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Abstract. Sufficient conditions are given to assert that between any
two Banach spaces over K Fredholm mappings share exactly N values in
a specific open ball. The proof of the result is constructive and is based
upon continuation methods.

1. Preliminaries

Let X and Y be two Banach spaces. If F : X → Y is a continuous mapping,
then one way of solving the equation

(1) F (x) = 0

is to embed (1) in a continuum of problems

(2) H(x, t) = 0 (0 ≤ t ≤ 1),

which is resolved when t = 0. When t = 1, the problem (2) becomes (1). In
the case when it is possible to continue the solution for all t in [0, 1] then (1) is
solved. This method is called continuation with respect to a parameter [1]-[23].

In this paper, sufficient conditions are given in order to prove that two
differentiable mappings share exactly N values in a specific open ball. Other
conditions, sufficient to guarantee the existence of zero points in finite and
infinite dimensional settings, have been given by the author in several other
papers [10]-[23]. In this paper we use continuation methods. The proof supplies
the existence of implicitly defined continuous mappings whose ranges reach zero
points [5]-[7]. The key is the use of the Continuous Dependence theorem on a
parameter in Banach spaces [25] , properties of Fredholm C1-mappings [25, 26],
the Weierstrass theorem relative to extremum points [26], and a consequence of
the properties of the algebra of Banach whose elements are the linear continuous
mappings from a Banach space into itself.

We briefly recall some theorems and concepts to be used.
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Theorem 1 ([25, pp. 17-19] Continuous Dependence Theorem). Let the fol-
lowing conditions be satisfied:

(i) P is a metric space, called the parameter space.
(ii) For each p ∈ P, the mapping Tp satisfies the following hypotheses:

(1) Tp : M ⊆ X → M, i.e., M is mapped into itself by Tp;
(2) M is a closed non-empty set in a complete metric space (X, d);
(3) Tp is k-contractive for fixed k ∈ [0, 1).

(iii) For a fixed p0 ∈ P , and for all x ∈ M, limp→p0 Tp(x) = Tp0(x).
Thus, for each p ∈ P , the equation xp = Tpxp has exactly one solution,

where xp ∈ M and limp→p0 xp = xp0 .

Definition ([25, 26]). We will assume X and Y are Banach spaces over K,
where K = R or K = C.

Mapping F : D(F ) ⊆ X → Y , is said to be compact whenever it is continuous
and the image F (B) is relatively compact (i.e., its closure F (B) is compact in
Y ) for every bounded subset B ⊂ D(F ).

Mapping F is said to be proper whenever the pre-image F−1(K) of every
compact subset K ⊂ Y is also a compact subset of D(F ).

If D(F ) is open, then mapping F is said to be a Fredholm mapping if and
only if both F is a C1-mapping and F ′(x) : X → Y is a Fredholm linear
mapping for all x ∈ D(F ). That L : X → Y is a linear Fredholm mapping
means that L is linear and continuous and both the numbers dim(ker(L)) and
codim(R(L)) are finite, and therefore ker(L) = X1 is a Banach space and
has topological complement X2, since dim(X1) is finite. The integer number
ind(L) = dim(ker (L)) − codim(R(L)) is called the index of L, where dim sig-
nifies dimension, codim codimension, ker kernel and R(L) stands for the range
of mapping L.

Let F(X,Y ) denote the set of all linear Fredholm mappings A : X → Y .
Let L(X, Y ) denote the set of all linear continuous mappings L : X → Y . Let
Isom(X, Y ) denote the set of all the isomorphisms L : X → Y.

Let B(x0, ρ) denote the open ball of centre x0 and radius ρ, and S(x0, ρ) the
sphere of centre x0 and radius ρ. If u : X → Y is a linear continuous bijective
operator, the inverse linear continuous operator to u will be denoted by u−1.

Theorem 2 ([27, pp. 23-24]). (a) The set IsomL(X, Y ) is open in L(X,Y ).
(b) The mapping β : Isom(X, Y ) → L(Y, X), β(u) := u−1 is continuous.

Theorem 3 ([26, p. 296]). Let g : D(g) ⊂ X → Y be a compact mapping,
where a ∈ D(g). If the derivative g′(a) exists, then g′(a) ∈ L(X, Y ) is also a
compact mapping.

Theorem 4 ([26, p. 366]). Let S ∈ F(X, Y ). The perturbed mapping S + C
verifies S + C ∈ F(X,Y ) and ind(S + C) = ind(S) if C ∈ L(X, Y ) and C is a
compact mapping.

Definition ([26, p.318]). Let F : X → Y be a C1-mapping.
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The point u ∈ X is called a regular point of F if and only if F ′(u) ∈ L(X, Y )
maps onto Y, and ker(F ′(x)) splits X into a topological direct sum.

The point v ∈ Y is called a regular value of A if and only if the pre-image
F−1(v) is empty or consists solely of regular points.

2. A Fredholm mapping

If we can say u := f − g, then u has a zero if and only if f and g share a
value, that is, there is x ∈ X with f(x) = g(x). We thereby establish our result
in terms of f, g.

Theorem 5. Let f, g : X → Y be two C1-mappings, where X and Y are two
Banach spaces over K = R or K = C.

(i) f is a proper and Fredholm mapping of index zero and g is a compact
mapping.

(ii) Mapping f has N zeros, xi, i = 1, . . . , N in B(x0, ρ).
(iii) Zero is a regular value of the mapping f(·) − tg(·) : X → Y for each

parameter t ∈ [0, 1].
(iv) If (x, t) ∈ S(x0, ρ)× [0, 1] then f(x) 6= tg(x).
Hence the following statement holds true:

(a) f and g share exactly N values in the open ball B(x0, ρ).

Proof. (a) Henceforth X×R is provided by the topology, given by the product
norm. L(X, Y ),L(Y, X) are provided by the topologies given by their respective
operator norm.

(a1) Let us construct the following homotopy H : X× [0, 1] → Y , H(x, t) :=
f(x)− tg(x), which is a C1-homotopy between the mappings f and f − g.

Henceforth partial derivatives will generally be denoted by writing initial
spaces as subindices of mappings.

We will see here for any (x, t) ∈ X × [0, 1] that H
X

(x, t) = f ′(x) − tg′(x)
verifies H

X
(x, t) ∈ F(X, Y ), and indH

X
(x, t) = 0.

Since g is a compact mapping and the derivative g′(x) exists for any fixed
x ∈ X, Theorem 3 implies that g′(x) ∈ L(X, Y ) is a compact mapping and
therefore for any (x, t) ∈ X×[0, 1], tg′(x) ∈ L(X,Y ), is also a compact mapping.

Since f is a Fredholm mapping of index zero, then f ′(x) ∈ F(X, Y ), ∀x ∈ X
and ind(f ′(x)) = 0, ∀x ∈ X.

These results together with Theorem 4 imply that H
X

(x, t) ∈ F(X,Y ), and
indHX (x, t) = 0, ∀(x, t) ∈ X × [0, 1].

(a2) We will now prove that, if H(x, t) = 0, (x, t) ∈ B(x0, ρ) × [0, 1], then
H

X
(x, t) ∈ isom(X, Y ).
Let (x, t) ∈ X×[0, 1],H(x, t) = 0. Since zero is a regular value of f(x)−tg(x),

therefore H
X

(x, t) maps onto Y, therefore codim(R(H
X

(x, t))) = dim(Y/Y ) = 0
and hence ind(HX (x, t)) = dim(ker(HX (x, t))).
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Furthermore, since ind(H
X

(x, t)) = 0, therefore dim(ker(H
X

(x, t))) = 0,
and hence H

X
(x, t) is also injective. Thus, H

X
(x, t) is a bijective linear con-

tinuous mapping, and since Y is a Banach space, the linear inverse mapping
HX (x, t)−1 ∈ L(Y, X) is also continuous. Hence, HX (x, t) ∈ isom(X, Y ).

(a3) We will prove the existence of a compact set V ′′ which contains all
x ∈ X such that f(x)− tg(x) = 0, when (x, t) ∈ B(x0, ρ)× [0, 1]. Let us define
the set V := g(D), where

D := {x ∈ B(x0, ρ) : ∃t ∈ [0, 1], t = t(x), such that f(x) = tg(x)}.
Since f(xi) = 0 = f(xi)− 0g(xi), i = 1, . . . , N , therefore xi ∈ D, i = 1, . . . , N ,
hence D is not empty. Owing to V ⊂ g(B(x0, ρ)), we know that V is a bounded
set, and with g as a compact mapping, then V is a relatively compact set.

We now construct the set V ′ := {ty : t ∈ [0, 1], y ∈ V }. V ′ is a compact set in
Y due to the fact that it can be written in the following way V ′ = v(V × [0, 1]),
where v is the continuous mapping v : V × [0, 1] ⊂ Y × [0, 1] → Y, v(y, t) = ty,
and V × [0, 1] is a compact set in the topological product space Y × R.

Since f is a proper mapping and V ′ is a compact set on Y, the pre-image of
V ′ under f, V ′′ := f−1(V ′) is a compact set on X, which contains all x which
verify the following f(x)− tg(x) = 0, (x, t) ∈ B(x0, ρ)× [0, 1].

(a4) We will prove that there is a real number C > 0 such that if

(x, t) ∈ (H−1{0}) ∩ (B(x0, ρ)× [0, 1]),

where H−1{0} is the pre-image of zero under H, then ‖HX (x, t)−1‖ ≤ C, where
HX (x, t)−1 is the inverse mapping of HX (x, t).

Since H is a C1-mapping, the mapping H
X

: X × R → L(X, Y ), (x, t) 7→
H

X
(x, t) is continuous. From (a2) if (x, t) belongs to (H−1{0}) ∩ (B(x0, ρ) ×

[0, 1]), then HX(x, t) ∈ Isom(X,Y ). From Theorem 2, the mapping inverse
formation β : Isom(X,Y ) ⊂ L(X,Y ) → L(Y, X), β(u) = u−1, is a continuous
mapping. Consequently, by composition of continuous mappings, the mapping

‖ · ‖ ◦ β ◦H
X

: H−1{0} ∩ (V ′′ × [0, 1]) ⊂ X × R→ R, (x, t) 7→ ‖H
X

(x, t)−1‖,
is continuous.

Since H : X × [0, 1] is a continuous mapping, H−1{0} ⊂ X × [0, 1] is a
closed set, and as V ′′ × [0, 1] ⊂ X × R is a compact set, therefore H−1{0} ∩
(V ′′ × [0, 1]) ⊂ X × R is a compact set. Weierstrass Theorem implies that
there is maximum of ‖H

X
(x, t)−1‖ when (x, t) ∈ H−1{0} ∩ (V ′′ × [0, 1]), and

hence, there is a real number C > 0, such that ‖HX (x, t)−1‖ ≤ C, ∀(x, t) ∈
(H−1{0}) ∩ (V ′′ × [0, 1]).

(a5) Let suppose that (xa, ta) ∈ B(x0, ρ) × [0, 1] and that H(xa, ta) = 0.
Therefore:

From (a3), (xa, ta) ∈ V ′′ × [0, 1].
From (a2), HX (xa, ta) ∈ Isom(X, Y ).
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We will now prove the existence of r0 > 0, r > 0 and the existence a contin-
uous mapping x(·) : [ta − r0, ta + r0] ∩ [0, 1] → X, which verifies

‖x(t)‖ < r,H(xa + x(t), t) = 0,∀t ∈ [ta − r0, ta + r0] ∩ [0, 1].

To this end, we define G(x, t) := H(xa + x, t),∀x ∈ X, and we solve the
equation

(3) G(x, t) = 0

for x. Obviously, we have G(0, ta) = H(xa, ta) = 0, and furthermore, G
X

(0, ta)
verifies G

X
(0, ta) = H

X
(xa, ta).

We transform Equation (3) into the following equivalent equation:

(4) HX (xa, ta)−1[HX (xa, ta)(x)−G(x, t)] = x.

Equation (4) leads us to define the two following mappings

h(x, t) := H
X

(xa, ta)(x)−G(x, t),

and
Tt(x) := H

X
(xa, ta)−1((h(x, t)),

where h is a C1-mapping, and

(5) h(0, ta) = 0.

Equation (4) is equivalent to the following “key equation”

(6) Tt(x) = x.

Let us observe that t in the definition of Tt is an index and not a partial
derivative as is usually written. Equation (3) is equivalent to the Fixed Point
Equation (6), which will be studied below.

Let x, x′ ∈ B(x0, ρ); t, ta ∈ [0, 1] such that |t−ta|, ‖x‖, ‖x′‖ < r, |t−ta| < r0,
where r, r0 will be fixed at a later stage.

Since h
X

(x, t) = H
X

(xa, ta)−G
X

(x, t), hence

(7) h
X

(0, ta) = 0.

From Equation (7) and since h
X

: X × [0, 1] → L(X,Y ), (x, t) 7→ h
X

(x, t) is
continuous, the Taylor theorem implies that

(8)
‖h(x, t)− h(x′, t)‖ ≤ sup{‖hX ((x′ + θ(x− x′), t)‖ : θ ∈ [0, 1]}‖x− x′‖

= o(1)‖x− x′‖, o(1) → 0 as r → 0.

Due to Equations (5) and (8), and since h is a continuous mapping, therefore

‖h(x, t)‖ ≤ ‖h(x, t)− h(0, t)‖+ ‖h(0, t)‖ = o(1)‖x‖+ o′(1),

o(1) → 0 as r → 0, o′(1) → 0 as r′0 → 0.

Hence

‖Tt(x)‖ ≤ ‖HX (xa, ta)−1‖‖h(x, t)‖ ≤ ‖HX (xa, ta)−1‖(o(1)‖x‖+ o′(1)),

(9) o(1) → 0 as r → 0, o′(1) → 0 as r′0 → 0.
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Now r is fixed so that o(1) ≤ 1
2C , and then the closed and non-empty set

M := {x ∈ X : ‖x‖ ≤ r} is constructed. We are now able to fix r′0, so that
o′(1) < r

2C , and the set M ′ := {t ∈ [0, 1] : |t − ta| ≤ min{r, r′0} = r0} is
constructed. We prove below that the hypotheses of Theorem 1 are verified by
the spaces and mappings, we have just defined.

The Metric Space (M ′, | · |) will be considered as the parameter space of the
hypothesis (i) of Continuous Dependence Theorem 1. M will be considered
as the closed and non-empty set and (X, ‖ · ‖) as the complete metric space
considered in hypothesis (ii) of Theorem 1, which is verified as we will see in
the two following paragraphs.

Owing to Equation (9), for any fixed t ∈ M ′, and for all x ∈ M,

‖Tt(x)‖ ≤ ‖H
X

(xa, ta)−1‖(o(1)‖x‖+ o′(1)) ≤ C(
1

2C
r +

1
2C

r) ≤ r,

therefore Tt(x) ∈ M, and hence Tt : M → M. That is, Tt maps the closed
non-empty set M of the Banach space X into itself.

Due to Equation (8), for any x, x′ ∈ M and all fixed t ∈ M ′

‖Tt(x)− Tt(x′)‖ ≤ ‖H
X

(xa, ta)−1(h(x, t)− h(x′, t))‖

≤ ‖H
X

(xa, ta)−1‖ 1
2C

‖x− x′‖ ≤ 1
2
‖x− x′‖,

therefore Tt is half-contractive for any t ∈ M ′ which has been fixed. Hence
hypothesis (ii) of Theorem 1 is verified.

For any fixed t0 ∈ M ′ and for all x ∈ M,

limt→t0,t∈M ′Tt(x) = limt→t0,t∈M ′H
X

(xa, ta)−1(H
X

(xa, ta)(x)−G(x, t))

= HX (xa, ta)−1(HX (xa, ta)(x)−G(x, t0)) = Tt0(x),

and hence hypothesis (iii) of Theorem 1 is also verified.
Thus, Theorem 1 implies, for any t ∈ M ′, that Tt has a unique fixed point
Tt(x) = x := x(t), and it is verified that x(t) → x(t0) as t → t0, t, t0 ∈ M ′,

that is, x(·) is a continuous mapping. Thus for each t ∈ M ′ there is only one
x(t) ∈ M ⊂ X such that G(x(t), t) = 0, and hence

(10) H(xa + x(t), t) = 0.

Let us also observe that Tta(0) = 0, x(ta) = 0. Equation (10) can be written in
the following way: H(α(t), t) = 0,∀t ∈ M ′, where α is the following continuous
mapping α : M ′ → Y, α(t) := xa + x(t).

(a6) We will now prove that f and g share exactly N values in the open ball
B(x0, ρ), using iteratively the process of the previous section a finite number
of times, to find each shared value. To this end we have to prove that it is
possible to select the same r0 for each iteration of the process of the previous
section.

Let us define the mapping

ϕ : V ′′ × [0, 1]× V ′′ × [0, 1] ⊂ X × [0, 1]×X × [0, 1] → Y,
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ϕ(xa, ta;x, t) := H
X

(xa, ta)x−H(xa + x, t),
which, as a composition of continuous mappings, is uniformly continuous on
the compact set V ′′ × [0, 1]× V ′′ × [0, 1] of the product topological space X ×
R × X × R. Therefore for any fixed r > 0, there is δ( r

2C ) > 0 such that,
if (xa, ta; x, t), (xa′ , ta′ ;x′, t′) ∈ V ′′ × [0, 1] × V ′′ × [0, 1], with ‖(xa, ta; x, t) −
(xa′ , ta′ ; x′, t′)‖ < δ( r

2C ), then ‖ϕ(xa, ta; x, t)− ϕ(xa′ , ta′ ;x′, t′)‖ < r
2C .

If we restrict the domain of mapping ϕ by fixing any (xa, ta) ∈ V ′′×[0, 1] such
that H(xa, ta) = 0, we obtain mapping h considered in the previous section,
that is

h : (H−1{0}) ∩ (V ′′ × [0, 1]) ⊂ X × R→ Y,

h(x, t) = ϕ(xa, ta;x, t) = H
X

(xa, ta)(x)−H(xa + x, t).
We are now able to fix r′0 considered in the previous section by taking r′0 =

δ( r
2C ), where r will be established later in this section.
On the other hand the mapping ϕ

X
: V ′′ × [0, 1] × V ′′ × [0, 1] → L(X, Y ),

ϕX (xa, ta;x, t) = HX (xa, ta) − HX (xa + x, t), is uniformly continuous on the
compact set V ′′× [0, 1]×V ′′× [0, 1], and therefore there is δ( 1

2C ) > 0 such that,

∀(xa, ta;x, t), (xa′ , ta′ ; x′, t′) ∈ V ′′ × [0, 1]× V ′′ × [0, 1],

‖(xa, ta; x, t)− (xa′ , ta′ ; x′, t′)‖ < δ(
1

2C
)

⇒ ‖ϕ
X

(xa, ta; x, t)− ϕ
X

(xa′ , ta′ ; x′, t′)‖ <
1

2C
.

Let us observe that the mapping hX considered in the previous section is the
mapping ϕX , when (xa, ta) is fixed: hX : V ′′ × [0, 1] → L(X, Y ),

h
X

(x, t) = ϕ
X

(xa, ta; x, t) = H
X

(xa, ta)−H
X

(xa + x, t).

At this point we determine the previously mentioned r by taking r = δ( 1
2C ).

Since r and r′0 have been fixed, we are now able to fix r0 in the same way as in
the previous section, that is, r0 = min{r, r′0}.

The previous section implies that if H(xa, ta) = 0, (xa, ta) ∈ B(x0, ρ)× [0, 1]
then there is a continuous mapping x(·) : [ta − r0, ta + r0] ∩ [0, 1] → X, which
verifies

H(xa + x(t), t) = 0,∀t ∈ [ta − r0, ta + r0] ∩ [0, 1].
This lets us construct the continuous mapping α : [ta, ta + r0] → Y , α(t) =
xa + x(t) with H(α(t), t) = 0, ∀t ∈ [ta, ta + r0], α(ta) = xa.

We repeat this process of (a5) by taking (α(ta + r0), ta + r0) as an initial
point in each iteration, where (xa, ta) is the previous initial point, and (xi, 0) ∈
B(x0, ρ) × [0, 1], i ∈ 1, . . . , N as the initial point of the first iteration with
α : [0, r0] → Y, α(t) = xi+x(t), α(0) = xi to be extended in successive iterations
of the process. A point (x′i, 1) ∈ B(x0, ρ)× [0, 1] which verifies H(x′i, 1) = 0, i ∈
1, . . . , N is reached in a finite number of iterations, since [0, 1] is a compact set,
and from the frontier condition established in hypothesis (iv) of the theorem.
In an identical way, but starting at in a value shared by f and g, and by the
same process but taking initial successive points conveniently, we reach a zero
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of f on the ball B(x0, ρ). Therefore f has the same number of zeros that shared
values by f and g. ¤
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