on Q, O,
T, O;, Oia, a; and ||a||L~(q) and a weight p = p(t) such that

2
/ |¢(x,0)|2dx+2// P2 P d dt < C’// 4|2 da dt. (12)
Q i=1 Q Ox(0,T)

In order to prove (12), we will use some suitable Carleman estimates with a specific and unusual choice
of the weight functions. This will be done precisely in the following section.

Remark 4. The arguments in Section 3 of [1] concerning semilinear problems can be adapted to the present
setting. This allows to prove a result similar to Theorem 1 for the system

Y — Ay +az, t)y = F(y) + flo +v'lo, +v*1p, in Q,
y=20 on X, (13)
y(-,0) =4° in Q

where (for instance) F € WH°(R). As there, we have to introduce the concept of Nash quasi-equilibrium
and then an appropriate fixed-point mapping. We omit the details, since the process is rather standard and
well known. ]

The paper is organized as follows. In Section 2, we introduce the weight functions needed to prove
some Carleman estimates. In Section 3, we prove these Carleman estimates. In Section 4, we deduce the
observability inequality (12) and, also, that (12) implies (10).

2 Some previous results

In this section we define the weight functions needed in the proof of Theorem 1. We will also recall some
known Carleman inequalities. B _
Let us introduce a nonempty open set O CC O such that O; 4 N O # 0 for i = 1,2 and the nonempty
connected open sets w; with B
w, CCO N0, =12, wiNuwy=0. (14)

Observe that this is possible thanks to assumptions (6) and (8).
The next result will be crucial:

Lemma 5. There exist functions n; € C%(Q) (i = 1,2) such that
>0 in Q, m =0 on 09,
Vil >0 in Q\w;, m=mn in Q\O.

The proof of Lemma 5 can be found in an Appendix (Section 5), at the end of the paper.
Remark 6. We know from [8, Lemma 1.1] that, for any open set wy C €2, there exists 9 € C?(Q) satisfying
>0 in Q ny=0 on 99,
Vol >0 in Q\ wo.

From the proof of this lemma (see [8, pp. 20-21]), it is also clear that the function 7 can be chosen with a
finite number of critical points. |



Remark 7. Lemma 5 establishes the existence of functions n; and 72 which coincide outside O but may
be very different inside O. Nevertheless, it will be seen in the proof that one can find 7; and 79 satisfying

[m1lloe = [I72]loc- O
Remark 8. From (6), (8) and (14), we see that it can be assumed that either
wiNO2qg=0 and waNO14=10 (15)
or
w; C0Ojq and w;NO;q=0, with (i,7) = (1,2) or (¢,5) = (2,1). (16)
The cases (15) and (16) (with (¢,7) = (2,1)) correspond, respectively, to Fig. 1 and Fig. 3. O
Let us introduce the weight functions
edMMille — oAlIMilloo+n:(2)) A2l ll oo +ni(2))
oi(z,t) == 0T =) . Gim,t) = STy —

and the notation
Ii () = s 1m=3 / / €295 (6™ (2 4 | A[2) dar dt + L (),
Q

where

L) i= s 2wt [ [ o (e)m vl dade
Q
+ s?n)\’rn+1 // e—2$0¢(é—j)m|¢|2 d{L‘dt
Q

We will need some known results concerning Carleman estimates for parabolic PDEs. Thus, let us
consider the system

—ut—Au+au=f+Zkak in Q,
k=1
u=0 on X, (17)
u(-,T) = u” in
where u?' € L2(Q) and f, f1,..., fn € L2(Q).
We have the following:

Proposition 9. Assume that, in (17), fr =0 for allk =1,...,n. Then, there exists C(2, O) > 0 such that,
for every s > C(T + T?) and every A > C, the solution u to (17) associated to ul € L?(Q) and f € L*(Q)
satisfies

ijn(u) <C <Sm)\m+1 // e—23crj (gj)m|u|2 dx dt+8m—3)\m—3 // e—2$oj (fj)m_3|f|2 dl‘dt) , ] =1,2.
b.)jX(O,T) Q

If the functions f; are not necessarily zero, the following holds:

Proposition 10. There exists C(2,0) > 0 such that, for every s > C(T + T?) and every X > C, the
solution u to (17) associated to ul € L?(2), f € L?(Q) and the fr € L*(Q) satisfies

Lgm(u) <C (SmAm-i-l // e—25<7j (gj)m‘u|2 dx dt + sm—3)\m—3 // e—2soj (gj)m_3|f|2 dx dt
w; X (0,T) Q

2
+sm1Am12//(9625%(@)7"1|fk|2dxdt>, j=1,2.
k=1

These results are nowadays well known. For instance, when m = 3, their proofs can be respectively found
in [8] and [14].



3 A new Carleman inequality

In this section, we will prove a suitable Carleman inequality for the solutions to the adjoint system (11).
In [1], the authors proved a similar estimate assuming that (6) and (7) hold.

Proposition 11. Assume that (6) and (8) are satisfied. Then, there exists C(§2,O) > 0 such that, for every
s > O(T +T?) and every X > C, the solution (,7',~?) to (11) associated to T € L*(Q) satisfies the
following:

(1) If (15) holds, then

BN +1E7 45702 [ e a

(18)
< 684)\5 // (6—2301 (51)4 T 6_2502(52)4)““2 dx dt.
Ox(0,T)
(i) If (16) holds for (i,j) = (io, o), with (i0,jo) = (1,2) or (o, jo) = (2,1), then
T30 (y70) 4+ I (h) 4+ 573\~ // 200 (&5,) P Pda dt
(19)

<oy [ e e e e e
X

where we have denoted h := a1y1 + ag7ys.

Remark 12. In order to prove the above Carleman inequalities, we will have to work with the equation
satisfied by 7¢. However, the terms involving 4* and h in the left-hand side of (18) and (19) will not be
needed later, in the proof of the observability inequality (12). O

Proof. The proofs of (i) and (ii) are slightly different and will be presented separately.

e Proof of (i). We first apply Proposition 9 for m = 0 and j = i to the functions (z,t) — ~(x,T — t)
for ¢+ = 1,2. This gives

C ()\ / / 2501 |12 dy dt 4+ 5P\ / / 6_25"7"(&)_3|1/)|2dxdt> .0
w; X (0,T) 0;x(0,T)

Now, let 03 € C%(Q) be such that
O3(x) =0 forxe O,

O3(x) =1 forzecQ\O.
From (11), we find that

2
—(039); — A(059) + a(Bs) = > ;0577 10, , — 2V - (V03) + Abgyp in Q,

j=1
O3 =0 on X,

(050) (-, T) = 059" in Q.



Then, we apply Proposition 10 for m = —3 and j = 1 to 639 and we get
LY (050) < C <s3A2 J[ e Sk asar
le(O,T)

wooe ff B @) Oy P ot s [ €257 (64) 71050 2 dar it
01,.4%(0.T) 02.4%(0.T) (21)

x (0,

Using the fact that 63 equals 1 in Q\ O, we deduce that
LY 5(0s9) > s73272 // e 250 (&) B Pdr dt — sT3NT? // e 2501 (&) 3 np P da dt.
Q 0x(0,T)

Putting together (21) and (20), we obtain

RN+ 12(v?) + 573072 // e 25 (e B pPda dt < O )\// e 251 |2 d dt
Q UJ1><(O,T)

457606 // e 271 (6) T8y P dar dt + /\// e 252 |y2 |2 dy dt
01.ax(0,T) wax (0,T)

+576)\76 //O ( )672801(51)76|03’Y2|2 dl’dt+ 873>\73 // 67280'1 (51)73‘1]“2 dx dt
2,d X O,T

Oq x (O,T)

+S_3)\_3 // 6_2802(52)_3|’(/)|2 dwdt+ S—3>\—2 // 6—250'1 (51)—3“[)‘2 dx dt) )
02 x(0,T) 0x(0,T)

Observe that the second and the fifth terms in the right hand side of (22) can be absorbed by the left hand
side by taking s > CT? and A > C:

sove [[ e e Pdwdr 457N [ o) S deds
Olde(U,T) le(O,T)

<e(Beh+sn [ o) Sopasar).

(22)

(23)
The same happens to the fourth term in the right hand side of (22), since 171 = 12 (S0 01 = 02 and & = &)
in Supp (03) N Oz 4:
s f[ e P drdi=s N[ () P et < <E0P). (20
O2,4x(0,T) 02,ax(0,T)

Using again that 1, = 12 outside O, we can estimate the sixth term in the right hand side of (22) for A > C
as follows:

st [ e S aa s [ e=2572 (g3) 3|2 du dt
02%(0,T) (0N02)x(0,T)
woe ff B ) PP drdr <5 [ o) S dsd (g
(02\0)x(0,T)

Ox(0,T)
+es A2 / / €274 (&) 7 Y da dit.
Q



Plugging the estimates (23)—(25) in (22), we obtain:

L)+ B(?) +s7A2 / / 27 (1) 2w dt < C | A / / 2P d dt
Q UJlX(O,T)

+A // 6_2502|72|2 dxdt + S_BA_z // (6—2501 (gl)—B +e—2502(€2)—3)|w|2 dl’dt) .
w2 % (0,T) Ox(0,T)

Now, we are going to estimate the first and the second term on the right hand side of (26). For the first
one, let Wy be an open set satisfying w; CC wy CC O1,4N (5, 01 NOq =0 and let §; € C?(w;) be such
that 61 (z) = 1 for ¢ € w; and 0 < 6; < 1. Using the PDE satisfied by v, integrating by parts in time and
in space and using the PDE satisfied by 71 (see (11)), we deduce

A
)\// e 2y 2 da dt < — // Ore= 2571yt (—apy — AY + avp) dx dt
w1 % (0,T) a1 JJG%x(0,T)

_ A // [(8t(91€_2801) _ A(01€_2501))’Yl _ 2v(916—2301) . v,yl] ’(/)d.lﬁ dt (27)
(65} @1 x(0,T)

A
——// 0127 9?1, dz dt.
a1t JJG % (0,T)

(26)

Using that
10:(e7257) | + |A(Are2571)| < Cs®A%(€1)%e7 2% and  |V(01e2%71)| < CsAEre 2571,

for s > C(T +T?) and A\ > C, we obtain

)\// e 25y 2 d dt < CsA\? // E1e7 250 (NG Y + VA )| dae dt
(.d1><(07T) aIX(O,T)

(28)
<enjh s [ [ o @
@1 % (0,

The same computations can be performed in order to estimate the second term in the right hand side of
(26). Thus

A / / =292 212 g dt < £12(72) + Cs' AP / / (€2)'e=22 |2 da dt, (29)
WQX(O,T) QQX(O,T)

where @ is an open set satisfying wy CC we CC Oz 4N O and WaNOyq=0.
In view of (28) and (29) and coming back to (26), we deduce the desired inequality (18).

e Proof of (ii). In the proof of (i), in order to absorb the first and second terms on the right hand side
of (26), the assumption (15) was crucial. However, it is clear that (15) does not cover all the cases where (8)
holds (see, for instance, Fig. 3 in Remark 2). Thus, in order to treat this situation, we will proceed in a
slightly different manner.

We will prove (19) when (ig, jo) = (2,1), that is to say, in the case of Figure 3.

Recall that h = a;y! + asy?. Applying Proposition 9 (with m = 0 and j = 2) to the function (x,t)
h(z, T —t), one gets

2
I2(h) < C /\// 6_28"2|h|2dwdt+s_3)\_32// e 2502 (&) PP dadt | . (30)
wa % (0,T) b1 JOKx(0,T)



Summing up (20) for ¢ = 1, (21) and (30), we obtain

Iy + I3 (h) + 53\ // T27 (e T3 Pdr dt < /\// e 250y 2 dy dt
wlx(O,T)
—|—S_6)\_6 // 6_2801(51)_6|71|2 dl’dt—l—)\// 6_2302|h‘2 da dt
O1,4%(0,T) wa X (0,T)

+s A0 // e 27 (&) °0|037? [ dar dt + 57N // e 27 (&) Pl P da dt
Os d>< OT (91><(0,T)

sTONT 32// e 272 (&) WP dedt + 50N // 623"1(51)3|w|2dxdt>.
0, x(0,T) Ox(0,T)

Note that the first term in the right hand side of (31) can be estimated as in (27). For the second and fifth
terms, we can proceed as in (23). Using the fact that 71 = 72 in Supp (63) N O3 4, we also see that the fourth
term can be estimated as follows:

57630 / / €237 (611751032 2 da dt < 5~OA" / / =237 (£)7510,h|2 d dt
O2,a%(0,T) O3,4%x(0,T)

vsoe ff eEBNE) S0y P drdt (32)
Ozde(O,T)
() + )
For the sixth term, proceeding as in (25), one obtains

2
Sl N O R Sl | B U
=/ Joxom) Ox(0,1)

332 —2s0 =319\ 2dax dt. 33
s //Q (&) 3| Pda (33)

(31)

For the third term, let Wy be an open set satisfying wy CC Wy CC 04N O and let 6 € C?(ws) be such
that 0(z) = 1 for x € we and 0 < 05 < 1. Using that —¢p; — Ay + ap = h in We x (0,T), one has

)\// e~ 2572 |p|? da dt < )\// Oae™ 272 h(—tpy — A + ar)) da dt
ng(O,T) GJQX(O,T)

=A // [(04(0267%572) — A(O272%72))h — 2V (026~ >*7?) - V| ¢ da dt
{EQX(O T)

(34)
5\ // Bre=272 |21, da di.
Z LL)QX(O T) :
Using that
10:(€72572)| + |A(f2e72%72)| < Cs?A%(€2)%e7 272 and  |V(fae™2%72)| < CsAéae 2572,
for s > C(T +T?) and A > C, we obtain from (34) that
)\// =292 2 do dt < C's\? // €262 (sAEa ] + | V) 0] da dt
w2 X (0,T) @2 %(0,T)
eIg(h) + Cs*\° / / (&) e 2572 |op|? du dt. (35)
GQX(O7T)



Combining (23), (27), (32), (33), and (35) we deduce the following estimate:
Io(y") + 15 (h) + 572272 // e 27 (&) Py Pdu dt
Q

<ot [ et e ol e
X

This ends the proof. O

Remark 13. A somewhat easier proof of Proposition 11 can be deduced using the fact that |91 ||cc = [|72]lco
(see Remark 7), but we have preferred to provide an argument which applies also in the more general case,

with [[71lec 7 172/ i

4 Observability and null controllability

As already announced, to achieve the proof of Theorem 1, we will apply a standard controllability-
observability argument. Thus, it will be sufficient to prove (12).
We will need the following:

Lemma 14. _ There exists poo such that, for any p > poo and any t1,ts with 0 < t1 < to < T, the
solution (1,~") to (11) satisfies

I Gt < C e (- )2, (36)
where C > 0 only depends on Q, O, T, O;, O; 4, a; and ||a| = (q)-

Proof. Multiplying (11), by 7% and integrating in (0,¢) x Q, it follows that
t
i 2 i 2
ot ol 2 [ 19 ool ds < 2ol 1) [ ¢l s o [ o

From Gronwall’s Lemma, we have
i 2 c [ 2
0l < 2 s
K= Jo

/ 17 (-5 9)] —/ [l (- 2ds, vt e[t,T). (37)

Now, multiplying (11); by ¢ and integrating in (¢,t') x Q C @, one gets

t’ 2 02t
[ ( |+2/ [V (- ds<||w<-,t’>||2+2<||a||oo+1>/t [0 (o)l ds+Z|a§|/, Il
i=1 g

which, used in combination with (37), gives

and, consequently,

c rt t’
o 0042 [ 190 o s+ G [ N a2 el [0

In view again of Gronwall’s Lemma, we see that

c [
I (- 0)IP < Clly ()] + 7/ % (-, s)II ds. (38)
K= Jo

and, therefore, integrating this inequality from 0 to ¢’ and taking u large enough, we can guarantee that

/0 1o L) ds < C o (- ).

From this estimate and (38), we deduce (36). O

10



We are now prepared to present the proof of Theorem 3.

Proof of Theorem 8. Using the inequalities
— 480 4— - - 1 3
e BT (T —t) 3 >e C(IH/T)F in Qx(T/4,3T/4)

and .
6_230"it_3(T _ t)—s < e—C(l-s-l/T)ﬁ in Q,

we get from (18) or (19) that

// || ?da dt < C// |2 da dt. (39)
Qx(T/4,3T/4) Ox(0,T)

On the other hand, according to Lemma 14, one has
I (01> < Cllb (-, 0)* vt € (T/4,3T/4). (40)

Combining (39) and (40), we deduce that
oo [ s (4)
Ox(0,T)

In order to obtain (12), we have to add global weighted integrals of 4% in the left hand side of (41). We
will again consider separately two possibilities:

e Case 1: Condition (i) of Proposition 11 is satisfied.
In this case, the observability estimate (12) follows directly from (41).
In fact, let us consider the following weight functions

o) = T?/4 for 0<t<T/2,
Tl HT—-t) for T/2<t<T,

and
eMmillee — A 2lmilloo+mi(2)) _ A2l lloo +ni ()
il t) = ——
£(t) (1)
One can directly see from the energy inequality (36) and the Carleman inequality (18) that there exists
C > 0 such that

6’1‘(.’)37t) =

2 [ @ P <oy [ @@ e @)

(here, we use that > 0 is large enough).
Let p = p(t) be a positive nondecreasing C! function which blows up at t = T. From the PDE satisfied
by 4% in (11), we readily see that
1d
2dt Jq
1 o AmBA i o i
= —*/ P2y dfc—/p *pely |2dx—/p 2aly'|* dz
B Jo, Q Q

1 - N
< 2/ p 2I¢\2dr+(1+lla\\oo)/p 1y da
K= Jo; Q

p o+ [ VP da
Q
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and, using Gronwall’s Lemma and the fact that v¢(x,0) = 0, it follows that

(fomra)mse [ suppaa vepm (43)
Q OiX(O,T)

Let 65 (t) = max,cq 71(z,t) and choose j(t) = e*?1(). Note that the choice of p is determined by the
Carleman weight e*?, that depends on Q, O, T' and ||a| 1 (g); but p can be chosen independent of the O,

O; 4, o; and p. Since
I pad<c [[ @ te ko,
OiX(O,T) Q

in view of (42) and (43), we find that

2
> / / P2 dedt < C / / (27 (E1)" + &7 (&) )| d d.
i=1 Q Ox(0,T)

Combining this last inequality and (41), we deduce the observability estimate (12).

e Case 2: Condition (ii) of Proposition 11 is satisfied.
The proof in this case is exactly the same as in the first case since in the proof of the first case we only
used the third term in the left-hand side of (18), but we also have this term in the left-hand side of (19). O

5 Appendix: Proof of Lemma 5
Let us first consider a function f € C?(£2) such that f > 0in €2, f = 0 on 95 and the set
A ={2e€Q:Vf(z)=0}

is finite and does not intersect 0€2. The construction of f can be achieved following classical arguments of
Morse theory (see [8, pp. 20-21] for more details).
Let us indicate how the functions n; and 7 can be constructed:

CONSTRUCTION OF 7: Let us set Ay := {an, : 1 < i < k}. Then, from the connectedness of (2, one can
construct k bijective paths ¢, € C*°([0,1]; Q) such that ¢, (0) = am, (m(l) := by € wy and

Gn(0,1) NG (0,1]) = 0 for m £ 7.
Now, let G € C*°(R™; R™) be such that Supp (G) C  and
GGn(B)) = Calt) V€ [0,1], Y € {1,..., k. (44)

Note that the function G can be first defined in the compact set (,, ([0, 1]) as above and then extended as a
C* function to a neighborhood of ¢,,([0, 1]).
Let © = O(x,t) be the flow associated to G, that is to say, the solution to

%?(%t) = G(O(x,t)) for (z,t) € R x R,
O(z,0) == for z € R™.

From (44) and the uniqueness of solution of the Cauchy problem for an ODE, we necessarily have that
O(am,t) = Gn(t) for all t € [0,1], whence O(am, 1) = by, € wy for all m.
We remark that, for all ¢ € R, the function O(t, ) satisfies the following properties:

e It is a diffeomorphism on R™ (with inverse O(-, —t));

e It maps Q into itself (since Supp (G) C Q);
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e It coincides with the identity map on a neighborhood of 0.

Then the function 7 (x) := f(O(z, —1)) (defined in the whole Q) satisfies 7, > 0 in Q, 71 = 0 on 9,
m € C?(Q) and
Vm(z) =0 < 3FIme{l,..., k} such that © = b,,.

CONSTRUCTION OF 7)3: Let us now consider k bijective paths §,, € C°([0, 1]; O) such that 6,,(0) = b,
Sm(1) == ¢ € wy and
0m([0,1]) N 6;([0,1]) = 0 for ¢ # j.

Let H € C*(R™;R™) be such that Supp (H) ¢ O and
H(6m(t) =00, (t), Vte0,1], Ym e {1,...,k}.
Next, let IT = TI(xz, t) be the flow associated to H, that is,

oIl
E(w,t) = H(II(z,t)) for (z,t) € R" xR,
II(z,0) == for x € R™.

Then, if we introduce the function

m(x) ifxeﬁ\@,
m2(x) = —
m((x,-1)) ifzxeO,
we see that 72 > 0in Q, ny = 0 on 9Q, n, € C?(Q) (observe that II(—1,-) is the identity map in a
neighborhood of 00) and

Vie(z) =0 < 3dIm e {l,...,k} such that x = ¢,,.

The proof of Lemma 5 is thus complete.
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