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Abstract

We introduce a class of solids that can be constructed
gluing stackable pieces, which has been proven to have
advantages in architectural construction. We derive
a necessary condition for a solid to belong to this
class. This helps to specify a simple sufficient con-
dition for the existence of a stackable tessellation of a
given solid. Finally, we show the compatibility of our
method with some discretization techniques appear-
ing in the literature.

Introduction

During the last decades, the increasing demand of ar-
chitectural freeform shapes has motivated the study
of surface tesselations in tiles which can be manu-
factured with a low economic impact. Substantial
research has been done on planar tesselations with
triangular meshes, quadrilateral meshes [1, 2] and its
special cases of spherical and conical meshes [3]. Nev-
ertheless, tessellating methods in non-standard non-
planar panels have been rarely considered, since for
most construction materials the production of such
building components is very expensive. The inno-
vative CASTonCAST project [4] proposes a system
which consists of two parts: a geometric method for
the construction of double curved shapes by means of
stackable tiles and an efficient fabrication technique of
curved precast panels which relies on shaping building
components in stacks by using the previous compo-
nent as a mold for the next one. The latter relies on
using the top surface of each component as part of the
mold for the next one, after applying a chemical bar-
rier. Once the components have been fabricated in
stacks, they are detached and assembled by glueing
them through their lateral faces, forming a new solid
called strip. This procedure features obvious advan-
tages concerning storage and transport as well.
We analyse the kind of solids that can be con-

structed using stacks under some reasonable assump-
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tions. More precisely, we focus on constructions where
the tiles form a face-to-face tessellation whose adja-
cency graph is a grid both in stack and strip forms, as
in Figure 1. We also require the junction faces in the
strip configuration to be planar. After stating neces-
sary conditions for a solid to admit a stackable tes-
sellation as desired, we provide sufficient conditions
and a procedure to obtain the stacks that generate
it. It turns out that the solids for which a stack-
able tessellation exists are naturally defined, skipping
some technical details, as the ones generated sweep-
ing a surface around an axis or in a fixed direction. In
addition, we prove that, under certain conditions, a
one-parametric family of stackable tessellations exists.
Finally, we approach the problem of approximating a
target solid using polyhedral tiles.

Figure 1: Stacks (right) and associated strips (left)

We normally use capital letters for points, lower-
case letters for vectors, lines and rays, and Greek let-
ters for curves. We add a ∗ to the names in order to
indicate the correspondences between the 2- and 3-
dimensional elements of the constructions in Sections
1 and 2. We will often omit the indices ranges, for
ease of reading. The curves and surfaces are consid-
ered to have no self-intersections. Abusing notation,
we denote the image set of a curve or a surface by its
name. Curves are assumed to be parametrized using
the unit interval. We define the wedge spanned by
two rays to be the cone defined by their supporting
lines and containing an unbounded part of both rays.
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1 Planar stacks
Before starting the analysis of the 3-dimensional case,
we study a 2-dimensional object we call planar stack.
Its construction is described in the next subsection
and illustrated by Figure 2.

1.1 Construction
Let p and q be two infinite rays emanating from a
point K and spanning a wedge W of angle α ∈ (0, π)
in R2. Let σ0, ..., σn be pairwise disjoint, simple curves
contained inW . Assume the indices correspond to the
inverse order a ray shot from K would intersect them.
Assume further that σi ∩ p = σi(0) and σi ∩ q = σi(1)
and require that

d(σi(0), σi+1(0)) = d(σi−1(1), σi(1)), (1)

where d denotes the Euclidean distance in the plane.
Let Ti denote the closed subset of W bounded by σi
and σi+1. Each of these simply connected sets will be
called a tile and each σi will be called a separator. The
whole construction will be referred to as a planar stack
of angle α. It may also be required that the curves
σi are separable, i.e., that a tile can be moved away
from the next one by a rigid motion preventing them
to overlap. A simple condition ensuring this property
is that each σi is monotone in some direction but we
will ignore this requirement in this article.
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Figure 2: A planar stack and the corresponding strip.

Note that condition (1) ensures that the tiles can be
rearranged gluing σi+1(0) with σi(1) and σi(0) with
σi−1(1). This configuration will be called the strip
associated to the planar stack.
It will be handy to define si : R2 → R2 to be the

congruence that maps Ti to its position in the strip,
assuming s0 = Id. Given a point C ∈ R2 and an angle
α, we define RCα to be the counterclockwise rotation
of angle α and center C.

Theorem 1 If the strip
⋃n−1
i=0 si(Ti) associated to a

planar stack of angle α is a simply connected set, then
its boundary contains the curves γ =

⋃n−1
i=0 si(σi+1)

and RCα (γ), for some point C ∈ R2.

Proof. The assumptions that all the σi start in p
and end in q, are pairwise disjoint and have no self-
intersections ensure that the tiles are topologically
disks. Provided that

⋃n−1
i=0 si(Ti) is simply connected,

the tiles must intersect only in the glued segments.
In addition, condition (1) ensures that si(σi(1)) =
si+1(σi+1(0)) and si(σi+1(1)) = si+1(σi+2(0)), for
i ∈ {0, ..., n− 2}. Consequently, it is clear that γ and
µ =

⋃n
i=1 si(σi) are contained in the boundary of the

strip. Observe now that when Ti+1 is glued next to
Ti, the two copies of σi+1 involved are congruent via
RCi
α , for some point Ci. But RCi

α maps si(σi+1(1))

to si+1(σi+1(1)) and R
Ci+1
α maps si+1(σi+2(0)) to

si+2(σi+2(0)), which are the same pair of points.
Since for any pair of points P 6= Q and a given α
there is only one point O such that ROα (P ) = Q, it
has to be Ci = C for all i ∈ {0, ..., n − 1}. Thus, we
have that µ = RCα (γ). �

1.2 Tessellation
Constructing a planar stack and developing it can be
used as a modelling tool. However, we are now inter-
ested in the other direction of the procedure. That is,
given a curve γ, an angle α and a center of rotation C,
construct a planar stack such that, when reconfigured
into strip, contains γ and RCα (γ) in its boundary. Such
a planar stack may not exist. If it does, it may not be
unique. Indeed, there is in general a one-parametric
family of possibly suitable planar stacks.
Theorem 1 indicates that we need to construct a

stack of angle α if we aim to obtain a shape with γ
and RCα (γ) forming part of its boundary. Consider
the locus of points that see a counterclockwise angle
α between γ(0) and RCα (γ(0)), i.e., the set

κ = {P ∈ R2 : RPα (
−−−→
Pγ(0)) =

−−−−−−−→
PRPα (γ(0))}, (2)

where
−−→
XY is the ray starting at X and going through

Y . It is well known that κ is a circumference arc
going from γ(0) to RCα (γ(0)). It is not hard to see
that C ∈ κ. Obviously, any candidate K to be the
vertex of the stack must belong to κ and there is a
possibly valid planar stack leading to our target for
each of such points.
Consider a fixed K ∈ κ and let r0 be the ray con-

tainingK, passing through γ(0) and such that RCα (r0)
touches but does not cross r0. We define ri = RCiα(r0)
for i ∈ N. Let Wi be the wedge of angle α spanned by
ri and ri+1 and define also Ui to be the region in Wi

bounded by γ and RCα (γ). For simplicity, we assume
that γ does not intersect RC−α(r0). This last restric-
tion is not necessary, but simplifies the technicalities.
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Figure 3: Tessellation procedure.

Theorem 2 If r0, ..., rn intersect γ in a single point,
the tiles U1, ...,Un−1 can be arranged as a planar stack.

Proof. We will prove that {RC−iα(Ui)}n−1i=1 is a set
of cells tessellating a simply connected subset of W0.
Observe first that Wi+1 = RCα (Wi), since rj+1 =
RCα (rj) for all j ∈ N. For the same reason, r1, ..., rn+1

intersect RCα (γ) in a single point. Since γ and RCα (γ)
do not intersect, the boundary of Ui is formed by a
subcurve of γ and a subcurve of RCα (γ) which are
mutually disjoint, one segment contained in ri and
one contained in ri+1. It remains to be proven that
each tile matches the next one and they all fit in W0.
This can be derived from the facts that RCα (Ui ∩ γ) =
Ui+1 ∩RCα (γ) and that RC−iα(Wi) =W0. �

Using the previous theorem, it is not hard to see
that under an additional technical condition, one can
construct a stack containing the whole γ and RCα (γ) in
its boundary. We state this in the following corollary,
omitting its simple proof.

Corollary 3 If r0, ..., rl intersect γ in a single point
and rl+1 does not intersect γ, then there exists a pla-
nar stack containing γ and RCα (γ) in its boundary.

1.3 Refinement

For obvious reasons, it can be useful to refine a stack-
able tessellation. This feature will be essential in the
discussion concerning approximation in Section 3.
Adopting the notation used in the previous section,

consider the angularly ordered rays r0 = r00, ..., r
m
0 =

r1 emanating from K and contained in W0. De-
fine also rji to be RCiα(r

j
0) for i ∈ {1, ..., n} and

j ∈ {0, ...,m}. Let W j
i be the wedge spanned by
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Figure 4: Shaded tiles can be arranged in stack form.

rji and rj+1
i . Define also U ji to be the space in W j

i

bounded by γ and RCα (γ).

Proposition 4 If r00, ..., rm0 = r01, r
1
1, ..., r

m
l intersect

γ in a single point, the tiles U j1 , ...,U jn−1 can be ar-
ranged as a planar stack, for j ∈ {0, ...,m− 1}.

Proof. The way we defined rji ensures that
RC−iα(W

j
i ) = W j

0 . Therefore, the arguments in the
proof of Theorem 2 apply to each j individually. �

Note that, in addition, the m stacks obtained from
the refined tessellation can be obtained by cutting the
original stack by straight radial cuts.
The results presented in this section can easily be

extended to the case where K is thought of as a point
at infinity. That is, we consider the wedge W to be
the space between two parallel lines. Then, the two
copies of γ appearing in the boundary of the strip are
related by a simple translation. Conversely, given a
curve and a translated copy of it, a one-parametric
family of possible stacks can be again evaluated. In
this case, we may consider κ to be the set of directions
of the plane, except for the direction of W . We can
then cut the curves by a set of equally spaced lines
in any direction u ∈ γ. This case is specially inter-
esting because it generates offset shapes. Moreover,
requiring that γ is monotone in u is sufficient to en-
sure the existence of the corresponding stack with the
additional separability property.
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2 Solid stacks

We consider now a 3-dimensional extension of the pre-
vious results, which is the actual target of this work.
In this way, we model a meaningful subset of the
solids constructible using the CASTonCAST fabrica-
tion technique.
The initial object is now the space W ∗ between

two non-parallel planes p∗ and q∗, which we further
bound by two planes orthogonal to K∗ = p∗ ∩ q∗.
Cutting W ∗ with pairwise-disjoint surfaces σ∗0 , ..., σ∗n,
each of them dividing W ∗ in two parts, a sequence
of 3-dimensional tiles T ∗i is defined. If we require
that RK

∗

α (T ∗i ∩ p∗) = T ∗i+1 ∩ q∗ (the condition analo-
gous to (1)), the resulting object will be called a solid
stack. The tiles can be rearranged by glueing con-
gruent faces contained in p∗ and q∗ in order to form
the associated solid strip. We can repeat the argu-
ments in Section 1.1 and derive that if the resulting
solid strip is simply connected, its boundary contains
two congruent copies of a surface γ∗. The congruency
relating them is a rotation around a linear axis C∗
parallel to K∗ by the amount corresponding to the
dihedral angle between p∗ and q∗. The results in Sec-
tion 1.2 also extend to the 3-dimensional case if the
conditions are properly adapted.
In addition to the refinement possibilities analogous

to the planar case, we can now split the tessellation
of a solid stack in order to obtain multiple stacks that
can be then converted into strips and arranged one
next to the other. To ensure that the tessellation is
face-to-face in the strip form, we assume here that the
solid stack is refined only cutting by planes h∗1, ..., h∗l
orthogonal to K∗. However, this is not a necessary
condition, as can be appreciated in Figure 1.

3 Discretization

This section studies how polyhedral tiles can be used
to approximate the stacks constructed in previous sec-
tions. This can be thought of as simplifying the tiles
one would get in the continuous case while preserving
their stackability and congruency relations.
We assume here that a solid stack is given and

that it has been refined by means of the planes (rj0)
∗

through K∗ and the planes h∗k orthogonal to K∗.
A possible way to discretize the tiles is to substi-
tute each separator σ∗i by the lower convex hull of
the points resulting of its intersection with the rays
rjk0 = (rj0)

∗ ∩ h∗k. It is an easy exercise to prove that
this construction preserves the topology and the con-
gruency relations of the tiles. However, the tiles ob-
tained in this way may not be convex, a property that
can be useful in some practical applications. This
restriction forces the separators to be planar within
each of the stacks. This is equivalent to approximate

the surface γ∗ by a planar-quadrilateral mesh (PQ-
mesh) γ̃, whose vertices are constrained to lie on pre-
scribed rays rjki = RC

∗

iα (rjk0 ). Then, the vertices V jki
of γ̃ can be expressed as V jki = Ojki +λjki u

jk
i , for some

λjki ∈ R+, where Ojki is the initial point of rjki and
ujki is its direction. Therefore, the vertices of RC

∗

α (γ̃)
will also lie on these rays and their positions can be
retrieved from the variables λjki . However, one should
ensure that the perturbed versions of γ̃ and RC

∗

α (γ̃)
do not intersect. But provided that γ̃ and RC

∗

α (γ̃) are
PQ-meshes, these conditions translate into the simple
linear inequalities λjli < λjli−1.
Existing algorithms, like the PQ perturbation de-

tailed in [3], implement the planarity constraints and
minimize functions measuring the distance to the sur-
face and the quality of the mesh. Since the spe-
cific requirements of our method are, as hinted be-
fore, translated into linear equations and inequalities
in the space of coordinates of the vertices, the men-
tioned algorithm, based on sequential quadratic pro-
gramming [5], can be applied to our construction.
The results on 3-space generalize to case where p∗

and q∗ are parallel as well. In this situation, the ver-
tices are constrained to lie in rays that have all the
same direction. Therefore, the planarity constraints
can be expressed as linear equations and optimizing
with respect to linear functions can be done very effi-
ciently by linear programming.

4 Conclusion
We give the first geometric analysis of the solids
constructible with the fabrication method CASTon-
CAST. We restrict the study imposing some con-
straints to the tiles of the tessellation, which lead
to simple and geometrically meaningful constructions.
We also provide a scheme to approximate the tiles
using polyhedra while preserving their stackability.
More general cases can be studied using the intro-
duced framework and are left to future work.
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