A FREDHOLM MAPPING OF INDEX ZERO

José M. Soriano Arbizu

Reprinted from the
Journal of the Korean Mathematical Society
Vol. 45, No. 2, March 2008

A FREDHOLM MAPPING OF INDEX ZERO

José M. Soriano Arbizu

Abstract

Sufficient conditions are given to assert that between any two Banach spaces over \mathbb{K} Fredholm mappings share exactly N values in a specific open ball. The proof of the result is constructive and is based upon continuation methods.

1. Preliminaries

Let X and Y be two Banach spaces. If $F: X \rightarrow Y$ is a continuous mapping, then one way of solving the equation

$$
\begin{equation*}
F(x)=0 \tag{1}
\end{equation*}
$$

is to embed (1) in a continuum of problems

$$
\begin{equation*}
H(x, t)=0 \quad(0 \leq t \leq 1), \tag{2}
\end{equation*}
$$

which is resolved when $t=0$. When $t=1$, the problem (2) becomes (1). In the case when it is possible to continue the solution for all t in $[0,1]$ then (1) is solved. This method is called continuation with respect to a parameter [1]-[23].

In this paper, sufficient conditions are given in order to prove that two differentiable mappings share exactly N values in a specific open ball. Other conditions, sufficient to guarantee the existence of zero points in finite and infinite dimensional settings, have been given by the author in several other papers [10]-[23]. In this paper we use continuation methods. The proof supplies the existence of implicitly defined continuous mappings whose ranges reach zero points [5]-[7]. The key is the use of the Continuous Dependence theorem on a parameter in Banach spaces [25] , properties of Fredholm C^{1}-mappings [25, 26], the Weierstrass theorem relative to extremum points [26], and a consequence of the properties of the algebra of Banach whose elements are the linear continuous mappings from a Banach space into itself.

We briefly recall some theorems and concepts to be used.

[^0]Theorem 1 ([25, pp. 17-19] Continuous Dependence Theorem). Let the following conditions be satisfied:
(i) P is a metric space, called the parameter space.
(ii) For each $p \in P$, the mapping T_{p} satisfies the following hypotheses:
(1) $T_{p}: M \subseteq X \rightarrow M$, i.e., M is mapped into itself by T_{p};
(2) M is a closed non-empty set in a complete metric space (X, d);
(3) T_{p} is k-contractive for fixed $k \in[0,1)$.
(iii) For a fixed $p_{0} \in P$, and for all $x \in M, \lim _{p \rightarrow p_{0}} T_{p}(x)=T_{p_{0}}(x)$.

Thus, for each $p \in P$, the equation $x_{p}=T_{p} x_{p}$ has exactly one solution, where $x_{p} \in M$ and $\lim _{p \rightarrow p_{0}} x_{p}=x_{p_{0}}$.

Definition ([25, 26]). We will assume X and Y are Banach spaces over \mathbb{K}, where $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$.

Mapping $F: D(F) \subseteq X \rightarrow Y$, is said to be compact whenever it is continuous and the image $F(B)$ is relatively compact (i.e., its closure $\overline{F(B)}$ is compact in $Y)$ for every bounded subset $B \subset D(F)$.

Mapping F is said to be proper whenever the pre-image $F^{-1}(K)$ of every compact subset $K \subset Y$ is also a compact subset of $D(F)$.

If $D(F)$ is open, then mapping F is said to be a Fredholm mapping if and only if both F is a C^{1}-mapping and $F^{\prime}(x): X \rightarrow Y$ is a Fredholm linear mapping for all $x \in D(F)$. That $L: X \rightarrow Y$ is a linear Fredholm mapping means that L is linear and continuous and both the numbers $\operatorname{dim}(\operatorname{ker}(L))$ and $\operatorname{codim}(R(L))$ are finite, and therefore $\operatorname{ker}(L)=X_{1}$ is a Banach space and has topological complement X_{2}, since $\operatorname{dim}\left(X_{1}\right)$ is finite. The integer number $\operatorname{ind}(L)=\operatorname{dim}(\operatorname{ker}(L))-\operatorname{codim}(R(L))$ is called the index of L, where dim signifies dimension, codim codimension, ker kernel and $R(L)$ stands for the range of mapping L.

Let $\mathcal{F}(X, Y)$ denote the set of all linear Fredholm mappings $A: X \rightarrow Y$. Let $\mathcal{L}(X, Y)$ denote the set of all linear continuous mappings $L: X \rightarrow Y$. Let Isom (X, Y) denote the set of all the isomorphisms $L: X \rightarrow Y$.

Let $B\left(x_{0}, \rho\right)$ denote the open ball of centre x_{0} and radius ρ, and $S\left(x_{0}, \rho\right)$ the sphere of centre x_{0} and radius ρ. If $u: X \rightarrow Y$ is a linear continuous bijective operator, the inverse linear continuous operator to u will be denoted by u^{-1}.

Theorem 2 ([27, pp. 23-24]). (a) The set $\operatorname{Isom} \mathcal{L}(X, Y)$ is open in $\mathcal{L}(X, Y)$.
(b) The mapping $\beta: \operatorname{Isom}(X, Y) \rightarrow \mathcal{L}(Y, X), \beta(u):=u^{-1}$ is continuous.

Theorem 3 ([26, p. 296]). Let $g: D(g) \subset X \rightarrow Y$ be a compact mapping, where $a \in D(g)$. If the derivative $g^{\prime}(a)$ exists, then $g^{\prime}(a) \in \mathcal{L}(X, Y)$ is also a compact mapping.

Theorem 4 ([26, p. 366]). Let $S \in \mathcal{F}(X, Y)$. The perturbed mapping $S+C$ verifies $S+C \in \mathcal{F}(X, Y)$ and $\operatorname{ind}(S+C)=\operatorname{ind}(S)$ if $C \in \mathcal{L}(X, Y)$ and C is a compact mapping.

Definition ([26, p.318]). Let $F: X \rightarrow Y$ be a C^{1}-mapping.

The point $u \in X$ is called a regular point of F if and only if $F^{\prime}(u) \in \mathcal{L}(X, Y)$ maps onto Y, and $\operatorname{ker}\left(F^{\prime}(x)\right)$ splits X into a topological direct sum.

The point $v \in Y$ is called a regular value of A if and only if the pre-image $F^{-1}(v)$ is empty or consists solely of regular points.

2. A Fredholm mapping

If we can say $u:=f-g$, then u has a zero if and only if f and g share a value, that is, there is $x \in X$ with $f(x)=g(x)$. We thereby establish our result in terms of f, g.

Theorem 5. Let $f, g: X \rightarrow Y$ be two C^{1}-mappings, where X and Y are two Banach spaces over $\mathbb{K}=\mathbb{R}$ or $\mathbb{K}=\mathbb{C}$.
(i) f is a proper and Fredholm mapping of index zero and g is a compact mapping.
(ii) Mapping f has N zeros, $x_{i}, i=1, \ldots, N$ in $B\left(x_{0}, \rho\right)$.
(iii) Zero is a regular value of the mapping $f(\cdot)-t g(\cdot): X \rightarrow Y$ for each parameter $t \in[0,1]$.
(iv) If $(x, t) \in S\left(x_{0}, \rho\right) \times[0,1]$ then $f(x) \neq \operatorname{tg}(x)$.

Hence the following statement holds true:
(a) f and g share exactly N values in the open ball $B\left(x_{0}, \rho\right)$.

Proof. (a) Henceforth $X \times \mathbb{R}$ is provided by the topology, given by the product norm. $\mathcal{L}(X, Y), \mathcal{L}(Y, X)$ are provided by the topologies given by their respective operator norm.
(a1) Let us construct the following homotopy $H: X \times[0,1] \rightarrow Y, H(x, t):=$ $f(x)-\operatorname{tg}(x)$, which is a C^{1}-homotopy between the mappings f and $f-g$.

Henceforth partial derivatives will generally be denoted by writing initial spaces as subindices of mappings.

We will see here for any $(x, t) \in X \times[0,1]$ that $H_{X}(x, t)=f^{\prime}(x)-t g^{\prime}(x)$ verifies $H_{X}(x, t) \in \mathcal{F}(X, Y)$, and $\operatorname{ind} H_{X}(x, t)=0$.

Since g is a compact mapping and the derivative $g^{\prime}(x)$ exists for any fixed $x \in X$, Theorem 3 implies that $g^{\prime}(x) \in \mathcal{L}(X, Y)$ is a compact mapping and therefore for any $(x, t) \in X \times[0,1], \operatorname{tg}^{\prime}(x) \in \mathcal{L}(X, Y)$, is also a compact mapping.

Since f is a Fredholm mapping of index zero, then $f^{\prime}(x) \in \mathcal{F}(X, Y), \forall x \in X$ and $\operatorname{ind}\left(f^{\prime}(x)\right)=0, \forall x \in X$.

These results together with Theorem 4 imply that $H_{X}(x, t) \in \mathcal{F}(X, Y)$, and $\operatorname{ind} H_{X}(x, t)=0, \forall(x, t) \in X \times[0,1]$.
(a2) We will now prove that, if $H(x, t)=0,(x, t) \in B\left(x_{0}, \rho\right) \times[0,1]$, then $H_{X}(x, t) \in \operatorname{isom}(X, Y)$.

Let $(x, t) \in X \times[0,1], H(x, t)=0$. Since zero is a regular value of $f(x)-t g(x)$, therefore $H_{X}(x, t)$ maps onto Y, therefore $\operatorname{codim}\left(\mathrm{R}\left(H_{X}(x, t)\right)\right)=\operatorname{dim}(Y / Y)=0$ and hence $\operatorname{ind}\left(H_{X}(x, t)\right)=\operatorname{dim}\left(\operatorname{ker}\left(H_{X}(x, t)\right)\right)$.

Furthermore, since $\operatorname{ind}\left(H_{X}(x, t)\right)=0$, therefore $\operatorname{dim}\left(\operatorname{ker}\left(H_{X}(x, t)\right)\right)=0$, and hence $H_{X}(x, t)$ is also injective. Thus, $H_{X}(x, t)$ is a bijective linear continuous mapping, and since Y is a Banach space, the linear inverse mapping $H_{X}(x, t)^{-1} \in \mathcal{L}(Y, X)$ is also continuous. Hence, $H_{X}(x, t) \in \operatorname{isom}(X, Y)$.
(a3) We will prove the existence of a compact set $V^{\prime \prime}$ which contains all $x \in X$ such that $f(x)-\operatorname{tg}(x)=0$, when $(x, t) \in B\left(x_{0}, \rho\right) \times[0,1]$. Let us define the set $V:=g(D)$, where

$$
D:=\left\{x \in B\left(x_{0}, \rho\right): \exists t \in[0,1], t=t(x), \text { such that } f(x)=\operatorname{tg}(x)\right\}
$$

Since $f\left(x_{i}\right)=0=f\left(x_{i}\right)-0 g\left(x_{i}\right), i=1, \ldots, N$, therefore $x_{i} \in D, i=1, \ldots, N$, hence D is not empty. Owing to $V \subset g\left(B\left(x_{0}, \rho\right)\right)$, we know that V is a bounded set, and with g as a compact mapping, then V is a relatively compact set.

We now construct the set $V^{\prime}:=\{t y: t \in[0,1], y \in \bar{V}\} . V^{\prime}$ is a compact set in Y due to the fact that it can be written in the following way $V^{\prime}=v(\bar{V} \times[0,1])$, where v is the continuous mapping $v: \bar{V} \times[0,1] \subset Y \times[0,1] \rightarrow Y, v(y, t)=t y$, and $\bar{V} \times[0,1]$ is a compact set in the topological product space $Y \times \mathbb{R}$.

Since f is a proper mapping and V^{\prime} is a compact set on Y, the pre-image of V^{\prime} under $f, V^{\prime \prime}:=f^{-1}\left(V^{\prime}\right)$ is a compact set on X, which contains all x which verify the following $f(x)-\operatorname{tg}(x)=0,(x, t) \in B\left(x_{0}, \rho\right) \times[0,1]$.
(a4) We will prove that there is a real number $C>0$ such that if

$$
(x, t) \in\left(H^{-1}\{0\}\right) \cap\left(B\left(x_{0}, \rho\right) \times[0,1]\right)
$$

where $H^{-1}\{0\}$ is the pre-image of zero under H, then $\left\|H_{X}(x, t)^{-1}\right\| \leq C$, where $H_{X}(x, t)^{-1}$ is the inverse mapping of $H_{X}(x, t)$.

Since H is a C^{1}-mapping, the mapping $H_{X}: X \times \mathbb{R} \rightarrow \mathcal{L}(X, Y),(x, t) \mapsto$ $H_{X}(x, t)$ is continuous. From (a2) if (x, t) belongs to $\left(H^{-1}\{0\}\right) \cap\left(B\left(x_{0}, \rho\right) \times\right.$ [0,1]), then $H_{X}(x, t) \in \operatorname{Isom}(X, Y)$. From Theorem 2, the mapping inverse formation $\beta: \operatorname{Isom}(X, Y) \subset \mathcal{L}(X, Y) \rightarrow \mathcal{L}(Y, X), \beta(u)=u^{-1}$, is a continuous mapping. Consequently, by composition of continuous mappings, the mapping

$$
\|\cdot\| \circ \beta \circ H_{X}: H^{-1}\{0\} \cap\left(V^{\prime \prime} \times[0,1]\right) \subset X \times \mathbb{R} \rightarrow \mathbb{R},(x, t) \mapsto\left\|H_{x}(x, t)^{-1}\right\|
$$

is continuous.
Since $H: X \times[0,1]$ is a continuous mapping, $H^{-1}\{0\} \subset X \times[0,1]$ is a closed set, and as $V^{\prime \prime} \times[0,1] \subset X \times \mathbb{R}$ is a compact set, therefore $H^{-1}\{0\} \cap$ $\left(V^{\prime \prime} \times[0,1]\right) \subset X \times \mathbb{R}$ is a compact set. Weierstrass Theorem implies that there is maximum of $\left\|H_{X}(x, t)^{-1}\right\|$ when $(x, t) \in H^{-1}\{0\} \cap\left(V^{\prime \prime} \times[0,1]\right)$, and hence, there is a real number $C>0$, such that $\left\|H_{x}(x, t)^{-1}\right\| \leq C, \forall(x, t) \in$ $\left(H^{-1}\{0\}\right) \cap\left(V^{\prime \prime} \times[0,1]\right)$.
(a5) Let suppose that $\left(x_{a}, t_{a}\right) \in B\left(x_{0}, \rho\right) \times[0,1]$ and that $H\left(x_{a}, t_{a}\right)=0$. Therefore:

From (a3), $\left(x_{a}, t_{a}\right) \in V^{\prime \prime} \times[0,1]$.
From (a2), $H_{X}\left(x_{a}, t_{a}\right) \in \operatorname{Isom}(X, Y)$.

We will now prove the existence of $r_{0}>0, r>0$ and the existence a continuous mapping $x(\cdot):\left[t_{a}-r_{0}, t_{a}+r_{0}\right] \cap[0,1] \rightarrow X$, which verifies

$$
\|x(t)\|<r, H\left(x_{a}+x(t), t\right)=0, \forall t \in\left[t_{a}-r_{0}, t_{a}+r_{0}\right] \cap[0,1] .
$$

To this end, we define $G(x, t):=H\left(x_{a}+x, t\right), \forall x \in X$, and we solve the equation

$$
\begin{equation*}
G(x, t)=0 \tag{3}
\end{equation*}
$$

for x. Obviously, we have $G\left(0, t_{a}\right)=H\left(x_{a}, t_{a}\right)=0$, and furthermore, $G_{X}\left(0, t_{a}\right)$ verifies $G_{X}\left(0, t_{a}\right)=H_{X}\left(x_{a}, t_{a}\right)$.

We transform Equation (3) into the following equivalent equation:

$$
\begin{equation*}
H_{X}\left(x_{a}, t_{a}\right)^{-1}\left[H_{X}\left(x_{a}, t_{a}\right)(x)-G(x, t)\right]=x . \tag{4}
\end{equation*}
$$

Equation (4) leads us to define the two following mappings

$$
h(x, t):=H_{X}\left(x_{a}, t_{a}\right)(x)-G(x, t),
$$

and

$$
T_{t}(x):=H_{X}\left(x_{a}, t_{a}\right)^{-1}((h(x, t)),
$$

where h is a C^{1}-mapping, and

$$
\begin{equation*}
h\left(0, t_{a}\right)=0 . \tag{5}
\end{equation*}
$$

Equation (4) is equivalent to the following "key equation"

$$
\begin{equation*}
T_{t}(x)=x \tag{6}
\end{equation*}
$$

Let us observe that t in the definition of T_{t} is an index and not a partial derivative as is usually written. Equation (3) is equivalent to the Fixed Point Equation (6), which will be studied below.

Let $x, x^{\prime} \in B\left(x_{0}, \rho\right) ; t, t_{a} \in[0,1]$ such that $\left|t-t_{a}\right|,\|x\|,\left\|x^{\prime}\right\|<r,\left|t-t_{a}\right|<r_{0}$, where r, r_{0} will be fixed at a later stage.

Since $h_{X}(x, t)=H_{X}\left(x_{a}, t_{a}\right)-G_{X}(x, t)$, hence

$$
\begin{equation*}
h_{X}\left(0, t_{a}\right)=0 . \tag{7}
\end{equation*}
$$

From Equation (7) and since $h_{X}: X \times[0,1] \rightarrow \mathcal{L}(X, Y),(x, t) \mapsto h_{X}(x, t)$ is continuous, the Taylor theorem implies that

$$
\begin{align*}
\left\|h(x, t)-h\left(x^{\prime}, t\right)\right\| & \leq \sup \left\{\left\|h_{x}\left(\left(x^{\prime}+\theta\left(x-x^{\prime}\right), t\right) \|: \theta \in[0,1]\right\}\right\| x-x^{\prime} \|\right. \\
& =o(1)\left\|x-x^{\prime}\right\|, \quad o(1) \rightarrow 0 \quad \text { as } \quad r \rightarrow 0 . \tag{8}
\end{align*}
$$

Due to Equations (5) and (8), and since h is a continuous mapping, therefore

$$
\begin{gathered}
\|h(x, t)\| \leq\|h(x, t)-h(0, t)\|+\|h(0, t)\|=o(1)\|x\|+o^{\prime}(1), \\
o(1) \rightarrow 0 \quad \text { as } \quad r \rightarrow 0, \quad o^{\prime}(1) \rightarrow 0 \quad \text { as } \quad r_{0}^{\prime} \rightarrow 0 .
\end{gathered}
$$

Hence

$$
\begin{gather*}
\left\|T_{t}(x)\right\| \leq\left\|H_{X}\left(x_{a}, t_{a}\right)^{-1}\right\|\|h(x, t)\| \leq\left\|H_{X}\left(x_{a}, t_{a}\right)^{-1}\right\|\left(o(1)\|x\|+o^{\prime}(1)\right), \\
o(1) \rightarrow 0 \quad \text { as } \quad r \rightarrow 0, \quad o^{\prime}(1) \rightarrow 0 \quad \text { as } \quad r_{0}^{\prime} \rightarrow 0 . \tag{9}
\end{gather*}
$$

Now r is fixed so that $o(1) \leq \frac{1}{2 C}$, and then the closed and non-empty set $M:=\{x \in X:\|x\| \leq r\}$ is constructed. We are now able to fix r_{0}^{\prime}, so that $o^{\prime}(1)<\frac{r}{2 C}$, and the set $M^{\prime}:=\left\{t \in[0,1]:\left|t-t_{a}\right| \leq \min \left\{r, r_{0}^{\prime}\right\}=r_{0}\right\}$ is constructed. We prove below that the hypotheses of Theorem 1 are verified by the spaces and mappings, we have just defined.

The Metric Space $\left(M^{\prime},|\cdot|\right)$ will be considered as the parameter space of the hypothesis (i) of Continuous Dependence Theorem 1. M will be considered as the closed and non-empty set and $(X,\|\cdot\|)$ as the complete metric space considered in hypothesis (ii) of Theorem 1, which is verified as we will see in the two following paragraphs.

Owing to Equation (9), for any fixed $t \in M^{\prime}$, and for all $x \in M$,

$$
\left\|T_{t}(x)\right\| \leq\left\|H_{X}\left(x_{a}, t_{a}\right)^{-1}\right\|\left(o(1)\|x\|+o^{\prime}(1)\right) \leq C\left(\frac{1}{2 C} r+\frac{1}{2 C} r\right) \leq r
$$

therefore $T_{t}(x) \in M$, and hence $T_{t}: M \rightarrow M$. That is, T_{t} maps the closed non-empty set M of the Banach space X into itself.

Due to Equation (8), for any $x, x^{\prime} \in M$ and all fixed $t \in M^{\prime}$

$$
\begin{aligned}
\left\|T_{t}(x)-T_{t}\left(x^{\prime}\right)\right\| & \leq\left\|H_{X}\left(x_{a}, t_{a}\right)^{-1}\left(h(x, t)-h\left(x^{\prime}, t\right)\right)\right\| \\
& \leq\left\|H_{X}\left(x_{a}, t_{a}\right)^{-1}\right\| \frac{1}{2 C}\left\|x-x^{\prime}\right\| \leq \frac{1}{2}\left\|x-x^{\prime}\right\|
\end{aligned}
$$

therefore T_{t} is half-contractive for any $t \in M^{\prime}$ which has been fixed. Hence hypothesis (ii) of Theorem 1 is verified.

For any fixed $t_{0} \in M^{\prime}$ and for all $x \in M$,

$$
\begin{aligned}
\lim _{t \rightarrow t_{0}, t \in M^{\prime}} T_{t}(x) & =\lim _{t \rightarrow t_{0}, t \in M^{\prime}} H_{X}\left(x_{a}, t_{a}\right)^{-1}\left(H_{X}\left(x_{a}, t_{a}\right)(x)-G(x, t)\right) \\
& =H_{X}\left(x_{a}, t_{a}\right)^{-1}\left(H_{X}\left(x_{a}, t_{a}\right)(x)-G\left(x, t_{0}\right)\right)=T_{t_{0}}(x)
\end{aligned}
$$

and hence hypothesis (iii) of Theorem 1 is also verified.
Thus, Theorem 1 implies, for any $t \in M^{\prime}$, that T_{t} has a unique fixed point
$T_{t}(x)=x:=x(t)$, and it is verified that $x(t) \rightarrow x\left(t_{0}\right)$ as $t \rightarrow t_{0}, t, t_{0} \in M^{\prime}$, that is, $x(\cdot)$ is a continuous mapping. Thus for each $t \in M^{\prime}$ there is only one $x(t) \in M \subset X$ such that $G(x(t), t)=0$, and hence

$$
\begin{equation*}
H\left(x_{a}+x(t), t\right)=0 \tag{10}
\end{equation*}
$$

Let us also observe that $T_{t_{a}}(0)=0, x\left(t_{a}\right)=0$. Equation (10) can be written in the following way: $H(\alpha(t), t)=0, \forall t \in M^{\prime}$, where α is the following continuous mapping $\alpha: M^{\prime} \rightarrow Y, \alpha(t):=x_{a}+x(t)$.
(a6) We will now prove that f and g share exactly N values in the open ball $B\left(x_{0}, \rho\right)$, using iteratively the process of the previous section a finite number of times, to find each shared value. To this end we have to prove that it is possible to select the same r_{0} for each iteration of the process of the previous section.

Let us define the mapping

$$
\varphi: V^{\prime \prime} \times[0,1] \times V^{\prime \prime} \times[0,1] \subset X \times[0,1] \times X \times[0,1] \rightarrow Y
$$

$$
\varphi\left(x_{a}, t_{a} ; x, t\right):=H_{X}\left(x_{a}, t_{a}\right) x-H\left(x_{a}+x, t\right)
$$

which, as a composition of continuous mappings, is uniformly continuous on the compact set $V^{\prime \prime} \times[0,1] \times V^{\prime \prime} \times[0,1]$ of the product topological space $X \times$ $\mathbb{R} \times X \times \mathbb{R}$. Therefore for any fixed $r>0$, there is $\delta\left(\frac{r}{2 C}\right)>0$ such that, if $\left(x_{a}, t_{a} ; x, t\right),\left(x_{a^{\prime}}, t_{a^{\prime}} ; x^{\prime}, t^{\prime}\right) \in V^{\prime \prime} \times[0,1] \times V^{\prime \prime} \times[0,1]$, with $\|\left(x_{a}, t_{a} ; x, t\right)-$ $\left(x_{a^{\prime}}, t_{a^{\prime}} ; x^{\prime}, t^{\prime}\right) \|<\delta\left(\frac{r}{2 C}\right)$, then $\left\|\varphi\left(x_{a}, t_{a} ; x, t\right)-\varphi\left(x_{a^{\prime}}, t_{a^{\prime}} ; x^{\prime}, t^{\prime}\right)\right\|<\frac{r}{2 C}$.

If we restrict the domain of mapping φ by fixing any $\left(x_{a}, t_{a}\right) \in V^{\prime \prime} \times[0,1]$ such that $H\left(x_{a}, t_{a}\right)=0$, we obtain mapping h considered in the previous section, that is

$$
\begin{gathered}
h:\left(H^{-1}\{0\}\right) \cap\left(V^{\prime \prime} \times[0,1]\right) \subset X \times \mathbb{R} \rightarrow Y, \\
h(x, t)=\varphi\left(x_{a}, t_{a} ; x, t\right)=H_{X}\left(x_{a}, t_{a}\right)(x)-H\left(x_{a}+x, t\right) .
\end{gathered}
$$

We are now able to fix r_{0}^{\prime} considered in the previous section by taking $r_{0}^{\prime}=$ $\delta\left(\frac{r}{2 C}\right)$, where r will be established later in this section.

On the other hand the mapping $\varphi_{X}: V^{\prime \prime} \times[0,1] \times V^{\prime \prime} \times[0,1] \rightarrow \mathcal{L}(X, Y)$, $\varphi_{X}\left(x_{a}, t_{a} ; x, t\right)=H_{X}\left(x_{a}, t_{a}\right)-H_{X}\left(x_{a}+x, t\right)$, is uniformly continuous on the compact set $V^{\prime \prime} \times[0,1] \times V^{\prime \prime} \times[0,1]$, and therefore there is $\delta\left(\frac{1}{2 C}\right)>0$ such that,

$$
\begin{gathered}
\forall\left(x_{a}, t_{a} ; x, t\right),\left(x_{a^{\prime}}, t_{a^{\prime}} ; x^{\prime}, t^{\prime}\right) \in V^{\prime \prime} \times[0,1] \times V^{\prime \prime} \times[0,1], \\
\\
\left\|\left(x_{a}, t_{a} ; x, t\right)-\left(x_{a^{\prime}}, t_{a^{\prime}} ; x^{\prime}, t^{\prime}\right)\right\|<\delta\left(\frac{1}{2 C}\right) \\
\Rightarrow\left\|\varphi_{x}\left(x_{a}, t_{a} ; x, t\right)-\varphi_{x}\left(x_{a^{\prime}}, t_{a^{\prime}} ; x^{\prime}, t^{\prime}\right)\right\|<\frac{1}{2 C} .
\end{gathered}
$$

Let us observe that the mapping h_{X} considered in the previous section is the mapping φ_{X}, when $\left(x_{a}, t_{a}\right)$ is fixed: $h_{X}: V^{\prime \prime} \times[0,1] \rightarrow \mathcal{L}(X, Y)$,

$$
h_{X}(x, t)=\varphi_{X}\left(x_{a}, t_{a} ; x, t\right)=H_{X}\left(x_{a}, t_{a}\right)-H_{X}\left(x_{a}+x, t\right) .
$$

At this point we determine the previously mentioned r by taking $r=\delta\left(\frac{1}{2 C}\right)$. Since r and r_{0}^{\prime} have been fixed, we are now able to fix r_{0} in the same way as in the previous section, that is, $r_{0}=\min \left\{r, r_{0}^{\prime}\right\}$.

The previous section implies that if $H\left(x_{a}, t_{a}\right)=0,\left(x_{a}, t_{a}\right) \in B\left(x_{0}, \rho\right) \times[0,1]$ then there is a continuous mapping $x(\cdot):\left[t_{a}-r_{0}, t_{a}+r_{0}\right] \cap[0,1] \rightarrow X$, which verifies

$$
H\left(x_{a}+x(t), t\right)=0, \forall t \in\left[t_{a}-r_{0}, t_{a}+r_{0}\right] \cap[0,1] .
$$

This lets us construct the continuous mapping $\alpha:\left[t_{a}, t_{a}+r_{0}\right] \rightarrow Y, \alpha(t)=$ $x_{a}+x(t)$ with $H(\alpha(t), t)=0, \forall t \in\left[t_{a}, t_{a}+r_{0}\right], \alpha\left(t_{a}\right)=x_{a}$.

We repeat this process of (a5) by taking $\left(\alpha\left(t_{a}+r_{0}\right), t_{a}+r_{0}\right)$ as an initial point in each iteration, where $\left(x_{a}, t_{a}\right)$ is the previous initial point, and $\left(x_{i}, 0\right) \in$ $B\left(x_{0}, \rho\right) \times[0,1], i \in 1, \ldots, N$ as the initial point of the first iteration with $\alpha:\left[0, r_{0}\right] \rightarrow Y, \alpha(t)=x_{i}+x(t), \alpha(0)=x_{i}$ to be extended in successive iterations of the process. A point $\left(x_{i}^{\prime}, 1\right) \in B\left(x_{0}, \rho\right) \times[0,1]$ which verifies $H\left(x_{i}^{\prime}, 1\right)=0, i \in$ $1, \ldots, N$ is reached in a finite number of iterations, since $[0,1]$ is a compact set, and from the frontier condition established in hypothesis (iv) of the theorem. In an identical way, but starting at in a value shared by f and g, and by the same process but taking initial successive points conveniently, we reach a zero
of f on the ball $B\left(x_{0}, \rho\right)$. Therefore f has the same number of zeros that shared values by f and g.

References

[1] E. L. Allgower, A Survey of Homotopy Methods for Smooth Mappings, Numerical solution of nonlinear equations (Bremen, 1980), pp. 1-29, Lecture Notes in Math., 878, Springer, Berlin-New York, 1981.
[2] E. L. Allgower, K. Glashoff, and H. Peitgen, Proceedings of the Conference on Numerical Solutions of Nonlinear Equations, Bremen, July 1980, Lecture Notes in Math. 878. Springer-Verlag, Berlin, 1981.
[3] E. L. Allgower and K. Georg, Numerical Continuation Methods, An introduction. Springer Series in Computational Mathematics, 13. Springer-Verlag, Berlin, 1990.
[4] J. C. Alexander and J. A. Yorke, The homotopy continuation method: numerically implementable topological procedures, Trans. Amer. Math. Soc. 242 (1978), 271-284.
[5] S. Bernstein, Sur la généralisation du problème de Dirichlet, Math. Ann. 69 (1910), no. 1, 82-136.
[6] C. B. Garcia and T. Y. Li, On the number of solutions to polynomial systems of equations, SIAM J. Numer. Anal. 17 (1980), no. 4, 540-546.
[7] C. B. Garcia and W. I. Zangwill, Determining all solutions to certain systems of nonlinear equations, Math. Oper. Res. 4 (1979), no. 1, 1-14.
[8] J. Leray and J. Shauder, Topologie et equations fonctionnelles, Ann. Sci. Ecole Norm. Sup. (3) 51 (1934), 45-78.
[9] J. M. Soriano, Existence of zeros for bounded perturbations of proper mappings, Appl. Math. Comput. 99 (1999), no. 2-3, 255-259.
[10] _ , Global minimum point of a convex function, Appl. Math. Comput. 55 (1993), no. 2-3, 213-218.
[11] , Extremum points of a convex function, Appl. Math. Comput. 66 (1994), no. 2-3, 261-266.
[12] _, On the existence of zero points, Appl. Math. Comput. 79 (1996), no. 1, 99-104.
[13] \quad, On
[14] , On the Bezout theorem real case, Comm. Appl. Nonlinear Anal. 2 (1995), no. 4, 59-66.
[15] \qquad , On the Bezout theorem, Comm. Appl. Nonlinear Anal. 4 (1997), no. 2, 59-66.
[16] \qquad , Mappings sharing a value on finite-dimensional spaces, Appl. Math. Comput. 121 (2001), no. 2-3, 391-395.
[17] , Compact mappings and proper mappings between Banach spaces that share a value, Math. Balkanica (N.S.) 14 (2000), no. 1-2, 161-166.
[18] _, Zeros of compact perturbations of proper mappings, Comm. Appl. Nonlinear Anal. 7 (2000), no. 4, 31-37.
[19] , A compactness condition, Appl. Math. Comput. 124 (2001), no. 3, 397-402.
[20] - Open trajectories, Appl. Math. Comput. 124 (2001), no. 2, 235-240.
[21] , On the existence of zero points of a continuous function, Acta Math. Sci. Ser. B Engl. Ed. 22 (2002), no. 2, 171-177.
[22] , Fredholm and compact mappings sharing a value, Chinese translation in Appl. Math. Mech. 22 (2001), no. 6, 609-612.
[23] J. M. Soriano and V. G. Angelov, A zero of a proper mapping, Fixed Point Theory 4 (2003), no. 1, 97-104.
[24] S. Smale, An infinite dimensional version of Sard's theorem, Amer. J. Math. 87 (1965), 861-866.
[25] E. Zeidler, Nonlinear Functional Analysis and Its Applications. III, Variational methods and optimization. Translated from the German by Leo F. Boron. Springer-Verlag, New York, 1985.
[26] , Applied Functional Analysis, Applied Mathematical Sciences, 109. SpringerVerlag, New York, 1995.
[27] H. Cartan, Differential Calculus, Houghton Mifflin Co., Boston, Mass., 1971.
Departamento de Análisis Matemático
Facultad de Matemáticas
Universidad de Sevilla
Aptdo. 1160, Sevilla 41080, Spain
E-mail address: soriano@us.es

[^0]: Received September 15, 2006.
 2000 Mathematics Subject Classification. Primary 58C30; Secondary 65H10.
 Key words and phrases. zero point, continuation methods, continuous dependence theorem, C^{1}-homotopy, proper mapping, compact mapping, regular value, Fredholm mapping, isomorphism.

 This work is partially supported by D.G.E.S. $\mathrm{Pb} 96-1338-\mathrm{CO} 2-01$ and the Junta de Andalucia.

