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A granular gas composed of inelastic hard spheres or disks in the homogeneous
cooling state is considered. Some of the particles are labeled and their number density
exhibits a time-independent linear profile along a given direction. As a consequence,
there is a uniform flux of labeled particles in that direction. It is shown that the inelastic
Boltzmann-Enskog kinetic equation has a solution describing this self-diffusion state.
Approximate expressions for the transport equation and the distribution function of
labeled particles are derived. The theoretical predictions are compared with simulation
results obtained using the direct simulation Monte Carlo method to generate solutions
of the kinetic equation. A fairly good agreement is found. C© 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4831978]

I. INTRODUCTION

The description of granular gases in terms of a more fundamental underlying kinetic theory
has been developed with considerable success.1, 2 Traditional methods of non-equilibrium statistical
mechanics have been adapted to the peculiarities of model systems of granular gases, mainly the
inelasticity of collisions implying the absence of an equilibrium state. In some cases, granular gases
stretch kinetic theory and also hydrodynamics to their limit.3

A prototype of transport process is self-diffusion, i.e., the diffusion of a two-component fluid
when the particles of both components are mechanically equivalent. For elastic systems, this process
has been extensively studied and the conditions for a macroscopic diffusion equation and the form
of the latter have been identified with quite generality.4, 5 Self-diffusion in granular gases has also
been studied.6–9 In all the latter studies, and also in most of those carried out in molecular fluids, the
limit of very low concentration of one of the components (tracer limit) is considered, and the aim is
to derive the self-diffusion hydrodynamic equation for that component to Navier-Stokes order, i.e.,
to get an expression for the particle flux that is valid to first order in the density gradient.

In this paper, self-diffusion will be considered in a situation in which there can be a macroscopic
flux of labeled particles in the system, since the concentrations of both components are of the same
order. Moreover, nothing will be assumed on the magnitude of the concentration gradients, so that
the validity of the study is not restricted to the small gradient limit. Finally, the state considered will
be characterized by both a stationary density profile of tagged particles and a uniform flux of them.
This state will be referred to as the uniform self-diffusion state. The study presented here has been
prompted and stimulated by the analysis of a similar one in the context of molecular, elastic fluids,
which are globally at equilibrium.10 Of course, there are significant differences to confront. Instead
of an equilibrium situation, the homogeneous cooling state (HCS) of a granular gas is considered.
The distribution function of this state has the property that all its time dependence is entirely through
the mean-square kinetic energy, or granular temperature, of the particles. This scaling property turns
out to be crucial both for the theoretical study of the uniform self-diffusion state and also to carry
out particle simulations of the state in an efficient way. Besides, the HCS of a granular gas is known
to be unstable against perturbations of large enough wavelength.11, 12

In spite of the differences with the elastic case, it will be shown that the Boltzmann-Enskog
equation for inelastic hard spheres or disks admits a solution having the macroscopic properties
characterizing the uniform self-diffusion state, in a system that is globally in the HCS. Although
the exact form of the solution is not known, the transport equation, the expression of the involved

1070-6631/2013/25(11)/113302/14/$30.00 C©2013 AIP Publishing LLC25, 113302-1

http://dx.doi.org/10.1063/1.4831978
http://dx.doi.org/10.1063/1.4831978
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4831978&domain=pdf&date_stamp=2013-11-18


113302-2 J. J. Brey and M. J. Ruiz-Montero Phys. Fluids 25, 113302 (2013)

transport coefficient, and even the one-particle distribution function of labeled particles, will be
obtained by means of an approximation. The theoretical predictions will be validated by comparing
with numerical results obtained by the direct simulation Monte Carlo (DSMC) method. To generate
the desired state, nonlocal boundary conditions will be employed, in the spirit of non-equilibrium
particle simulation methods.

It is worth to emphasize that solutions of the Boltzmann-Enskog equation describing non-
equilibrium states with arbitrarily large gradients of hydrodynamic fields are scarce, but they provide
a solid and unique starting point to investigate macroscopic properties of non-equilibrium transport.

The remaining of the paper is organized as follows. In Sec. II, some properties of the inelastic
Enskog equation as applied to the HCS are reviewed briefly. The macroscopic state of uniform
self-diffusion being considered is defined in Sec. III, where the Enskog equation obeyed by the
one-particle distribution of labeled particles is presented. Then, an approximated solution describing
the macroscopic state of uniform self-diffusion for arbitrary concentration and density gradient
of labeled particles is obtained. The approximation scheme used is based on a property of the
linearized kinetic equation, rather than on an expansion in orthogonal polynomials, as it is usually
done. Nevertheless, the results are quantitatively close to those derived by using a truncated Sonine
polynomial expansion. The theoretical predictions are compared with numerical solutions of the
Boltzmann equation, constructed by means of the direct simulation Monte Carlo method, and a good
agreement is found. The comparison includes not only the hydrodynamic profiles and the transport
coefficient, but also the one-particle distribution of labeled particles. Section V contains a short
summary and some additional comments on the results derived.

II. THE INELASTIC ENSKOG EQUATION AND THE HOMOGENEOUS COOLING STATE

The system under consideration is a granular gas composed of N equal hard spheres (d = 3) or
disks (d = 2) of mass m and diameter σ . Collisions between particles are inelastic, and characterized
by a constant, velocity independent, coefficient of normal restitution α, which is defined in the
interval 0 < α ≤ 1. It is assumed that the behaviour of the system is accurately described by the
(inelastic) Enskog equation. Then, the one-particle distribution function f (r, v, t) giving the average
number of particles at position r with velocity v at time t satisfies the equation13

(
∂

∂t
+ v · ∂

∂ r

)
f (r, v, t) = JE [r, v| f, f ], (1)

where the inelastic Enskog collision operator JE is defined as

JE [r1, v1| f1, f2] =
∫

d r2

∫
dv2 T +(1, 2) f1(r1, v1, t) f2(r2, v2, t)gE (r1, r2, t), (2)

for arbitrary functions f1(v) and f2(v). Here, gE (r1, r2, t) is the pair correlation function of the
fluid. In the revised Enskog theory (RET),14 it is approximated by the equilibrium functional of the
density evaluated for the local density field of the fluid. The binary collision operator T +(1, 2) is

T +(1, 2) = σ d−1
∫

dσ̂ θ (v12 · σ̂ )v12 · σ̂ [
δ(r12 − σ )α−2b−1

σ (1, 2) − δ(r12 + σ )
]
. (3)

In this expression, θ (x) is the Heaviside step function, v12 ≡ v1 − v2 is the relative velocity of
the two particles, r12 ≡ r1 − r2 is their relative position vector, dσ̂ is the solid angle element for
the unit vector σ̂ , pointing from the center of particle 2 to the center of particle 1 at contact, and
σ = σ σ̂ . Finally, b−1

σ (1, 2) is an operator changing all the velocities v1 and v2 to its right into the
pre-collisional values v∗

1 and v∗
2 given by

v∗
1 = v1 − 1 + α

2α
v12 · σ̂ σ̂ ,

v∗
2 = v2 + 1 + α

2α
v12 · σ̂ σ̂ . (4)
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From the one-particle distribution function, the macroscopic number of particles density, n(r, t),
flow velocity, u(r, t), and granular temperature, T (r, t), are defined as

n(r, t) =
∫

dv f (r, v, t), (5)

n(r, t)u(r, t) =
∫

dv v f (r, v, t), (6)

d

2
n(r, t)T (r, t) =

∫
dv

m

2
[v − u(r, t)]2 f (r, v, t). (7)

Because of the energy dissipation in collisions, there is no equilibrium state for the granular gas.
Instead, there is a special state of homogeneous cooling for which the system is translationally
invariant and the temperature decreases monotonically in time. In the kinetic theory description of
the HCS, it is assumed that all the time dependence of the distribution function occurs through the
granular temperature, so that it has the form15

fH (v, t) = nv−d
0 (t)φ(c), (8)

where

v0(t) ≡
(

2T (t)

m

)1/2

(9)

is a thermal velocity and φ(c) is an isotropic function of the scaled velocity

c ≡ v

v0(t)
. (10)

From Eqs. (1) and (8) it is easily obtained

∂T (t)

∂t
= −ζ (t)T (t), (11)

with the cooling rate ζ (t) being given by

ζ (t) = σ d−1π (d−1)/2(1 − α2)nge(n)T (t)1/2

(2m)1/2

(

d+3
2

)
d

∫
dc1

∫
dc2 c3

12φ(c1)φ(c2). (12)

In the above equation, ge(n) is the equilibrium pair correlation function of two particles at contact,
evaluated at the uniform local density n. The distribution function fH (v, t) obeys the equation

∂ fH (t)

∂t
= −ζ (t)T (t)

∂ fH (t)

∂T
= ge(n)JB[v| fH , fH ], (13)

where JB is the inelastic Boltzmann collision operator defined by

JB[ f1, f2] ≡ σ d−1
∫

dv2

∫
dσ̂ θ (v12 · σ̂ )v12 · σ̂

[
b−1

σ (1, 2) − 1
]

f1(v1) f2(v2). (14)

The explicit form of φ(c) is only known approximately. In the first Sonine approximation, it
reads15, 16

φ(c) = π−d/2e−c2 [
1 + a2S(2)(c2)

]
, (15)

with

S(2)(c2) = d(d + 2)

8
− d + 2

2
c2 + c4

2
(16)

and

a2 ≈ 16(1 − α)(1 − 2α2)

9 + 24d + (8d − 41)α + 30α2 − 30α3
. (17)
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In the same approximation, the HCS cooling rate is given by

ζ (t) ≈ 2π (d−1)/2(1 − α2)nge(n)σ d−1


 (d/2) d

(
1 + 3a2

16

)(
T (t)

m

)1/2

. (18)

III. THE STEADY SELF-DIFFUSION STATE

Consider now that some of the particles are labeled, and the system as a whole is in the HCS. The
Enskog equation for the time evolution of the one-particle distribution function of labeled particles,
fl (r, v, t), is (

∂

∂t
+ v · ∂

∂ r

)
fl(r, v, t) = ge(n)JB[r, v| fl, fH ]. (19)

It is worth to stress that fH is the distribution function for all particles in the system, i.e., including
both labeled and non-labeled particles. Also, the pair correlation function at contact is evaluated at
the total local density of particles. This is because each of the particles feels in its motion a global
bath of particles in the HCS, independently of the particle being labeled or non-labeled. Therefore,
Eq. (19) does not imply any additional hypothesis or approximation other than those required for the
accuracy of Eq. (1). The one-particle distribution function of non-labeled particles, fnl(r, v, t), is

fnl(r, v, t) = fH (v, t) − fl(r, v, t). (20)

Then Eqs. (13) and (19) yield(
∂

∂t
+ v · ∂

∂ r

)
fnl(r, v, t) = ge(n)JB[r, v| fnl , fH ], (21)

showing the required symmetry of the theory with regards to labeled and non-labeled particles. The
number density of labeled particles, nl(r, t), is

nl(r, t) =
∫

dv fl (r, v, t), (22)

and integration of Eq. (19) leads to

∂nl

∂t
+ ∂

∂ r
· j l(r, t) = 0, (23)

where j l (r, t) is the flux of labeled particles defined as

j l(r, t) =
∫

dv v fl(r, v, t) = nl(r, t)ul(r, t). (24)

The last equality defines the local average velocity of labeled particles, ul(r, t). In the following,
attention will be restricted to a state characterized by a homogeneous flux of labeled particles in
a given direction, arbitrarily taken as the z axis. Equation (23) implies that the density profile of
labeled particles is stationary, nl = nl(z). Assuming that there are no gradients perpendicular to the
z axis, Eq. (19) reduces to

∂ fl

∂t
+ vz

∂ fl

∂z
= ge(n)JB[z, v| fl, fH ]. (25)

Prompted by the results obtained for elastic, molecular systems,10 we search for a solution of the
above equation having the form

fl(z, v, t) = [nl(z) + χ (c)]
fH (v, t)

n
, (26)

where χ (c) is a function of the scaled velocity c defined in Eq. (10). It is assumed that this
function does not depend on the density of labeled particles nl and, even more, that it is position
independent. Of course, the consistency of this assumption will come from the existence of a
solution of the form assumed above. Note that the distribution given by Eq. (26) belongs to the
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class of distribution functions called normal,17 in which all the position and time dependence occurs
through the hydrodynamic fields, in this case the density of labeled particles and the temperature of
the system. Consistency of Eqs. (22) and (26) requires that∫

dc χ (c)φ(c) = 0. (27)

Substitution of Eq. (26) into Eq. (25), taking into account Eq. (13), yields

∂

∂t
[χ (c) fH (v, t)] + vz fH

∂nl

∂z
= ge(n)JB[v|χ fH , fH ]. (28)

Since all the position dependence in the above equation is through nl(z), it follows that the only
density profile compatible with the assumed form of the distribution function of labeled particles as
given by Eq. (26) is a linear one, namely

nl = az + b, (29)

a and b being arbitrary constants to be determined in each case from the boundary conditions. Of
course, because of the particular system being considered, it must be 0 ≤ nl ≤ n everywhere. Then,
Eq. (28) is equivalent to

ζ (t)T (t)
∂

∂T (t)
[χ (c) fH (v, t)] + ge(n)JB[v|χ fH , fH ] = vza fH (v, t). (30)

The solution χ (c) of the above equation has to be proportional to a. Let us write

χ (c) fH (v, t) = naB(v). (31)

The function B(v) will also depend on time through T(t), but this will not be indicated explicitly.
Use of Eq. (31) into Eq. (30) leads to

ζ (t)T (t)
∂ B(t)

∂T (t)
+ ge(n)JB[v|B, fH ] = vz

fH (v, t)

n
. (32)

Moreover, from Eqs. (24) and (26) it follows that

jl,z = −D(t)a, (33)

with the self-diffusion coefficient D identified as

D(t) = −
∫

dv vz B(v). (34)

Equation (33) has the same form as the Fick law derived when studying the self-diffusion equation to
Navier-Stokes order by means of the Chapman-Enskog procedure, and it has been solved in the first
Sonine approximation.6 In the Appendix, an alternative approximation is discussed. It has proven to
lead to slightly more accurate expressions for the transport coefficients of a granular gas, especially
for strong inelasticity.18 The result for the self-diffusion coefficient is

D(t)

D0(t)
= 4

(1 + α)2
[
1 + 3a2(α)

16

] , (35)

where D0(t) is the elastic value of the self-diffusion coefficient for hard spheres or disks evaluated
at the temperature T(t),

D0(t) = 
 (d/2) d

4π (d−1)/2nge(n)σ d−1

(
T (t)

m

)1/2

, (36)

and a2(α) is given by Eq. (17). In the same approximation, the expression of the one-particle
distribution function of labeled particles is

fl(z, v, t) =
[

nl − 2aD(t)

v0(t)
cz

]
v−d

0 (t)φ(c). (37)
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This expression deserves some comments. It is seen that for large positive values of cz it becomes
negative, what is unphysical. This should not be understood as a signal of a limitation of Eq. (32)
or even as an indication of the absence of a solution of the inelastic Enskog equation of the form
introduced in Eq. (26). Actually, Eq. (26) verifies the solubility conditions since it formally agrees
with one of the equations derived by the Chapman-Enskog procedure.6 The anomalous behaviour
of Eq. (37) for large values of cz is a consequence of the approximation made to derive it, namely
Eq. (A12).

Next consider the velocity moments of the distribution of labeled particles μk(z, t) defined as

μk(z, t) ≡
∫

dv vk
z fl (z, v, t). (38)

In particular, it is

μ0(z) = nl (z) = az + b, μ1 = jl,z = −Da, μ2(t) = nl T (t)

m
. (39)

In general, use of Eq. (37) leads to

μk = vk
0(t)

[
nl(z)νk − 2D(t)a

v0(t)
νk+1

]
, (40)

with νk given by

νk ≡
∫

dc ck
z φ(c). (41)

The isotropy of φ(z) implies that νk = 0 for odd k. Moreover, Eq. (8) implies that ν0 = 1 and ν2

= 1/2. The moments ν4 and ν6 are related to the coefficients appearing in the Sonine expansion
of φ(c). In particular, ν4 is determined by the coefficient a2 appearing in Eq. (15) and given in
Eq. (17).15, 16 The known expressions for both ν4 and ν6 are in good agreement with simulation
results, at least for not very strong inelasticity.19, 20

IV. SIMULATION RESULTS

To check the accuracy of the predictions derived above, numerical solutions of the inelastic
Boltzmann equation have been generated by using the direct simulation Monte Carlo method.21 This
is a particle simulation algorithm designed to mimic the dynamics of the particles in a low density
gas, and it has proven to be extremely efficient and accurate. Since the method has been reviewed
many times in the literature,22 it will not be described here.

The aim of the simulations was to investigate the existence of a solution of the kinetic equation
describing the uniform self-diffusion state, and the accuracy of its predicted properties. On the other
hand, the focus was not on delimiting the validity of the inelastic Enskog equation. For this reason,
and to decrease the statistical uncertainty of the simulation results, the DSMC method was used.
Note that the difference between the Boltzmann and the Enskog description for this particular state
is the constant factor of the equilibrium pair correlation of the fluid at (homogeneous) equilibrium,
ge(n), in front of the collision operator. As a consequence, proving the existence of a solution of the
Enskog equation for this state is equivalent to establishing it for the Boltzmann equation.

In the simulations, a system of hard spheres confined between two plates located at z = 0 and
z = L, respectively, was considered. To generate a non-homogeneous density of labeled particles
along the z-direction, nonlocal boundary conditions were used. They are conceptually similar to
those introduced many years ago by Lees and Edwards23 to generate the uniform shear flow state,
and with slight differences they are the same as those employed by Erpenbeck and Wood.24

The boundary conditions are as follows. When a particle reaches the wall at z = L, it is reinjected
in the system at z = 0 with the same velocity, but it will be labeled with probability p, independently
of whether it was or was not labeled before. Also, a particle leaving the system through the plate
at z = 0 is reinserted through z = L with a probability q of being labeled. In the simulations to be
reported in the following, the choice p + q = 1 was made, in order to make the roles of labeled and
unlabeled particles symmetric. It is clear that the effect of this label assignment at the boundaries of
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FIG. 1. Relative number density nl/n (left) and temperature Tl/T(0) (right) profiles of labeled hard spheres in two steady
states corresponding to the set of parameters indicated in the inset. The density is scaled with the total number density n and
the temperature is normalized with the initial temperature of the system. In the right plot, the total temperature profiles in
both states are also shown (dashed and dotted-dashed lines).

the system is to generate a gradient in the density of labeled particles. The particular choice p = 1
corresponds to a reservoir of labeled particles at z = 0 and one of the unlabeled particles at z = L.
In the long time limit, it is expected that the density of labeled particles will reach a steady profile.
On the other hand, the shape of the profile is by no means imposed by the boundary conditions, but
determined by the transport equations of the system. To modify the gradient of the density of labeled
particles, both the value of p and the size L of the system were varied in the simulations.

The study by simulation techniques of self-diffusion in a granular gas in the HCS presents two
additional difficulties, as compared with the same study in a molecular, elastic system at equilibrium.
First, the HCS becomes unstable when the linear size of the system is larger than a critical value that
depends on the coefficient of normal restitution α.11, 12 Second, the system is continuously cooling,
and after some time the typical velocities of the particles become very small and, consequently, the
statistical errors very large. This latter problem can be solved by mapping the properties of the HCS
onto the dynamics around a steady state, by means of a change in the time scale.25, 26 This steady
representation of the HCS has been employed in all the simulations reported in the following. The
instability of the HCS implies that systems smaller than the critical size have to be used. For the
interval of inelasticity considered here, 0.65 ≤ α ≤ 0.98, the critical size Lc lies in the interval 15.39λ

≤ Lc ≤ 54.43λ, where λ = (
√

2πnσ 2)−1 is the mean free path.
The simulations started in all cases with the same number of labeled and unlabeled particles,

being both uniformly distributed in the system. The initial velocity distribution was Gaussian with
zero mean and granular temperature set equal to unity. After some transient time period, the system
always reached a steady state. The results to be presented have been averaged over 200 trajec-
tories and also during a period of time of typically 2000 collisions per particle. To compute the
different properties of the system, it was divided into layers perpendicular to the z axis of width
�z = λ.

As an example, the steady density and temperature profiles for the labeled particles are shown
in Fig. 1 for two sets of values of the parameters, namely α = 0.98, L = 40λ, and p = 1 in one case
and α = 0.75, L = 14λ, and p = 0.75 in the other. In both systems, the density profile of labeled
particles is clearly linear, as predicted by the theory. Also the temperature of the labeled particles
is uniform and agrees with the global temperature of the system, aside from a boundary layer. The
small deviation of the total steady temperature from the initial value T(0) is due to the small error
of the expression for the cooling rate in the first Sonine approximation, an expression that is used
to construct the steady representation of the HCS.26 In any case, this is a technical detail without
physical implications. Similar density and temperature profiles were obtained in all the simulations
being reported.
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FIG. 2. Dimensionless reduced self-diffusion coefficient D∗ of a system in the uniform self-diffusion state, as a function of
the coefficient of normal restitution α. The symbols are the simulation results, while the solid line is the theoretical prediction
given in the main text.

From the fit to a straight line of the density profiles, the value of the uniform density gradient a
can be computed in each case. This value does not agree exactly with (p − q)/L = (2p − 1)/L, due
to the existence of boundary layers next to the walls. Also the flux of particles has been measured
in the simulations, and verified that it is actually uniform. Then, the simulation values of the self-
diffusion coefficient D have been obtained in each case by means of Eq. (33). No dependence
of the self-diffusion coefficient on the density gradient a was observed, in agreement with the
theoretical prediction. The measured values of the density gradient were roughly in the range 0.011
≤ aλ/n ≤ 0.067.

In Fig. 2 the reduced coefficient of self-diffusion, D∗ ≡ D(t)/D0(t), is plotted as a function of
the coefficient of normal restitution α. The symbols are the simulation results, while the solid line
is the theoretical prediction given by Eq. (35). It must be emphasized that the correction due to the
deviation from a Gaussian of the distribution function of the HCS, given by the term proportional to
a2, is imperceptible on the scale of the figure. Also the difference between Eq. (35) and the Chapman-
Enskog result to Navier-Stokes order6 is negligible and, therefore, it is hard to say which one fits
more accurately the simulation values. The results for the self-diffusion coefficient obtained here are
similar to those obtained by other methods to Navier-Stokes order.6, 9 The inelasticity of collisions
enhances diffusion, and this is not a minor effect. The systematic increase of the discrepancy between
the simulation results and the theoretical prediction as the inelasticity of the collisions increases,
is due to the loss of accuracy of the approximation introduced in the Appendix to evaluate the
self-diffusion coefficient.

The local velocity distribution of labeled particles has also been investigated in the simulations.
First, the profiles of the velocity moments μk defined in Eq. (38) have been considered. The
theoretical prediction for them is given by Eq. (40) and involves the velocity moments of the HCS,
νk, defined in Eq. (41). Although, as already mentioned, ν0 = 1 and ν2 = 1/2, and accurate expressions
are known for the moments ν4 and ν6; here, values obtained from the simulations themselves will
be used, in order to avoid additional sources of discrepancy, focussing on the comparison of the
predictions associated with the uniform self-diffusion state. Since the moments ν4 and ν6 have
been extensively studied elsewhere,19, 20 the results obtained for them in the simulations will not be
reproduced here.

Once the HCS values of the moments are known, scaled moments for the uniform self-diffusion
state are defined as

M2k+1 = μ2k+1

av2k+1
0 (t)ν2k+2λ

, (42)



113302-9 J. J. Brey and M. J. Ruiz-Montero Phys. Fluids 25, 113302 (2013)

0 10 20 30 40
z/

-1,1

-1

-0,9

-0,8

-0,7

-0,6

M
1

M
3

M
5

λ
0 10 20 30 40

z/

0

0,2

0,4

0,6

0,8

1

M
2

M
4

M
6

λ

FIG. 3. Dimensionless scaled odd (left) and even (right) velocity moments of the distribution of labeled particles for a system
with α = 0.98, p = 1, and L = 40λ. In each plot, the solid line is the theoretical prediction, which is −2D(t)/v0(t)λ for the
even moments, and nl(z)/n for the even ones.

M2k = μ2k

nv2k
0 (t)ν2k

. (43)

With this scaling, the theoretical prediction, Eq. (40), is that the odd scaled moments M2k+1 are
constant and equal to −2D(t)/v0(t)λ, while the even scaled moments M2k are equal to the relative
density of labeled particles nl(z)/n, for all k. In Fig. 3, the first scaled moments are shown for a
system with α = 0.98, L/λ = 40, and p = 1. The solid lines are the theoretical predictions in each
case. It is seen that the agreement between theory and simulations is very good for all the even
moments, while a systematic discrepancy is observed for the odd moments, although it is true that
they are uniform in the bulk of the system, i.e., outside the boundary layers, as predicted. Moreover,
the discrepancy is larger for the larger k. Probably, it is also due to the approximation introduced in
the Appendix that not only affects the value of the self-diffusion coefficient, but also the functional
dependence of the distribution function on the velocity.

Finally, the local velocity distribution of labeled particles has been studied. For that purpose,
four layers of width λ located at z = 0.2L, z = 0.4L, z = 0.6L, and z = 0.8L, respectively, have been
considered, and the marginal distribution of the z component of the velocity of labeled particles has
been measured in each layer. It must be kept in mind that both the density and the average velocity of
labeled particles depend on z in the uniform self-diffusion state. The local velocity distributions of
the z component, ϕ(cz), normalized to unity, are plotted in Fig. 4, for two different states, the second
one exhibiting a much larger density gradient of labeled particles than the former. The velocities
have been scaled with the thermal velocity v0(t), as in Eq. (10) and the distributions have been
divided by the Gaussian:

ϕM B(cz) = e−c2
z

√
π

. (44)

The different symbols in the figures correspond to the different positions of the layers in which
the marginal velocity distribution has been measured in the simulations, as indicated in the inset. The
solid lines are the distributions of the HCS in each case, also obtained from the simulations, using all
the particles in the system. To render the comparison easier, the velocity origin has been displaced
in each case with the average velocity, cz(z). It is observed that the dependence on position of the
velocity distribution function is not only through the local value of the mean velocity, but there is a
clear change in the shape of the distribution. Moreover, the larger the labeled density gradient, the
stronger the position dependence of the local velocity distribution.

The theoretical prediction for the one-particle distribution of labeled particles is given in
Eq. (37). From it, the marginal distribution for the z component, fl,z(z, vz, t), is easily obtained
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FIG. 4. Probability distribution of the dimensionless scaled z component of the velocity of labeled particles, ϕ, scaled with
the Gaussian ϕMB in the uniform self-diffusion state. The different symbols correspond to different layers centered at the
positions indicated in the inset, and the solid line is the velocity distribution of the whole system, which is in the HCS. The
values of the parameters are α = 0.98, L = 40λ, and p = 1 in the left plot, and α = 0.75, L = 14λ, and p = 1 in the right one.

by integration over vx and vy . Define the function

�(z, cz) = fl,z(z, vz, t)

v−1
0 (t)φz(cz)

− nl (z). (45)

Here, φz(cz) is the marginal velocity distribution for cz in the HCS. The theoretical prediction
for � is

� = −2aD(t)

v0(t)
cz, (46)

which is independent of position and time.
The results for the function �(z, cz) obtained in the simulations for the same systems as in

Fig. 4 are given in Fig. 5. When computing it, the function φz(cz) used has also been the one
measured in the simulations. The different symbols correspond to layers of the system centered at
different values of z, as indicated in the inset, while the solid lines are the theoretical predictions of
Eq. (46). With regards to the latter, there is no significant difference between using the measured
value of the self-diffusion coefficient or the theoretical prediction. The curves obtained with both
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FIG. 5. Dimensionless scaled marginal distribution of labeled particles � for the same systems as in Fig. 4. The solid lines
are the theoretical prediction given by Eq. (46).
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values are undistinguishable on the scale of the figure. A satisfactory agreement is seen in both
cases. The observed discrepancies occur for large velocities as compared with the typical thermal
value v0. For them, the approximation used to derive Eq. (37) is not expected to be accurate. Also,
the results show that the discrepancy between theory and simulations increases as the walls of the
system are approached, due to boundary effects.

V. SUMMARY

In this paper, it has been shown that kinetic theory methods based on the Enskog equation for
inelastic hard spheres or disks predict the existence of a self-diffusion state, in which the gas as
a whole is in the HCS and the concentration of labeled particles is time-independent and exhibits
a linear profile. Consistently, the flux of labeled particles is uniform. Moreover, this flux is pro-
portional to the density gradient, independently of the magnitude of the latter, the inelasticity of
collisions, and the relative density of labeled particles. The associated transport coefficient is given
by the same expression as obtained to Navier-Stokes order. The theoretical predictions have been
compared with numerical simulations of the kinetic equation, and a good agreement has been found,
even for the one-particle distribution function of labeled particles. To generate the state in the simula-
tions, nonlocal boundary conditions, in the spirit of non-equilibrium simulation methods, have been
used.

To put the above results in a proper context some comments seem appropriate:
1. The fact that the Boltzmann-Lorentz kinetic equation describing the evolution of the one-

particle distribution of labeled particles be linear does not imply by itself that the flux of labeled
particles has to be linear in their density gradient. There are many examples of linear kinetic equation
leading to nonlinear transport equations.

2. In this context, we do not claim that the self-diffusion process in the HCS of a granular gas
of inelastic hard spheres or disks be always linear. In principle, the analysis here has been restricted
to a particular self-diffusion state. The existence of this state is one of the results in this paper.

3. The above two comments also apply to the existence of linear higher-order terms, i.e.,
contributions to the particles flux involving higher-order gradients of the density of labeled particles,
beyond Fick’s law. The result here is that there is a special state in which the flux is proportional to
the gradient of the density, independently of the concentration gradient.

4. The linear density profile or, equivalently, the uniform flux of particles is not imposed by
the simulation method, but generated by the system. Any shape of the density of labeled particles
profile is, in principle, compatible with the imposed boundary conditions.

5. Actually, one is tempted to conclude that independently of the imposed boundary conditions,
any state with a steady density profile of labeled particles in one direction, will exhibit a linear profile
and the flux of particle will obey Fick’s law.

6. The only way to test the presence or absence of rheological effects in the present state is by
generating the density profile with the largest possible gradient. This has been done by taking equal
to unity the probability of a particle being labeled (unlabeled) when reintroduced into the system
through the boundary at z = 0 (z = L). As discussed in the text, no rheological effects, linear or
nonlinear, have been observed.

7. Finally, it is worth to stress that the test of the theory has not been restricted to the accuracy
of the transport equation. The much more demanding comparison of the theoretical predictions and
simulation results for the velocity moments and the velocity distribution itself has been carried out,
and a good agreement has been found for the range of thermal velocities. The discrepancy for large
velocities is probably due to the failure in that region of the approximation made to solve the kinetic
equation.

An interesting question is whether the existence of the uniform self-diffusion state and its
properties derived here are a peculiarity of the (inelastic) Boltzmann-Enskog equation, or they also
apply beyond the range of validity of the kinetic equation. Answering this question would require
to use a Liouville description of the system and, to check the theory, perform molecular dynamics
simulations.
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APPENDIX: EVALUATION OF THE SELF-DIFFUSION COEFFICIENT
AND THE DISTRIBUTION FUNCTION

In this Appendix, the approximation scheme leading to the expression for the coefficient of
self-diffusion D(t) given in Eq. (35) is described. It is convenient to introduce a dimensionless time
scale s by

s =
∫ t

0
dt ′ v0(t ′)

�
, (A1)

where � ≡ (nσ d − 1)−1 is proportional to the mean free path of the particles in the gas, and v0(t)
is the thermal velocity defined in Eq. (9). In the dimensionless units defined by the velocity c (see
Eq. (10)) and s, Eq. (32) reads

− ζ̃

2

∂

∂c
· [

cB̃(c)
] + ge(n) J̃B[c|B̃, φ] = czφ(c). (A2)

Here,

ζ̃ ≡ ζ (t)�

v0(t)
, (A3)

B̃(c) ≡ vd
0 (t)B(v)

�
= χ (c)φ(c)

a�
, (A4)

and J̃B is the dimensionless Boltzmann collision operator,

J̃B[c|B̃, φ] =
∫

dc2

∫
dσ̂ θ (c12 · σ̂ )c12 · σ̂ [

b−1
σ (1, 2) − 1

]
B(c1)φ(c2). (A5)

The operator b−1
σ (1, 2) acts on c1 and c2 in the same way as on v1 and v2.

The formal solution of Eq. (A2) can be written as

B̃(c) = −
∫ ∞

0
ds es�(c)czφ(c), (A6)

where �(c) is the linear operator defined by

�(c)h(c) ≡ ge(n) J̃B[c|h, φ] − ζ̃

2

∂

∂c
· [ch(c)] , (A7)

for an arbitrary function h(c). From Eqs. (34), (A4), and (A6), it is seen that

D = �v0(t)
∫ ∞

0
ds

∫
dc cze

s�(c)czφ(c)

= �v0(t)
∫ ∞

0
ds

[
es�+(c)cz

]
czφ(c). (A8)

In the above expression, �+(c) is the adjoint of c given by

�+(c1)h(c1) = ge(n)
∫

dc2φ(c2)
∫

dσ̂θ (c12 · σ̂ )c12 · σ̂ [bσ (1, 2) − 1] h(c1) − ζ̃

2
c1 · ∂

∂c1
h(c1).

(A9)



113302-13 J. J. Brey and M. J. Ruiz-Montero Phys. Fluids 25, 113302 (2013)

The operator bσ (1, 2) is the inverse of b−1
σ (1, 2), i.e., it changes all the velocities c1 and c2 to its right

into the post-collisional values c′
1 and c′

2 given by

c′
1 = c1 − 1 + α

2
c12 · σ̂ σ̂ , (A10)

c′
2 = c2 + 1 + α

2
c12 · σ̂ σ̂ . (A11)

Now the approximation is made of considering cz as an eigenfunction of the operator �+(c), i.e.,

�+(c)cz ≈ λcz . (A12)

Then, Eq. (A8) becomes

D(t) = −�v0(t)

2λ
, (A13)

where it has been assumed that λ < 0, something to be taken into account to check the consistency
of the approximation. To determine λ, Eq. (A12) is multiplied by czφ(c) and afterwards integrated
over c. After some simple algebra, it is obtained that

λ = − (1 + α)̃ζ

2(1 − α)
. (A14)

Therefore, the eigenvalue turns out to be negative as it should for consistency. In the calculations,
the expression for φ given in Eq. (15) has been used, and contributions quadratic in a2 have been
neglected. Substitution of Eq. (A14) into Eq. (A13) leads to Eq. (35), after using the expression for
the cooling rate given in Eq. (18).

Due to the symmetry of the expression of the self-diffusion coefficient as given by Eq. (A8), it
follows that the approximation introduced by Eq. (A12) is actually equivalent in the present case to

�(c)czφ(c) ≈ λczφ(c). (A15)

Use of this in Eq. (A6) leads to

B̃(c) = −2D(t)

�v0(t)
czφ(c), (A16)

and then, Eq. (37) follows directly.
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2 N. V. Brilliantov and T. Pöschel, Kinetic Theory of Granular Gases (Oxford University Press, Oxford, 2004).
3 I. Goldhirsch, “Granular gases: probing the boundaries of hydrodynamics,” in Granular Gases, edited by T. Pöschel and
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