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1. Preliminaries

Throughout this paper we assume that Y and Z are Banach spaces both,
being over K = R or K = C. If f : Y → Z is a continuous mapping, then one
way of solving the equation

f(y) = 0

is the continuation method with respect to a specific parameter. It consists of
finding a homotopy

H(t, y) t ∈ [0, 1],

which, when t = 0, verifies H(t, y) = f(y). This method is feasible if there is
a known solution of H(t, y) = 0 which can be continued to a zero of H(0, y)
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[1-5,18-21]. A comprehensive exposition of the continuation method and its
applications can be found in [22]-[24].

An existence of zero points in finite dimensional case is proved in [7-
17]. In the present paper sufficient conditions implying an existence of zeros
for Fredholm mappings in general Banach spaces have been formulated. The
proof is based on the classical continuation method [1-6] and Banach fixed
point theorem.

We briefly recall some concepts to be used. Direct sum. If Y1 and Y2 are
linear subspaces of linear space Y, we write Y = Y1

⊕
Y2 if and only if every

y ∈ Y can be represented uniquely as y = y1 + y2, where y1 ∈ Y1 and y2 ∈ Y2.

If Y is a Banach space and the above split is verified and Y1 and Y2 are closed
linear subspaces of Y, we say Y = Y1

⊕
Y2 is a topological direct sum. If there

is a continuous linear operator pi : Y → Y, piy = yi, i = 1 or i = 2, then
the split is a direct sum. We say Y1 is the topological complement of Y2. Let
f, g : U ⊂ Y → Z be continuous mappings, where Y, Z are Banach spaces.
g is said to be compact whenever the image g(B) is relatively compact (i.e.
its closure is compact in Z) for every bounded subset B ⊂ U. f is said to be
proper whenever the pre-image f−1(C) of every compact subset C ⊂ Z is also
a compact subset of U .

We recall some known propositions.

Proposition 1. If a ∈ U, U is open, g : U ⊂ Y → Z is compact and the
derivative g′(a) exists, then g′(a) ∈ L(Y, Z) is also compact (see [18, p. 296]).

If U is open, then F : U ⊂ Y → Z is said to be a Fredholm mapping if
and only if F is a C1-mapping, and if and only if F ′(y) : Y → Z is a linear
Fredholm operator for all y ∈ U. That L : Y → Z is a linear Fredholm operator
means that L is linear and continuous and both the numbers dim(ker(L)) and
codim(L(Y )) are finite. Therefore ker(L) = Y1 is a Banach space and has
topological complement Y2, since dim(Y1) is finite. The number

ind(L) = dim(ker (L))− codim(L(X))

is called the index of L. From the continuity of y 7→ ‖F ′(y)‖ we find that
ind(F ′(x)) is constant on U if U is connected.
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Proposition 2. For a linear Fredholm operator L : Y → Z, the following
is true: the perturbed operator L+C is also a Fredholm operator with ind(L+
C) = ind(L), if C ∈ L(Y, Z) and C is compact (see [18, p 366])

2. A zero of a proper mapping

By Ba(y∗) we mean a ball with center y∗ ∈ Y and radius a > 0, that is,
Ba(y∗) = {y ∈ Y : ‖y − y∗‖ < a}. As usually by ∂Ba(y∗) we denote the
boundary of Ba(y∗). The main result of the paper is:

Theorem. Let f : Y → Z be a C1 - proper Fredholm mapping and
g : Y → Z be a C1 - compact mapping. Suppose:

i) there is y∗ ∈ Y such that f(y∗) = g(y∗);
ii) there is a > 0 such that f(y) 6= tg(y) for t ∈ [0, 1] and y ∈ ∂Ba(y∗);
iii) for t ∈ [0, 1] and y ∈ Ba(y∗) f ′(y)− tg′(y) is surjective.
Then f has at least one zero in Ba(y∗).

Proof. First step.
We prove an existence of a compact set V ′′ containing all the solutions of

f(y)− tg(y) = 0, when y ∈ Ba(y∗), t ∈ [0, 1]. We put

V = g(B),

where B = {y ∈ Ba(y∗) : such that f(y) = tg(y) for some t = t(y) ∈ [0.1]}. B

is not empty, because f(y∗) = 1.g(y∗).
Since g is a compact mapping, g(Ba(y∗)) is a relatively compact set, and

V = g(B) ⊂ g(Ba), implies V is also a relatively compact.
The set [0, 1] × V is a compact in [0, 1] × Y and V ′ = {ty : (t, y) ∈

[0, 1]× V },
is a compact in Y, since it is the image of [0, 1] × V under the continuous
mapping

(t, y) ∈ [0, 1]× V 7→ ty ∈ Y.

But f is proper and therefore V ′′ = f−1(V ′) ⊂ Y is also a compact set.
Second step. Let us construct the following homotopy

H : [0, 1]× Y → Z,H(t, y) = f(y)− tg(y).
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By Proposition 1 g′(y) is compact, and so is tg′(y),∀t ∈ [0, 1]. Since f is a
Fredholm mapping, then f ′(y) ∈ L(Y, Z) is a Fredholm linear operator. By
Proposition 2 f ′(y) − tg′(y) is also a Fredholm operator, with ind(f ′(y) −
tg′(y)) = ind(f ′(y)). Therefore H(t, y) is a Fredholm mapping, and it is an
homotopy between f and f − g. As noted in Section 1, ind(f ′(y)) is constant
for all y in Y. Hence

ind(f ′(y)− tg′(y)) = const.

for all (t, y) ∈ [0, 1]× V ′′.

(a). We prove that if H(t0, y0) = 0, (t0, y) ∈ [0, 1]×Ba(y∗), then H(t, y) =
0 has a solution for t near t0. To this end we will transform this problem into
a fixed point problem.

Henceforth, partial derivatives will generally denoted by writing initial
spaces as subindices of mappings. Let t0 ∈ [0, 1] and y0 ∈ Ba(y∗). We consider
the partial derivative

HY (t0, y0) ∈ L(Y, Z),

which is surjective from hypothesis (iii). Since H ′(t0, y0) ∈ L([0, 1]×Y, Z) is a
linear Fredholm operator, we can conclude that kerH ′(t0, y0) is a closed finite
subspace of [0, 1]× Y, and so

kerHY (t0, y0) := Y1

is also a closed finite subspace of Y, since

kerHY (t0, y0) = kerH ′(t0, y0) ◦ u

u : Y → [0, 1]× Y, u(y) = (0, y).

Therefore Y1 splits Y in the sense that Y is the topological direct sum Y =
Y1 ⊕ Y2, with Y2 the topological complement of Y1.

By A we denote the restriction of the surjective mapping HY (t0, y0) to
Y2. It is an isomorphism: Indeed A(y2) = 0, with y2 ∈ Y2, the definition of
Y1 implies that y2 ∈ Y1. Hence y2 = 0, since Y = Y1 ⊕ Y2, and so,A being
linear, we conclude that A is injective. By hypothesis (iii) it is surjective, and
therefore it is an isomorphism.

We now set

G(t, y1, y2) := H(t, y0 + y1 + y2),
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and we solve the equation
G(t, 0, y2) = 0, (1)

for y2. Obviously we have

G(t0, 0, 0) = H(t0, y0) = 0,

and GY (t0, 0, 0) ∈ L(Y2, Z) is verified to be the same as the bijective mapping
A.

We now define the two following mappings

h(t, 0, y2) := A(y2)−G(t, 0, y2),

Tt(y2) := A−1(h(t, 0, y2)).

In this case t is an index of the mapping Tt.
Equation (1) is equivalent to the following “key equation ”

y2 = Tt(y2). (2)

The problem (1) is transformed into the fixed point problem (2), which we are
going to study. Let

|t− t0|, ‖y′2‖, ‖y2‖ ≤ r, |t− t0| ≤ r′0,

with r, r′0 which we will fix later. Since
hY (t, 0, y2) = A−GY (t, 0, y2), then hY (t0, 0, 0) = 0 ∈ L(Y2, Z). This together
with the fact that hY is continuous owing to f and g being C1−mappings,
and the application of the mean value theorem implies:

‖h(t, 0, y2)−h(t, 0, y′2)‖ ≤ sup{‖hY (t, 0, y−2+θ(y′2−y2)‖ : θ ∈ (0, 1)}.‖y′2−y2‖

= o(1)‖y′2 − y2‖, o(1) → 0 as r → 0. (3)

Since h(t0, 0, 0) = 0, and h is continuous, and given equation (3), we also
conclude:

‖h(t, 0, y2)‖ ≤ ‖h(t, 0, y2 − h(t, 0, 0)‖+ ‖h(t, 0, 0)‖

= o(1)‖y2‖+ o′(1), o(1) → 0 as r → 0, o′(1) → 0 as r′0 → 0. (4)

¿From equations (3) and (4) and the definition of Tt we can write

‖Tt(y2)‖ ≤ ‖A−1‖‖h(t, 0, y2)‖ = ‖A−1‖(o(1)‖y2‖+ o′(1))

o(1) → 0 while r → 0, o′(1) → 0 while r′0 → 0.
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We fix r so that o(1) <
1

2‖A−1‖
, and we construct the closed and non-empty

set

M = {y2 ∈ Y2 : ‖y2‖ ≤ r}.

Now we fix r′0 so that o′(1) <
r

2‖A−1‖
, and we introduce the set

M ′ = {(t, 0) ∈ [0, 1]× Y1 : |t− t0| ≤ min{r, r′0} = r0}.

For any (t, 0) ∈ M ′ Tt : M → M, and Tt is
1
2
−contractive, are verified

since

∀y2 ∈ M, ‖Tt(y2)‖ ≤ r ⇒ Tt(y2) ∈ M,

and

∀y2, y
′
2 ∈ M‖Tt(y2)− Tt(y′2)‖ ≤ ‖A−1‖ 1

2‖A−1‖‖y2 − y′2‖
.

Then Tt has a unique fixed point y2 ∈ M Tt(y2(t, 0)) = y2(t, 0), or equivalently
H(t, y0 + 0 + y2(t, 0)) = 0.

(b). We prove here that f has a zero y∗∗ ∈ Ba(y∗) by repeating a narrower
version of section (a). Let (t0, y0) be any point such that H(t0, y0) = 0, with
t0 ∈ [0, 1], y0 ∈ V ′′.

In section (a) we took r > 0 so that

o(1) <
1

2‖A(t0, y0)−1‖
.

Given the continuity of H(·, ·) and HY (·, ·) with the compactness of [0, 1]×V ′′,

we can fix r so that

o(1) <
1

2.max{‖A(t0, y0)−1‖ : (t, y) ∈ [0, 1]× V ′′}
=

1
2c

and we construct M with this r, therefore r′0 is selected sot that

o′(1) <
r

2c
.

Then we construct M ′ with r0 < min{r, r′0}. One can define a path Γ =
{(t, y) ∈ [0, 1] × Ba(y∗)} with beginning at (1, y∗). Let us consider the set
{(t, y) ∈ [0, 1]× V ′′: such that H(t, y) = 0}, and let [0, 1]× V ′′ be covered by
balls of centres (t, y) and radii r0. There is a finite subcovering of [0, 1] × V ′′

by these balls. The path starting at the point (1, y∗) can enter and leave one
of the balls of this subcovering at most once and it can always be prolongued
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in [0, 1] × V ′′ while t decreases. Then (ii) implies that Γ ends at (0, y∗∗) for
some y∗∗ ∈ Ba(y∗), that is

H(0, y∗∗) = 0.

Thus f(y∗∗) = 0, which proves the Theorem.
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