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Abstract

This paper is concerned with Stackelberg-Nash strategies to control parabolic equations. We have one
control, the leader, that is responsible for a null controllability property; additionally, we have a couple of
controls, called the followers, that provides a Nash equilibrium for two cost functionals. This is a classical
situation in many fields of science and, in mathematics, leads to a lot of interesting questions and open
problems and possesses many applications. In the main result, we prove the existence of a leader such
that the corresponding controlled system is driven to zero. This way, we improve some questions that
were left open in previous works.

1 Introduction

There are plenty of situations where several controls are required in order to drive a system to one or more
objectives. Usually, if we assign different roles to the controls, we speak of hierarchic control. In the case of a
system governed by a PDE, this concept was introduced by J.-L. Lions (see [15, 16], where some techniques
are presented). These works motivated the study of the subject and a lot of other results appeared; see for
instance [4, 5, 12, 19, 20].

All these previous works combine the multicriteria optimization concepts and arguments and approximate
controllability. In the context of null controllability, few is known; see [1] for some first results.

In this paper, we solve a question that was left open in [1]. The solution requires some careful computa-
tions based on new Carleman estimates. Let us be more precise.

Let Ω ⊂ Rn be a bounded domain whose boundary Γ is regular enough. Let T > 0 be given and define
Q := Ω×(0, T ), with lateral boundary Σ := ∂Ω×(0, T ). In the sequel, we will denote by C a generic positive
constant which may differ from line to line. Sometimes, we will write C(Ω), C(Ω, T ), etc. to indicate the
data on which C depends. The usual norm and scalar product in L2(Ω) will be respectively denoted by ‖ · ‖
and (· , ·).

Let us consider the linear system yt −∆y + a(x, t)y = f1O + v11O1
+ v21O2

in Q,
y = 0 on Σ,
y(·, 0) = y0 in Ω,

(1)

where y = y(x, t) is the state, a ∈ L∞(Q) and y0 = y0(x) is prescribed. In (1), the set O ⊂ Ω is the main
control domain and O1,O2 ⊂ Ω are the secondary control domains (all of them are supposed to be small);
1O, 1O1 and 1O2 are the characteristic functions of O, O1 and O2, respectively; the controls are the leader
f = f(x, t) and the followers v1 = v1(x, t) and v2 = v2(x, t).
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Let O1,d, O2,d ⊂ Ω be open sets, representing observation domains for the followers. We will consider
the (secondary) functionals

Ji(f ; v1, v2) :=
αi
2

∫∫
Oi,d×(0,T )

|y − yi,d|2 dx dt+
µ

2

∫∫
Oi×(0,T )

|vi|2 dx dt, i = 1, 2,

and the main functional

J (f) :=
1

2

∫∫
O×(0,T )

|f |2 dx dt,

where the αi > 0 and µ > 0 are constants and the yi,d = yi,d(x, t) are given functions.
The structure of the control process can be described as follows:

1. For each leader f , the followers v1 and v2 intend to be a Nash equilibrium for the costs Ji (i = 1, 2).

In other words, once f has been fixed, we look for a couple (v1, v2) with vi ∈ L2(Oi× (0, T )) such that

J1(f ; v1, v2) = min
v̂1

J1(f ; v̂1, v2), J2

(
f ; v1, v2

)
= min

v̂2
J2(f ; v1, v̂2). (2)

Note that, if the functionals Ji (i = 1, 2) are C1 and convex, then (v1, v2) is a Nash equilibrium if and
only if

J ′1(f ; v1, v2)(v̂1, 0) = 0, ∀v̂1 ∈ L2 (O1 × (0, T )) , vi ∈ L2(Oi × (0, T ))

and
J ′2(f ; v1, v2)(0, v̂2) = 0, ∀v̂2 ∈ L2 (O2 × (0, T )) , vi ∈ L2(Oi × (0, T )).

(In fact, this is also true if Ji is C1 and convex in the i-th variable.)

2. Let us fix an uncontrolled trajectory of (1), that is, a sufficiently regular solution to the system yt −∆y + a(x, t)ȳ = 0 in Q,
y = 0 on Σ,
y(·, 0) = y0 in Ω.

(3)

Once the Nash equilibrium has been identified and fixed for each f , we look for an optimal control
f̂ ∈ L2(O × (0, T )) such that

J(f̂) = min
f

J(f),

subject to the exact controllability restriction

y(·, T ) = y(·, T ) in Ω. (4)

In [1] it is proved that, if µ is large enough, for every f ∈ L2(O × (0, T )) there exists a unique Nash
equilibrium (v1, v2) for (J1, J2), given by

vi = − 1

µ
φi1Oi

, i = 1, 2,

where (y, φ1, φ2) is the unique solution to the optimality system
yt −∆y + a(x, t)y = f 1O −

2∑
i=1

1

µ
φi1Oi in Q,

−φit −∆φi + a(x, t)φi = αi(y − yi,d)1Oi,d
in Q,

y = 0, φi = 0 on Σ,
y(·, 0) = y0, φi(·, T ) = 0 in Ω.

(5)

The main result of this paper concerns the exact controllability to the trajectories of (1)–(2). It is the
following:
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Theorem 1. Suppose that
Oi,d ∩ O 6= ∅, i = 1, 2. (6)

Also, assume that one of the following two conditions holds:

O1,d = O2,d (7)

or
O1,d ∩ O 6= O2,d ∩ O. (8)

Then, there exists µ0 > 0, only depending on Ω, O, T , Oi, Oi,d, αi and ‖a‖L∞(Q) and a positive function
ρ̂ = ρ̂(t) blowing up at t = T such that, if µ ≥ µ0, the yi,d are such that∫∫

Oi,d×(0,T )

ρ̂2|y − yi,d|2 dx dt < +∞, i = 1, 2

and ȳ is the unique solution to (3) associated to the initial state y0 ∈ L2(Ω), there exist controls f ∈
L2(O × (0, T )) and associated Nash equilibria (v1, v2) such that the corresponding solutions to (1) satisfy
(4).

Remark 2. It is worth mentioning that, in [1], the authors have proved this result in the particular case
in which (6) and (7) are satisfied. Fig. 1–3 illustrate some situations where this fails and (6) and (8) hold
simultaneously. �

1,d 2,d

Figure 1

1,d 2,d

Figure 2

1,d

2,d

Figure 3

Note that, if we introduce the new variable z = y − ȳ, (5) can be rewritten in the form
zt −∆z + a(x, t)z = f 1O −

2∑
i=1

1

µ
φi1Oi

in Q,

−φit −∆φi + a(x, t)φi = αi(z − zi,d)1Oi,d
in Q,

z = 0, φi = 0 on Σ,
z(·, 0) = z0, φi(·, T ) = 0 in Ω,

(9)

where zi,d = yi,d− ȳ and z0 = y0− y0 and (4) is equivalent to the null controllability property for z, that is,

z(·, T ) = 0 in Ω. (10)

The proof of Theorem 1 relies on some duality arguments which reduce the null controllability property
of a linear system to an observability inequality for the solutions to the associated adjoint system. In our
case, the adjoint of (9) is 

−ψt −∆ψ + a(x, t)ψ =

2∑
i=1

αiγ
i1Oi,d

in Q,

γit −∆γi + a(x, t)γi = − 1

µ
ψ1Oi

in Q,

ψ = 0, γi = 0 on Σ,
ψ(·, T ) = ψT , γi(·, 0) = 0 in Ω.

(11)
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For the proof of the observability of (11), as usual, we must use Carleman estimates. Thus, the task is
to estimate globally all the variables ψ, γ1 and γ2 by just one observation (ψ in O × (0, T )). This is not
trivial, especially when O1,d 6= O2,d. In fact, in [1], the assumption O1,d = O2,d was needed.

The main idea in this paper is to use not one Imanuvilov function, but two. This is possible thanks to
Lemma 5 (see below, in Section 2). Actually, we believe that this lemma, used together with the arguments
in the proof of Proposition 11, can be a useful tool for the solution of other control problems. For instance,
to control a 3× 3 system with one scalar control.

The observability estimate for (11) is given in the following result:

Theorem 3. Under the assumptions of Theorem 1, there exists a constant C > 0, depending only on Ω, O,
T , Oi, Oi,d, αi and ‖a‖L∞(Q) and a weight ρ̂ = ρ̂(t) such that∫

Ω

|ψ(x, 0)|2 dx+

2∑
i=1

∫∫
Q

ρ̂−2|γi|2 dx dt 6 C
∫∫
O×(0,T )

|ψ|2 dx dt. (12)

In order to prove (12), we will use some suitable Carleman estimates with a specific and unusual choice
of the weight functions. This will be done precisely in the following section.

Remark 4. The arguments in Section 3 of [1] concerning semilinear problems can be adapted to the present
setting. This allows to prove a result similar to Theorem 1 for the system yt −∆y + a(x, t)y = F (y) + f1O + v11O1

+ v21O2
in Q,

y = 0 on Σ,
y(·, 0) = y0 in Ω,

(13)

where (for instance) F ∈ W 1,∞(R). As there, we have to introduce the concept of Nash quasi-equilibrium
and then an appropriate fixed-point mapping. We omit the details, since the process is rather standard and
well known. �

The paper is organized as follows. In Section 2, we introduce the weight functions needed to prove
some Carleman estimates. In Section 3, we prove these Carleman estimates. In Section 4, we deduce the
observability inequality (12) and, also, that (12) implies (10).

2 Some previous results

In this section we define the weight functions needed in the proof of Theorem 1. We will also recall some
known Carleman inequalities.

Let us introduce a nonempty open set Õ ⊂⊂ O such that Oi,d ∩ Õ 6= ∅ for i = 1, 2 and the nonempty
connected open sets ωi with

ωi ⊂⊂ Oi,d ∩ Õ, i = 1, 2, ω1 ∩ ω2 = ∅. (14)

Observe that this is possible thanks to assumptions (6) and (8).
The next result will be crucial:

Lemma 5. There exist functions ηi ∈ C2(Ω) (i = 1, 2) such that
ηi > 0 in Ω, ηi = 0 on ∂Ω,

|∇ηi| > 0 in Ω \ ωi, η1 = η2 in Ω \ Õ.

The proof of Lemma 5 can be found in an Appendix (Section 5), at the end of the paper.

Remark 6. We know from [8, Lemma 1.1] that, for any open set ω0 ⊂ Ω, there exists η0 ∈ C2(Ω) satisfying
η0 > 0 in Ω, η0 = 0 on ∂Ω,

|∇η0| > 0 in Ω \ ω0.

From the proof of this lemma (see [8, pp. 20–21]), it is also clear that the function η0 can be chosen with a
finite number of critical points. �
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Remark 7. Lemma 5 establishes the existence of functions η1 and η2 which coincide outside Õ but may
be very different inside Õ. Nevertheless, it will be seen in the proof that one can find η1 and η2 satisfying
‖η1‖∞ = ‖η2‖∞. �

Remark 8. From (6), (8) and (14), we see that it can be assumed that either

ω1 ∩ O2,d = ∅ and ω2 ∩ O1,d = ∅ (15)

or
ωi ⊂ Oj,d and ωj ∩ Oi,d = ∅, with (i, j) = (1, 2) or (i, j) = (2, 1). (16)

The cases (15) and (16) (with (i, j) = (2, 1)) correspond, respectively, to Fig. 1 and Fig. 3. �

Let us introduce the weight functions

σi(x, t) :=
e4λ‖ηi‖∞ − eλ(2‖ηi‖∞+ηi(x))

t(T − t)
, ξi(x, t) :=

eλ(2‖ηi‖∞+ηi(x))

t(T − t)
and the notation

Iim(ψ) := sm−4λm−3

∫∫
Q

e−2sσi(ξi)
m−4(|ψt|2 + |∆ψ|2) dx dt+ Lim(ψ),

where

Lim(ψ) := sm−2λm−1

∫∫
Q

e−2sσi(ξi)
m−2|∇ψ|2 dx dt

+ smλm+1

∫∫
Q

e−2sσi(ξi)
m|ψ|2 dx dt.

We will need some known results concerning Carleman estimates for parabolic PDEs. Thus, let us
consider the system 

−ut −∆u+ au = f +

n∑
k=1

∂kfk in Q,

u = 0 on Σ,

u(·, T ) = uT in Ω,

(17)

where uT ∈ L2(Ω) and f, f1, . . . , fn ∈ L2(Q).
We have the following:

Proposition 9. Assume that, in (17), fk = 0 for all k = 1, . . . , n. Then, there exists C(Ω,O) > 0 such that,
for every s ≥ C(T + T 2) and every λ ≥ C, the solution u to (17) associated to uT ∈ L2(Ω) and f ∈ L2(Q)
satisfies

Ijm(u) 6 C

(
smλm+1

∫∫
ωj×(0,T )

e−2sσj (ξj)
m|u|2 dx dt+ sm−3λm−3

∫∫
Q

e−2sσj (ξj)
m−3|f |2 dx dt

)
, j = 1, 2.

If the functions fk are not necessarily zero, the following holds:

Proposition 10. There exists C(Ω,O) > 0 such that, for every s ≥ C(T + T 2) and every λ ≥ C, the
solution u to (17) associated to uT ∈ L2(Ω), f ∈ L2(Q) and the fk ∈ L2(Q) satisfies

Ljm(u) 6 C

(
smλm+1

∫∫
ωj×(0,T )

e−2sσj (ξj)
m|u|2 dx dt+ sm−3λm−3

∫∫
Q

e−2sσj (ξj)
m−3|f |2 dx dt

+sm−1λm−1
2∑
k=1

∫∫
Q

e−2sσj (ξj)
m−1|fk|2 dx dt

)
, j = 1, 2.

These results are nowadays well known. For instance, when m = 3, their proofs can be respectively found
in [8] and [14].
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3 A new Carleman inequality

In this section, we will prove a suitable Carleman inequality for the solutions to the adjoint system (11).
In [1], the authors proved a similar estimate assuming that (6) and (7) hold.

Proposition 11. Assume that (6) and (8) are satisfied. Then, there exists C(Ω,O) > 0 such that, for every
s ≥ C(T + T 2) and every λ ≥ C, the solution (ψ, γ1, γ2) to (11) associated to ψT ∈ L2(Ω) satisfies the
following:

(i) If (15) holds, then

I1
0 (γ1) + I2

0 (γ2) + s−3λ−2

∫∫
Q

e−2sσ1(ξ1)−3|ψ|2dx dt

6 Cs4λ5

∫∫
O×(0,T )

(e−2sσ1(ξ1)4 + e−2sσ2(ξ2)4)|ψ|2 dx dt.
(18)

(ii) If (16) holds for (i, j) = (i0, j0), with (i0, j0) = (1, 2) or (i0, j0) = (2, 1), then

Ij00 (γj0) + Ii00 (h) + s−3λ−2

∫∫
Q

e−2sσj0 (ξj0)−3|ψ|2dx dt

6 Cs4λ5

∫∫
O×(0,T )

(e−2sσ1(ξ1)4 + e−2sσ2(ξ2)4)|ψ|2 dx dt,
(19)

where we have denoted h := α1γ1 + α2γ2.

Remark 12. In order to prove the above Carleman inequalities, we will have to work with the equation
satisfied by γi. However, the terms involving γi and h in the left-hand side of (18) and (19) will not be
needed later, in the proof of the observability inequality (12). �

Proof. The proofs of (i) and (ii) are slightly different and will be presented separately.

• Proof of (i). We first apply Proposition 9 for m = 0 and j = i to the functions (x, t) 7→ γi(x, T − t)
for i = 1, 2. This gives

Ii0(γi) 6 C

(
λ

∫∫
ωi×(0,T )

e−2sσi |γi|2 dx dt+ s−3λ−3

∫∫
Oi×(0,T )

e−2sσi(ξi)
−3|ψ|2 dx dt

)
. (20)

Now, let θ3 ∈ C2(Ω) be such that  θ3(x) = 0 for x ∈ Õ,

θ3(x) = 1 for x ∈ Ω \ O.

From (11), we find that
−(θ3ψ)t −∆(θ3ψ) + a(θ3ψ) =

2∑
j=1

αjθ3γ
j1Oj,d

− 2∇ · (ψ∇θ3) + ∆θ3ψ in Q,

θ3ψ = 0 on Σ,

(θ3ψ)(·, T ) = θ3ψ
T in Ω.
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Then, we apply Proposition 10 for m = −3 and j = 1 to θ3ψ and we get

L1
−3(θ3ψ) 6 C

(
s−3λ−2

∫∫
ω1×(0,T )

e−2sσ1(ξ1)−3|ψ|2 dx dt

+s−6λ−6

∫∫
O1,d×(0,T )

e−2sσ1(ξ1)−6|γ1|2 dx dt+ s−6λ−6

∫∫
O2,d×(0,T )

e−2sσ1(ξ1)−6|θ3γ
2|2 dx dt

+s−4λ−4

∫∫
O×(0,T )

e−2sσ1(ξ1)−4|ψ|2 dx dt

)
.

(21)

Using the fact that θ3 equals 1 in Ω \ O, we deduce that

L1
−3(θ3ψ) ≥ s−3λ−2

∫∫
Q

e−2sσ1(ξ1)−3|ψ|2dx dt− s−3λ−2

∫∫
O×(0,T )

e−2sσ1(ξ1)−3|ψ|2dx dt.

Putting together (21) and (20), we obtain

I1
0 (γ1) + I2

0 (γ2) + s−3λ−2

∫∫
Q

e−2sσ1(ξ1)−3|ψ|2dx dt 6 C

(
λ

∫∫
ω1×(0,T )

e−2sσ1 |γ1|2 dx dt

+s−6λ−6

∫∫
O1,d×(0,T )

e−2sσ1(ξ1)−6|γ1|2 dx dt+ λ

∫∫
ω2×(0,T )

e−2sσ2 |γ2|2 dx dt

+s−6λ−6

∫∫
O2,d×(0,T )

e−2sσ1(ξ1)−6|θ3γ
2|2 dx dt+ s−3λ−3

∫∫
O1×(0,T )

e−2sσ1(ξ1)−3|ψ|2 dx dt

+s−3λ−3

∫∫
O2×(0,T )

e−2sσ2(ξ2)−3|ψ|2 dx dt+ s−3λ−2

∫∫
O×(0,T )

e−2sσ1(ξ1)−3|ψ|2 dx dt

)
.

(22)

Observe that the second and the fifth terms in the right hand side of (22) can be absorbed by the left hand
side by taking s ≥ CT 2 and λ ≥ C:

s−6λ−6

∫∫
O1,d×(0,T )

e−2sσ1(ξ1)−6|γ1|2 dx dt+ s−3λ−3

∫∫
O1×(0,T )

e−2sσ1(ξ1)−3|ψ|2 dx dt

6 ε

(
I1
0 (γ1) + s−3λ−2

∫∫
Q

e−2sσ1(ξ1)−3|ψ|2dx dt
)
.

(23)

The same happens to the fourth term in the right hand side of (22), since η1 = η2 (so σ1 = σ2 and ξ1 = ξ2)
in Supp (θ3) ∩ O2,d:

s−6λ−6

∫∫
O2,d×(0,T )

e−2sσ1(ξ1)−6|θ3γ
2|2 dx dt=s−6λ−6

∫∫
O2,d×(0,T )

e−2sσ2(ξ2)−6|θ3γ
2|2 dx dt 6 εI2

0 (γ2). (24)

Using again that η1 = η2 outside O, we can estimate the sixth term in the right hand side of (22) for λ ≥ C
as follows:

s−3λ−3

∫∫
O2×(0,T )

e−2sσ2(ξ2)−3|ψ|2 dx dt = s−3λ−3

∫∫
(O∩O2)×(0,T )

e−2sσ2(ξ2)−3|ψ|2 dx dt

+s−3λ−3

∫∫
(O2\O)×(0,T )

e−2sσ1(ξ1)−3|ψ|2 dx dt 6 s−3λ−3

∫∫
O×(0,T )

e−2sσ2(ξ2)−3|ψ|2 dx dt

+εs−3λ−2

∫∫
Q

e−2sσ1(ξ1)−3|ψ|2dx dt.

(25)
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Plugging the estimates (23)–(25) in (22), we obtain:

I1
0 (γ1) + I2

0 (γ2) + s−3λ−2

∫∫
Q

e−2sσ1(ξ1)−3|ψ|2dx dt 6 C

(
λ

∫∫
ω1×(0,T )

e−2sσ1 |γ1|2 dx dt

+λ

∫∫
ω2×(0,T )

e−2sσ2 |γ2|2 dx dt+ s−3λ−2

∫∫
O×(0,T )

(e−2sσ1(ξ1)−3 + e−2sσ2(ξ2)−3)|ψ|2 dx dt

)
.

(26)

Now, we are going to estimate the first and the second term on the right hand side of (26). For the first

one, let ω̃1 be an open set satisfying ω1 ⊂⊂ ω̃1 ⊂⊂ O1,d ∩ Õ, ω̃1 ∩ O2,d = ∅ and let θ1 ∈ C2
c (ω̃1) be such

that θ1(x) = 1 for x ∈ ω1 and 0 6 θ1 6 1. Using the PDE satisfied by ψ, integrating by parts in time and
in space and using the PDE satisfied by γ1 (see (11)), we deduce

λ

∫∫
ω1×(0,T )

e−2sσ1 |γ1|2 dx dt 6 λ

α1

∫∫
ω̃1×(0,T )

θ1e
−2sσ1γ1(−ψt −∆ψ + aψ) dx dt

=
λ

α1

∫∫
ω̃1×(0,T )

[
(∂t(θ1e

−2sσ1)−∆(θ1e
−2sσ1))γ1 − 2∇(θ1e

−2sσ1) · ∇γ1
]
ψ dx dt

− λ

α1µ

∫∫
ω̃1×(0,T )

θ1e
−2sσ1 |ψ|21O1

dx dt.

(27)

Using that

|∂t(e−2sσ1)|+ |∆(θ1e
−2sσ1)| 6 Cs2λ2(ξ1)2e−2sσ1 and |∇(θ1e

−2sσ1)| 6 Csλξ1e−2sσ1 ,

for s ≥ C(T + T 2) and λ ≥ C, we obtain

λ

∫∫
ω1×(0,T )

e−2sσ1 |γ1|2 dx dt 6 Csλ2

∫∫
ω̃1×(0,T )

ξ1e
−2sσ1(sλξ1|γ1|+ |∇γ1|)|ψ| dx dt

6 εI1
0 (γ1) + Cs4λ5

∫∫
ω̃1×(0,T )

(ξ1)4e−2sσ1 |ψ|2 dx dt.
(28)

The same computations can be performed in order to estimate the second term in the right hand side of
(26). Thus

λ

∫∫
ω2×(0,T )

e−2sσ2 |γ2|2 dx dt 6 εI2
0 (γ2) + Cs4λ5

∫∫
ω̃2×(0,T )

(ξ2)4e−2sσ2 |ψ|2 dx dt, (29)

where ω̃2 is an open set satisfying ω2 ⊂⊂ ω̃2 ⊂⊂ O2,d ∩ Õ and ω̃2 ∩ O1,d = ∅.
In view of (28) and (29) and coming back to (26), we deduce the desired inequality (18).

• Proof of (ii). In the proof of (i), in order to absorb the first and second terms on the right hand side
of (26), the assumption (15) was crucial. However, it is clear that (15) does not cover all the cases where (8)
holds (see, for instance, Fig. 3 in Remark 2). Thus, in order to treat this situation, we will proceed in a
slightly different manner.

We will prove (19) when (i0, j0) = (2, 1), that is to say, in the case of Figure 3.
Recall that h = α1γ

1 + α2γ
2. Applying Proposition 9 (with m = 0 and j = 2) to the function (x, t) 7→

h(x, T − t), one gets

I2
0 (h) 6 C

(
λ

∫∫
ω2×(0,T )

e−2sσ2 |h|2 dx dt+ s−3λ−3
2∑
k=1

∫∫
Ok×(0,T )

e−2sσ2(ξ2)−3|ψ|2 dx dt

)
. (30)

8



Summing up (20) for i = 1, (21) and (30), we obtain

I1
0 (γ1) + I2

0 (h) + s−3λ−2

∫∫
Q

e−2sσ1(ξ1)−3|ψ|2dx dt 6 C

(
λ

∫∫
ω1×(0,T )

e−2sσ1 |γ1|2 dx dt

+s−6λ−6

∫∫
O1,d×(0,T )

e−2sσ1(ξ1)−6|γ1|2 dx dt+ λ

∫∫
ω2×(0,T )

e−2sσ2 |h|2 dx dt

+s−6λ−6

∫∫
O2,d×(0,T )

e−2sσ1(ξ1)−6|θ3γ
2|2 dx dt+ s−3λ−3

∫∫
O1×(0,T )

e−2sσ1(ξ1)−3|ψ|2 dx dt

+s−3λ−3
2∑
k=1

∫∫
Ok×(0,T )

e−2sσ2(ξ2)−3|ψ|2 dx dt+ s−3λ−2

∫∫
O×(0,T )

e−2sσ1(ξ1)−3|ψ|2 dx dt

)
.

(31)

Note that the first term in the right hand side of (31) can be estimated as in (27). For the second and fifth
terms, we can proceed as in (23). Using the fact that η1 = η2 in Supp (θ3)∩O2,d, we also see that the fourth
term can be estimated as follows:

s−6λ−6

∫∫
O2,d×(0,T )

e−2sσ1(ξ1)−6|θ3γ
2|2 dx dt 6 s−6λ−6

∫∫
O2,d×(0,T )

e−2sσ1(ξ1)−6|θ3h|2 dx dt

+ s−6λ−6

∫∫
O2,d×(0,T )

e−2sσ1(ξ1)−6|θ3γ
1|2 dx dt (32)

6 ε
(
I2
0 (h) + I1

0 (γ1)
)
.

For the sixth term, proceeding as in (25), one obtains

s−3λ−3
2∑
k=1

∫∫
Ok×(0,T )

e−2sσ2(ξ2)−3|ψ|2 dx dt 6 s−3λ−3

∫∫
O×(0,T )

e−2sσ2(ξ2)−3|ψ|2 dx dt

+ εs−3λ−2

∫∫
Q

e−2sσ1(ξ1)−3|ψ|2dx dt. (33)

For the third term, let ω̃2 be an open set satisfying ω2 ⊂⊂ ω̃2 ⊂⊂ O2,d ∩ Õ and let θ2 ∈ C2
c (ω̃2) be such

that θ2(x) = 1 for x ∈ ω2 and 0 6 θ2 6 1. Using that −ψt −∆ψ + aψ = h in ω̃2 × (0, T ), one has

λ

∫∫
ω2×(0,T )

e−2sσ2 |h|2 dx dt 6 λ
∫∫

ω̃2×(0,T )

θ2e
−2sσ2h(−ψt −∆ψ + aψ) dx dt

= λ

∫∫
ω̃2×(0,T )

[
(∂t(θ2e

−2sσ2)−∆(θ2e
−2sσ2))h− 2∇(θ2e

−2sσ2) · ∇h
]
ψ dx dt

−λ
2∑
k=1

1

µ

∫∫
ω̃2×(0,T )

θ2e
−2sσ2 |ψ|21Ok

dx dt.

(34)

Using that

|∂t(e−2sσ2)|+ |∆(θ2e
−2sσ2)| 6 Cs2λ2(ξ2)2e−2sσ2 and |∇(θ2e

−2sσ2)| 6 Csλξ2e−2sσ2 ,

for s ≥ C(T + T 2) and λ ≥ C, we obtain from (34) that

λ

∫∫
ω2×(0,T )

e−2sσ2 |h|2 dx dt 6 Csλ2

∫∫
ω̃2×(0,T )

ξ2e
−2sσ2(sλξ2|h|+ |∇h|)|ψ| dx dt

6 εI2
0 (h) + Cs4λ5

∫∫
ω̃2×(0,T )

(ξ2)4e−2sσ2 |ψ|2 dx dt. (35)
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Combining (23), (27), (32), (33), and (35) we deduce the following estimate:

I1
0 (γ1) + I2

0 (h) + s−3λ−2

∫∫
Q

e−2sσ1(ξ1)−3|ψ|2dx dt

6 Cs4λ5

∫∫
O×(0,T )

(e−2sσ1(ξ1)4 + e−2sσ2(ξ2)4)|ψ|2 dx dt.

This ends the proof.

Remark 13. A somewhat easier proof of Proposition 11 can be deduced using the fact that ‖η1‖∞ = ‖η2‖∞
(see Remark 7), but we have preferred to provide an argument which applies also in the more general case,
with ‖η1‖∞ 6= ‖η2‖∞. �

4 Observability and null controllability

As already announced, to achieve the proof of Theorem 1, we will apply a standard controllability-
observability argument. Thus, it will be sufficient to prove (12).

We will need the following:

Lemma 14. There exists µ00 such that, for any µ ≥ µ00 and any t1, t2 with 0 6 t1 6 t2 6 T , the
solution (ψ, γi) to (11) satisfies

‖ψ (· , t1)‖2 6 C ‖ψ (· , t2)‖2 , (36)

where C > 0 only depends on Ω, O, T , Oi, Oi,d, αi and ‖a‖L∞(Q).

Proof. Multiplying (11)2 by γi and integrating in (0, t)× Ω, it follows that∥∥γi (· , t)
∥∥2

+ 2

∫ t

0

∥∥∇γi (· , s)
∥∥2

ds 6 2 (‖a‖∞ + 1)

∫ t

0

∥∥γi (· , s)
∥∥2

ds+
1

2µ2

∫ t

0

‖ψ (· , s)‖2 ds.

From Gronwall’s Lemma, we have ∥∥γi (· , t)
∥∥2
6

C

µ2

∫ t

0

‖ψ (· , s)‖2 ds

and, consequently, ∫ t′

t

∥∥γi (· , s)
∥∥2

ds 6
C

µ2

∫ t′

0

‖ψ (· , s)‖2 ds, ∀t′ ∈ [t, T ] . (37)

Now, multiplying (11)1 by ψ and integrating in (t, t′)× Ω ⊂ Q, one gets

‖ψ (· , t)‖2+2

∫ t′

t

‖∇ψ (· , s)‖2 ds6‖ψ (· , t′)‖2+2 (‖a‖∞+1)

∫ t′

t

‖ψ (· , s)‖2 ds+

2∑
i=1

|αi|2

2

∫ t′

t

∥∥γi (· , s)
∥∥2

ds,

which, used in combination with (37), gives

‖ψ (· , t)‖2+2

∫ t′

t

‖∇ψ (· , s)‖2 ds6‖ψ (· , t′)‖2+
C

µ2

∫ t′

0

‖ψ (· , s)‖2 ds+2 (‖a‖∞+1)

∫ t′

t

‖ψ (· , s)‖2 ds.

In view again of Gronwall’s Lemma, we see that

‖ψ (· , t)‖2 6 C ‖ψ (· , t′)‖2 +
C

µ2

∫ t′

0

‖ψ (· , s)‖2 ds. (38)

and, therefore, integrating this inequality from 0 to t′ and taking µ large enough, we can guarantee that∫ t′

0

‖ψ (· , s)‖2 ds 6 C ‖ψ (· , t′)‖2 .

From this estimate and (38), we deduce (36).
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We are now prepared to present the proof of Theorem 3.

Proof of Theorem 3. Using the inequalities

e−2sσit−3(T − t)−3 ≥ e−C(1+1/T ) 1

T 6
in Ω× (T/4, 3T/4)

and

e−2sσit−3(T − t)−3 6 e−C(1+1/T ) 1

T 6
in Q,

we get from (18) or (19) that∫∫
Ω×(T/4,3T/4)

|ψ|2dx dt 6 C
∫∫
O×(0,T )

|ψ|2 dx dt. (39)

On the other hand, according to Lemma 14, one has

‖ψ (· , 0)‖2 6 C ‖ψ (· , t)‖2 ∀t ∈ (T/4, 3T/4). (40)

Combining (39) and (40), we deduce that

‖ψ (· , 0)‖2 6 C
∫∫
O×(0,T )

|ψ|2 dx dt. (41)

In order to obtain (12), we have to add global weighted integrals of γi in the left hand side of (41). We
will again consider separately two possibilities:

• Case 1: Condition (i) of Proposition 11 is satisfied.
In this case, the observability estimate (12) follows directly from (41).
In fact, let us consider the following weight functions

`(t) :=

{
T 2/4 for 0 6 t 6 T/2,
t(T − t) for T/2 6 t 6 T,

and

σ̄i(x, t) :=
e4λ‖ηi‖∞ − eλ(2‖ηi‖∞+ηi(x))

`(t)
, ξ̄i(x, t) :=

eλ(2‖ηi‖∞+ηi(x))

`(t)
.

One can directly see from the energy inequality (36) and the Carleman inequality (18) that there exists
C > 0 such that

s−3λ−2

∫∫
Q

e−2sσ̄1(ξ̄1)−3|ψ|2dx dt 6 Cs4λ5

∫∫
O×(0,T )

(e−2sσ̄1(ξ̄1)4 + e−2sσ̄2(ξ̄2)4)|ψ|2 dx dt (42)

(here, we use that µ > 0 is large enough).
Let ρ̂ = ρ̂(t) be a positive nondecreasing C1 function which blows up at t = T . From the PDE satisfied

by γi in (11), we readily see that

1

2

d

dt

∫
Ω

ρ̂−2|γi|2 dx+

∫
Ω

ρ̂−2|∇γi|2 dx

= − 1

µ

∫
Oi

ρ̂−2ψγi dx−
∫

Ω

ρ̂−3ρ̂t|γi|2 dx−
∫

Ω

ρ̂−2a|γi|2 dx

6
1

µ2

∫
Oi

ρ̂−2|ψ|2 dx+ (1 + ‖a‖∞)

∫
Ω

ρ̂−2|γi|2 dx

11



and, using Gronwall’s Lemma and the fact that γi(x, 0) ≡ 0, it follows that(∫
Ω

ρ̂−2|γi|2 dx
)

(τ) 6 C
∫∫
Oi×(0,T )

ρ̂−2|ψ|2 dx dt, ∀τ ∈ [0, T ]. (43)

Let σ̄∗1(t) = maxx∈Ω̄ σ̄1(x, t) and choose ρ̂(t) = esσ̄
∗
1 (t). Note that the choice of ρ̂ is determined by the

Carleman weight esσ, that depends on Ω, O, T and ‖a‖L∞(Q); but ρ̂ can be chosen independent of the O,
Oi,d, αi and µ. Since ∫∫

Oi×(0,T )

ρ̂−2|ψ|2 dx dt 6 C
∫∫

Q

(ξ̄1)−3e−2sσ̄1 |ψ|2 dx dt,

in view of (42) and (43), we find that

2∑
i=1

∫∫
Q

ρ̂−2|γi|2 dx dt 6 C
∫∫
O×(0,T )

(e−2sσ̄1(ξ̄1)4 + e−2sσ̄2(ξ̄2)4)|ψ|2 dx dt.

Combining this last inequality and (41), we deduce the observability estimate (12).

• Case 2: Condition (ii) of Proposition 11 is satisfied.
The proof in this case is exactly the same as in the first case since in the proof of the first case we only

used the third term in the left-hand side of (18), but we also have this term in the left-hand side of (19).

5 Appendix: Proof of Lemma 5

Let us first consider a function f ∈ C2(Ω) such that f > 0 in Ω, f = 0 on ∂Ω and the set

Af := {x ∈ Ω : ∇f(x) = 0 }

is finite and does not intersect ∂Ω. The construction of f can be achieved following classical arguments of
Morse theory (see [8, pp. 20-21] for more details).

Let us indicate how the functions η1 and η2 can be constructed:

Construction of η1: Let us set Af := { am : 1 6 i 6 k }. Then, from the connectedness of Ω, one can
construct k bijective paths ζm ∈ C∞([0, 1]; Ω) such that ζm(0) = am, ζm(1) := bm ∈ ω1 and

ζm([0, 1]) ∩ ζr([0, 1]) = ∅ for m 6= r.

Now, let G ∈ C∞(Rn;Rn) be such that Supp (G) ⊂ Ω and

G(ζm(t)) = ζ ′m(t) ∀t ∈ [0, 1], ∀m ∈ {1, . . . , k}. (44)

Note that the function G can be first defined in the compact set ζm([0, 1]) as above and then extended as a
C∞ function to a neighborhood of ζm([0, 1]).

Let Θ = Θ(x, t) be the flow associated to G, that is to say, the solution to
∂Θ

∂t
(x, t) = G(Θ(x, t)) for (x, t) ∈ Rn × R,

Θ(x, 0) = x for x ∈ Rn.

From (44) and the uniqueness of solution of the Cauchy problem for an ODE, we necessarily have that
Θ(am, t) = ζm(t) for all t ∈ [0, 1], whence Θ(am, 1) = bm ∈ ω1 for all m.

We remark that, for all t ∈ R, the function Θ(t, ·) satisfies the following properties:

• It is a diffeomorphism on Rn (with inverse Θ(·,−t));

• It maps Ω into itself (since Supp (G) ⊂ Ω);
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• It coincides with the identity map on a neighborhood of ∂Ω.

Then the function η1(x) := f(Θ(x,−1)) (defined in the whole Ω) satisfies η1 > 0 in Ω, η1 = 0 on ∂Ω,
η1 ∈ C2(Ω) and

∇η1(x) = 0 ⇔ ∃m ∈ {1, . . . , k} such that x = bm.

Construction of η2: Let us now consider k bijective paths δm ∈ C∞([0, 1]; Õ) such that δm(0) = bm,
δm(1) := cm ∈ ω2 and

δm([0, 1]) ∩ δj([0, 1]) = ∅ for i 6= j.

Let H ∈ C∞(Rn;Rn) be such that Supp (H) ⊂ Õ and

H(δm(t)) = δ′m(t), ∀t ∈ [0, 1], ∀m ∈ {1, . . . , k}.

Next, let Π = Π(x, t) be the flow associated to H, that is,
∂Π

∂t
(x, t) = H(Π(x, t)) for (x, t) ∈ Rn × R,

Π(x, 0) = x for x ∈ Rn.

Then, if we introduce the function

η2(x) :=

 η1(x) if x ∈ Ω \ Õ,

η1(Π(x,−1)) if x ∈ Õ,

we see that η2 > 0 in Ω, η2 = 0 on ∂Ω, η2 ∈ C2(Ω) (observe that Π(−1, ·) is the identity map in a

neighborhood of ∂Õ) and

∇η2(x) = 0 ⇔ ∃m ∈ {1, . . . , k} such that x = cm.

The proof of Lemma 5 is thus complete.
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[12] F. Guillén-González, F.P. Marques-Lopes, M.A. Rojas-Medar, On the approximate control-
lability of Stackelberg-Nash strategies for Stokes equations. Proc. Amer. Math. Soc. 141 (5) (2013),
1759–1773.

[13] O.Y. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations. ESAIM: Control
Optim. Calc. Var. 6 (2001), 39–72.

[14] O.Y. Imanuvilov, M. Yamamoto, Carleman estimates for a parabolic equation in a Sobolev space
of negative order and its applications, Lecture Notes in Pure and Appl. Math., vol. 218, Dekker, New
York (2001).
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