
86 Int. J. Space-Based and Situated Computing, Vol. 1, No. 1, 2011

Copyright © 2011 Inderscience Enterprises Ltd.

Distributed urban traffic applications based on
CORBA event services

S.L. Toral* and D. Gregor
Department of Electronic Engineering, E. S. Ingenieros,
University of Seville,
Avda. Camino de los Descubrimientos s/n, 41092, Seville, Spain
Fax: +34-954487373
E-mail: toral@esi.us.es
E-mail: derlis.gregor@gmail.com
*Corresponding author

M. Vargas
Department of Automation and Systems Engineering,
University of Seville,
Avda. Camino de los Descubrimientos s/n, 41092, Seville, Spain
Fax: +34-954487373
E-mail: vargas@esi.us.es

F. Barrero and F. Cortés
Department of Electronic Engineering, E. S. Ingenieros,
University of Seville,
Avda. Camino de los Descubrimientos s/n, 41092, Seville, Spain
Fax: +34-954487373
E-mail: fbarrero@esi.us.es
E-mail: fcortes1@us.es

Abstract: Intelligent transportation systems (ITS) in urban environments are based today on
modern embedded systems with enhanced digital connectivity and higher processing capabilities,
supporting distributed applications working in a cooperative manner. This paper provides an
overview about modern cooperative ITS equipments and presents a distributed application to
be used in an urban data network. As a case example, an application based on an embedded
CORBA-compliant middleware layer and several computer vision equipments is presented.
Results prove the feasibility of distributed applications for building intelligent urban
environments.

Keywords: intelligent transportation systems; ITS; event services; embedded systems; ambient
intelligence; AmI; CORBA.

Reference to this paper should be made as follows: Toral, S.L., Gregor, D., Vargas, M.,
Barrero, F. and Cortés, F. (2011) ‘Distributed urban traffic applications based on CORBA
event services’, Int. J. Space-Based and Situated Computing, Vol. 1, No. 1, pp.86–97.

Biographical notes: S.L. Toral received his MS and PhD in Electrical and Electronic
Engineering from the University of Seville, Spain, in 1995 and 1999, respectively. He is currently
an Associate Professor at the Department of Electronic Engineering, US. His main research
interests include microprocessor and DSP devices, real-time and distributed systems, open source
software projects and embedded operating systems.

D. Gregor received his MS in Electronic Engineering from the University of Seville, Spain, in
2009. He is currently a doctorate student at the University of Seville, Spain. His main research
interests include embedded CORBA and cooperative systems.

M. Vargas received his MSc in Computer Science and his PhD in Computer Science, both from
the University of Seville, Spain, in 1993 and 2001, respectively. He is currently an Associate
Professor at the Department of Automation and Systems Engineering, US. His research interests
include vision-based control, robotics, perception and robust control.

 Distributed urban traffic applications based on CORBA event services 87

F. Barrero received his MSc and PhD in Electrical and Electronic Engineering from the
University of Seville, Spain, in 1993 and 1998, respectively. He is currently an Associate
Professor at the Department of Electronic Engineering, US. His main research interests include
embedded systems and electrical drives for industrial applications.

F. Cortés received his MS in Electronic Engineering from the University of Seville, Spain, in
2007. He is currently an Assistant Professor at the Department of Electronic Engineering, US.
His main research interests include wireless CORBA and multi-user environments.

1 Introduction

The public infrastructure distributed through modern
cities consists of hundreds of cameras for surveillance
purposes, traffic light regulators, and panels and equipments
for traffic parameter estimation. These equipments are
usually connected to an urban data network, disseminating
comprehensive information including real-time data and
video streaming (Cook and Das, 2004). This information
supports traffic management administrators in making
decisions, taking appropriate actions to alleviate
congestions, and improving the global performance of the
traffic network (Lee et al., 2010). Despite of the computing
and networking capabilities of installed traffic equipments,
they lack collective intelligence as they are usually intended
for transmitting real-time information to the traffic control
centre. However, urban environments can be situated in the
context of ambient intelligence (AmI) frameworks. The
main purpose of AmI is providing transparent support in
environments where human activity takes place and, hence,
where humans are the primary subject for the provision
of an enhanced environment (Velastin et al., 2005). It is
a new multi-disciplinary field that brings together sensor
fusion, computer vision, middleware, multimedia and
many other research fields (Monekosso et al., 2009). Urban
environments represent a challenging area for AmI
framework due to its high complexity, numerous sources
of data and spreading of interesting and non-trivial
applications. Today, modern transportation equipments have
the potential of providing intelligent transportation systems
(ITS) applications, such as advanced traffic management
systems, advanced traveller information system, commercial
vehicle operation and emergency management system (Lee
et al., 2010). They are usually based on embedded computer
platforms running an embedded operating system (Barrero
et al., 2008; Toral et al., 2009a). This embedded operating
system can be seen as the interface between the application
and the embedded hardware, and must be tailored to the
specific functions of the domain. However, once installed,
it facilitates the use of networking and multitasking
capabilities (Zhu and Wang, 2003). Many general-purpose
operating systems have been modified to decrease their size
and to adapt to embedded processors’ architectures. Among
the different possibilities of available operating systems,
Linux is firmly in first place as the operating system of
choice for smart gadgets and embedded systems thanks to
its scalability, low cost and the superior networking
capabilities (Yaghmour, 2003; Toral et al., 2009a). In
particular, the Linux IP stack has proven itself to be stable,

efficient and well suited for networking applications and
services that require high reliability and availability (Spanos
et al., 2008). These features can be used to transform the
urban environment into a distributed network of embedded
systems, offering advance traffic services to traffic
administrators, vehicles, users or even other embedded
equipments connected to the same urban network.

In this paper, a distributed computing model for an
urban network over TCP/IP protocol is presented. This
model is based on an open source middleware layer
available for a wide variety of embedded devices and
processor architectures, allowing urban equipments to offer
services to the rest of agents involved in the urban
environment, and providing an AmI framework.

The paper is organised as follows. Section 2 details
current related work in the field of distributed computing
and urban networks. Then, an overview about embedded
middleware solutions is provided in Section 3. Afterwards, a
road traffic application is illustrated in Section 4, describing
the equipments involved and their computing requirements.
Finally, implementation experience and obtained results are
described in Section 5, and the conclusions are drawn.

2 Related work

Potential benefits of distributed systems applied to urban
environments and road networks include increased road
network capacity, reduced congestion and pollution, shorter
and more predictable journey times, improved traffic
safety for all road users, more efficient logistics, improved
management and control of the road network (both urban
and inter-urban), increased efficiency of the public transport
systems, and better and more efficient response to hazards,
incidents and accidents (Fuchs and Bankosegger, 2009;
Tuominen and Ahlqvist, 2010). The majority of related
works in the field of urban environments are usually related
to vehicle to vehicle (V2V) and vehicle to infrastructure
(V2I) communications (Hinsberger et al., 2007). Among
these, the FleetNet project (FLEETNET, 2008) and its
follow-up project network on wheels (NoW) investigate the
integration of the Internet and vehicular networks (Festag et
al., 2008). This integration requires mobility support,
efficient communication, discovery of services, and support
of legacy applications. FleetNet uses an IPv6-based
addressing solution to address the vehicles. The proposed
architecture contains stationary internet gateways along the
road with two interfaces connecting vehicular networks to
the internet.

88 S.L. Toral et al.

Some other projects deal with cooperative systems
in order to increase road safety and traffic efficiency.
CVIS (cooperative vehicle infrastructure systems,
http://www.cvisproject.org/), SAFESPOT (Cooperative
systems for Road Safety, http://www.safespot-
eu.org/pages/page.php) and COOPERS (COOPerative
systEms for Intelligent Road Safety, http://www.coopers-
ip.eu/) are initiatives integrated within the European 6th
Framework Program (Toulminet et al., 2008).

CVIS aims to design, develop and test the technologies
needed to allow cars to communicate securely with each
other and with the nearby roadside infrastructure. In order to
reach this goal, CVIS uses the international standard
communications air-interface, long and medium range
(CALM) that is still under development (Han et al., 2006).
SAFESPOT aims to improve road safety by conceiving a
safety margin assistant which detects critical situations in
advance. Safety margin is the time difference between the
time of detection of a potential danger and the time of real
accident if nothing is done to avoid it. In SAFESPOT, this
concept will be tested based on conception of cooperative
system which will use V2V and V2I communication
and IEEE 802.11p technology. Finally, in COOPERS’
vision, vehicles are connected via continuous wireless
communication with the road infrastructure. They exchange
data and information relevant for the specific motorway
segment to increase overall road safety and enable
cooperative traffic management. In general, previous
developments are mainly focused on the vehicle as the
central element of the urban environment. In this paper, a
different approach is introduced moving the key role
towards the public infrastructure. In the short term, a
cooperative computing system among public infrastructure
equipments is more viable than V2V communications,
which require vehicle manufacturers to agree a common
standard and to assume the technological cost of such
services. Besides, the amount of urban equipments already
installed is huge, and the only needed requirement consists
of updating their software. Today, urban infrastructure
typically relies on a back-end server for coordinating and
integrating data coming from multiple equipments (Yuan et
al., 2003). However, they have a bandwidth scaling
problem, since the central server can quickly become
overloaded with the aggregate sum of messages/requests
from the nodes. Also, the server is a single point of failure
for the whole system. Some alternative considers the use of
agents to support the development of the distributed
software (Bramberger et al., 2006) or the use of peer-to-peer
(P2P) systems, where individual nodes communicate with
each other directly without going through a centralised
server (Wang et al., 2010). Although these solutions are
well suited for small and closed systems, they exhibit
several problems in the field of ITS and urban
infrastructure. For instance, ITS equipments are increasing
day by day, and the cost of updating the distributed software
in existing equipments would be prohibitive. Consequently,
some plug and play mechanism in which services might
be publicly available should be provided in urban

environments. A solution that can overcome these
limitations is a middleware layer able to support the
heterogeneity of urban equipments, the specificities of
embedded processors, and a variety of services. This way,
road infrastructure equipments can provide services to other
devices and equipment connected to the urban network in a
context of AmI, composing complex cooperative services
both to vehicles and citizens.

3 Embedded middleware overview

3.1 CORBA overview

CORBA is a framework of standards and concepts for open
systems defined by the Object Management Group (OMG)
to create distributed client-server applications (OMG, 2003).
Methods of remote objects can be invoked transparently in a
distributed and heterogeneous environment through an
object request broker (ORB). Basically, the ORB handles
communications between clients and servers. More
specifically, the ORB is responsible for all of the
mechanisms required to find the object implementation for
the request, to prepare the object implementation to receive
the request, and to communicate the data making up the
request (Mutlu et al., 2006). Communications are based on
the method invocation paradigm such as Java RMI. CORBA
manages the heterogeneity of the languages, computers and
networks. For interoperability purposes, the CORBA model
defines a protocol for inter-ORB communications. The
server interfaces are defined with a neutral language called
interface definition language (IDL). This language defines
the types of objects according to the operations that may be
performed on them and the parameters to those operations
(Henning and Vinoski, 1999).

To make an application, the designer has to describe the
server’s interface in IDL. The compilation of this
description generates stubs (client side) and skeletons
(server side) (Figure 1). The stub’s role is to intercept client
invocation and to transmit it to the server through the ORB.
The skeleton’s role is to receive the client’s invocations and
to push them to the service implementation (Pérez et al.,
2003). Stubs and skeletons may be generated in different
languages. For example, a stub can be in Java whereas a
corresponding skeleton is in C++. The IDL language
mapping is defined for many languages such as C, C++,
Java, Ada, Python. This is one of the main advantages of
using IDL, its ability to work with heterogeneous
environments and languages.

Client invocations are received at the server side by an
adapter (the portable object adapter) that delivers requests to
the adequate object implementation (Figure 1). Stubs and
skeletons are not mandatory. Dynamic invocations are
possible on the client side [dynamic invocation interface
(DII)] or on the server side [dynamic skeleton interface
(DSI)]. Hence, it is possible to dynamically create, discover
or use interfaces.

 Distributed urban traffic applications based on CORBA event services 89

Figure 1 CORBA architecture

The CORBA specifications define the general inter-ORB
protocol (GIOP) as its basic interoperability framework.
GIOP is not a concrete communication protocol that can be
used directly to interact ORBs. Instead, it describes how to
build reply and request messages as well as other control
massages and how to create and fit a particular transport
protocol within the GIOP framework. GIOP assumes the
underlying transport protocol is connection-oriented, full-
duplex, symmetric, provides bytestream abstraction, and
indicates disorderly loss of connection. The list of
assumptions matches the guarantees provided by the TCP/IP
protocol stack (Henning and Vinoski, 1999). GIOP
realisation over TCP/IP is internet-IOP (IIOP) and for an
ORB to be CORBA compliant, IIOP must be supported.

As a key concept for location transparency, CORBA has
introduced the concept of interoperable object references
(IORs). An IOR is a specialised object reference. It is used
by an application in the same way that an ordinary local
object reference is used. An IOR allows an application to
make remote method calls on a CORBA object. Once an
application obtains an IOR, it can access the respective
CORBA object via IIOP, the protocol used between the
CORBA infrastructures on both sides to exchange the
request and reply messages of the method invocation on the
remote object (Becker et al., 2007).

3.2 Embedded CORBA overview

One of the most important advantages of CORBA is its
ability to support heterogeneous environments, different
vendors’ products, and several popular programming
languages. This feature justifies the use of CORBA for
urban environments where many different embedded
systems were installed by different vendors through the
time.

Several implementations of the CORBA specification
exist today, both in the commercial and the open source
domain. A detailed comparison of several CORBA
implementations can be found in Puder (2004). When
choosing a CORBA implementation, several considerations
must be taken into account:

• Supported platforms: When working with
heterogeneous embedded systems, it is important to
choose a CORBA implementation able to work
properly in the majority of them. This is particularly
important for urban environments, where ITS
equipments from different vendors have been installed
during a long period of time. In particular, system-on-
chip (SoC) architectures support is very interesting as
they have been popularised for multimedia processors
typically used in surveillance and monitoring
applications.

• Supported programming languages and prerequisites:
The supported programming languages and
prerequisites to successfully compile the CORBA
implementation must be also taken into account. ITS
equipments are usually based on great variety of
processors and operating systems. In this case, the
heterogeneity of installed equipments requires the
application software to be adapted to the existing
system.

• Supported features: Depending on the final application,
additional features like objects passed by value,
asynchronous messaging, CORBA component model,
etc. should be considered.

• Licences: Commercial and open source CORBA
implementations can be found nowadays, and the
licences under which they are released can affect the
development of the project. In the case of urban
environments, open source licences are preferred by
public authorities to achieve vendor independence.

CORBA is usually targeted for general-purpose computing
and are not suitable for resource-limited devices. That is the
reason why numerous studies are focused on adapting the
CORBA technology to resource constrained real-time
systems. For instance, the real-time CORBA (RT-CORBA)
(OMG, 2001) and minimum CORBA (OMG, 2002)
specifications have been defined to reduce CORBA
requirements removing some of the CORBA services.
Based on these specifications, several studies have adapted
it to different devices and environments. For instance,
Rinner et al., (2007) developed a lightweight middleware
for a set of smart cameras, implementing several domain
specific services like allocation, reconfiguration and quality
of service (QoS), and Gal et al. (2002) proposed the use of
aspect-orientation in real-time systems for distribution,
timeliness and dependability domains.

The main drawback of these reduced implementations is
that they only achieve configurability using an IDL
compiler, which means existing equipments should
be reprogrammed to cooperate with new installed
equipments. In general, current embedded middleware
systems provide very limited availability of self-adaptation
and self-configuration mechanisms (Mohamed and
Al-Jaroodi, 2008). However, not all the embedded devices
exhibit the same limitations in terms of memory or CPU
processing capabilities. Urban equipments are frequently

90 S.L. Toral et al.

based on industrial PCs, containing enough memory and
power processing. For instance, smart cameras tend to be
based on modern multimedia processors, which are a type of
processor, specifically designed for the creation and
distribution of digital media and also including increasing
processing and networking capabilities. In this paper, we
propose the development of a ITS cooperative system based
on a full CORBA implementation, able to use CORBA
standard services like the name or the event service.

4 Road traffic application

Urban traffic control is extremely complex and dynamic.
Real-time traffic parameter estimation and control operation
constitutes a challenging part of an urban traffic control
system (UTCS) (Choy et al., 2003). UTCS are usually based
on a centralised network. Consequently, data are received
and managed by the traffic control centre to solve a
particular situation. For instance, control systems must have
the capability to handle unforeseeable changes in traffic
flow, such as accidents, and be able to optimise the traffic
flow by adjusting traffic signals and by coordinating
operations of each signal.

In this paper, we propose an agent paradigm based on
the notion of autonomous, internally-motivated entities that
inhabit dynamic environments (Roozemond, 2001).
Autonomy should be understood as the ability to function as

an independent unit or element over an extended period of
time, performing a variety of actions necessary to achieve
pre-designated objectives while responding to stimuli
(Zeigler, 1990).

Three electronics equipments have been designed to
illustrate a heterogeneous distributed environment
application, Figure 2, using CORBA services to provide the
distributed functionality. Each of the equipments executes a
main road-traffic application to obtain real-time data or to
operate over the public infrastructure, and it is connected to
the urban network. An embedded middleware layer is also
included in urban equipments of Figure 2, so they can
provide services both to the control traffic centre as well as
to other urban equipments connected to the data network, or
even citizens connected to internet. The implemented urban
network benchmark of Figure 2 considers two computer
vision-based traffic equipments which provides real-time
traffic data and a third equipment driving a traffic panel. All
of them can be configured and operated from the traffic
control centre. Real-time data and video streams are
delivered through the urban network and messages can be
remotely updated in the traffic panel. However, middleware
services are available for the digital world (equipments
owning to the same network or even citizens accessing
through a public website). For instance, traffic panel can be
automatically updated if a traffic incidence is detected by
some other equipment in the network without waiting for
the control traffic centre to operate.

Figure 2 Proposed distributed urban environment (see online version for colours)

 Distributed urban traffic applications based on CORBA event services 91

4.1 Equipment 1: traffic parameter estimator

This equipment is devoted to the detection of several traffic
parameters based on computer vision techniques
(http://www.visioway.com). This equipment provides data
about traffic flow and incident detection (Toral et al.,
2009b). It is based on an embedded video processor system
and a video camera. The complete configuration of the
scene can be made via the HTTP server running on a
multimedia processor i.MX21 from Freescale (Figure 3).

Traffic data are collected over the detection areas drawn
on the scene of Figure 3. Each of the areas or regions is a
user-configurable polygon with an arbitrary shape or size,
and an associated functionality.

Figure 3 Equipment configuration website (see online version
for colours)

For instance, they allow the estimation of useful traffic
information such as traffic flow per lane, lane vehicle
counting, lane average speed, lane occupancy, etc.

Region-based data estimation techniques require the
detection of moving vehicles and short-term still vehicles.
Specific algorithms are behind the described traffic-data
estimation, like background subtraction or shadow removal
algorithms, as well as more basic and general algorithms
like edge detection, neighbourhood operations, image
labelling or image thresholding. The most prominent
algorithms among those implemented in the system are the
background subtraction and the shadow removal algorithms.

The background subtraction technique allows extracting
a moving object from an image sequence obtained using a
static camera. It is based on the estimation of the so
called background-model of the scene. This model is used
as a reference image which is compared to each recorded
image. Consequently, the background-model must be
a representation of the scene after removing all the
non-stationary elements, and must be permanently updated
to take into account the changing lighting conditions or any
change in the background texture (Toral et al., 2009b,
2009c). Surveys and comparisons of different algorithms for
background subtraction can be found in Piccardi (2004).
Shadow removal is a main concern when dealing with
images in outdoor or unstructured environments. This is the

case of traffic scenes, where the shadows of vehicles may be
cast over neighbour regions. Shadows have some particular
properties that can be exploited in order to eliminate them
or, at least, to reduce its presence in the image [Prati et al.,
(2003), p.30; Cucchiara et al. (2003)]. The adopted solution
for shadow detection and removal is inspired by the work
described by Jaques et al. (2005).

In addition to this main functionality, the equipment also
includes several CORBA services to make this functionality
available to the rest of equipments connected to the same
network. The first one is the name service, to facilitate
access to the system’s resources. All CORBA objects are
registered within the name service, allowing them to be
found and used by any other object in the system. Thus,
each object that participates in a CORBA-based
computation accesses the name service at least once: either
to register itself via its IOR, or to locate other CORBA
objects’ IORs (Cheuk Lung et al., 1999). One of the OMG’s
common object services is a name service standard, called
CosNaming, which defines how to resolve object names in a
CORBA environment.

The second implemented service is the event service.
The CORBA event service manages the synchronous and
asynchronous propagation of messages (called events)
among distributed objects (Singh et al., 2002). It is based on
the traditional policy of publish/subscribe, where event
suppliers and consumers are decoupled: suppliers can
generate events without knowing the identities of the
consumers and consumers can receive events without
knowing the identities of the suppliers. The event service is
suitable for distributed environments because there is no
requirement for a centralised server or dependency on any
global service (Garcia-Sanchez et al., 2005). CORBA
specifies two approaches to initiating the transfer of events
between suppliers and consumers. These approaches are
called the push model and the pull model. In the push model
(Figure 4) suppliers initiate the transfer of events by sending
those events to consumers. In the pull model, consumers
initiate the transfer of events by requesting those events
from suppliers (Aleksy and Korthaus, 2005). The first one
has been implemented, being event consumers passive
elements used for providing information.

Figure 4 Push model suppliers and consumers communicating
through an event channel

The dual service of the event service is the CORBA
notification service, which was developed to address the
limitations of the CORBA event service. The event service
provides no support for filtering events or for specifying
delivery requirements. The primary goal of the CORBA

92 S.L. Toral et al.

notification service is to enhance the event service by
providing event filtering and QoS. Clients of the notification
service subscribe to events they are interested in by
associating filter objects with the proxy objects through
which the clients communicate with the Notification
Service. With the notification service, each channel, each
connection, and each message can be configured to support
QoS (Coulouris et al., 2005).

4.2 Equipment 2: queue detector

The equipment detects whenever the queue of vehicles in
front of a red light goes beyond a fixed threshold. The limits
of the queue region can be remotely configured by drawing
virtual detectors on the image of the scene, as shown in
Figure 3. The blue regions in front of the traffic light delimit
the queue detection regions. The service consists of
delivering the current state of the queue of vehicles in the
selected traffic light. Vehicle queues are detected using a
combination of short-term and long-term background
models of the scene (Zheng et al., 2006). The same than
previous equipments, several CORBA services have been
implemented to be executed with the main application.

4.3 Equipment 3: traffic panel

Panels can be automatically updated using services provided
by other equipments connected to the urban network. For
instance, a traffic panel can automatically warn about an
incident event or traffic delay, whenever this information is
provided by previous equipments.

5 Implementation and results

Several implementations of the CORBA specification can
be found, both in the commercial and the open source
domain. However, the intended application imposes several
restrictions to the final choice. First, traffic equipments are
based on embedded devices using a variety of processor
architectures. Consequently, the selected CORBA
implementation should cover a wide variety of software and
hardware platforms. Second, open source implementation
are preferred to reduce costs and to take advantage of their
communities of support (Toral et al., 2009d). This last
consideration is relevant taking into account the
heterogeneity of involved devices in a typical urban
network and the necessity of adapting the middleware layer
to their particular features.

In accordance with these previous considerations, the
selected CORBA implementation is TAO. TAO is a C++
ORB that is compliant with most of the features and
services defined in the CORBA 3.x specification, including
the RT-CORBA specification (Gokhale and Schmidt, 1998).
TAO can be downloaded from the internet, and freely used
and redistributed without developer or run-time licensing

costs. Documentation and developers forums are also
provided through its website.

TAO was cross compiled using the ARM gcc-3.3.2 and

the library glibc-2.3.2, and was installed on the traffic
equipments based on an ARM926EJ-S processor core,
operating at 266 MHz. This processor is running an ARM
Linux kernel 2.4.20. CORBA services are implemented as a
middleware layer over the operating system, and they are
called through the urban data network using the standard
IIOP, built on top of TCP/IP.

Figure 5 shows a small application of cooperative
computing among several urban traffic equipments. This
figure illustrates the traffic control centre, where
equipments can be individually managed. In particular,
cameras can be remotely configured using the configuration
interface of Figure 3, and traffic panels’ messages can be
manually updated using the corresponding button of
Figure 5.

Figure 5 Traffic control centre (see online version for colours)

The implemented middleware layer allows equipments to
work in a cooperative way using the CORBA event service,
which is defined within the CORBA object services (COS)
component (CosEventService). Using the CosEventService
service, an event supplier can asynchronously send
messages to one or several event consumers, allowing event
delivery, and distributed group communication. The push
model is used in this case example, so events are generated
whenever an embedded system spread over the city detects
a traffic incident or data requires the generation of valuable
information. An object that performs the role of an event
consumer must implement the PushConsumer interface,
meanwhile an event supplier must implement the
PushSupplier interface.

 Distributed urban traffic applications based on CORBA event services 93

Algorithm 1 RtecEventChannelAdmin module

module RtecEventChannelAdmin
{
interface ProxyPushSupplier :
 CosEventComm : : PushSupplier
 {
 void connect_push_consumer (
 in CosEventComm:: PushConsumer
 push_consumer ,
 raises (AlreadyConnected, TypeError);
 };

interface ProxyPushConsumer :
 CosEventComm : : PushConsumer
 {
 void connect_push_supplier (
 in CosEventComm : :
 PushSupplier push_supplier ,
 raises (AlreadyConnected, TypeError);
 };
interface ConsumerAdmin
{
 ProxyPushSupplier
 obtain_push_supplier () ;
}

interface SupplierAdmin
{
 ProxyPushConsumer
 obtain_push_consumer () ;
}

interface EventChannel
{
 ConsumerAdmin for_consumers ();
 SupplierAdmin for_suppliers ();
void destroy ():
}
};

Although the CosEventService model seems to address
many common needs of event-based, real-time applications,
in practice, however, the standard CORBA event service
specification lacks other important features required by real-
time applications such as real-time event dispatching and
scheduling, periodic event processing, and efficient event
filtering and correlation mechanisms. The real-time event
service included as part of TAO alleviates these limitations.
TAO’s RT event service augments the CORBA event
service model by providing source-based and type-based
filtering, event correlations, and real-time dispatching. In
the defined application, consumers and suppliers connect to
each other using the second alternative defined in the
RtecEventChannelAdmin module (Algorithm 1).

The EventChannel interface defines three administrative
operations: an operation for adding consumers, an operation
for adding suppliers and an operation for destroying the
channel.

An object which implements the PushConsumer
interface must first acquire an object reference to an
EventChannel using the name service Algorithm 2. The
PushConsumer must then invoke the for_consumers()

method on the EventChannel to obtain a reference to a
ConsumerAdmin object. The obtain_push_supplier()
method on the ConsumerAdmin object provides a reference
to a ProxyPushSupplier. The PushConsumer registers
itself with the EventChannel by invoking the
connect_push_consumer() method on the
ProxyPushSupplier. After this point, whenever the
EventChannel has an event, it will invoke the push() method
on the PushConsumer to supply the event.

The setup sequence for a PushSupplier is very similar to
that for a PushConsumer. The PushSupplier will invoke the
for_suppliers() method on the EventChannel and obtain a
SupplierAdmin object (Algorithm 3). The
obtain_push_consumer() method on the SupplierAdmin
object provides a reference to a ProxyPushConsumer. Next,
the connect_push_supplier() method on the
ProxyPushConsumer object must be invoked. This will
register the PushSupplier with the EventChannel. Whenever
the PushSupplier has an event, it must call the push()
method on the ProxyPushConsumer. This will send the
event to the EventChannel, which will in turn invoke the
push() methods of any PushConsumers which are attached
to it.

Algorithm 2 Pseudo code of event consumer

BeginProcess Bind_to_Event_Channel_and_wait_for_events
 obj<-resolve_initial_references ("Event_Service");
 ec<-EventChannel;
 If ec=NULL Then
 return 1;
 Ifnot
 consumer_impl<-create_consumer;
 If consumer_impl=NULL Then
 return 1;
 Ifnot
 activate (consumer, poa,
 consumer_impl, consumer_deactivator);
 EndIf
 EndIf
 ec->for_consumers();
consumer_admin->obtain_push_supplier();
supplier->connect_push_consumer(consumer.in());
EndProcess

Algorithm 3 Pseudo code of event supplier

BeginProcess Bind_to_Event_Channel_and_push_events
 obj<-resolve_initial_references ("Event_Service");
 ec<-EventChannel;
 If ec=NULL Then
 return 1;
 Ifnot
 ec->for_suppliers();
 supplier_admin->obtain_push_consumer();
 consumer->connect_push_supplier();
 send_events(consumer.in());
 EndIf
 ec->destroy();
EndProcess

94 S.L. Toral et al.

The main difference between a PushSupplier and a
PushConsumer is that a PushSupplier explicitly invokes a
push() method on a ProxyPushConsumer to send an event,
while the PushConsumer never directly invokes a method to
receive an event. Instead, the EventChannel will invoke the
PushConsumer’s push() method to send it an event.

In the detailed case example, the traffic parameter
estimator and the traffic queue estimator are event
providers, while the traffic panel is an event consumer.
When the event channel is set, the message of the traffic
panel is automatically updated depending on the
circumstances detected by the cameras. For instance,
incidents or traffic jams are detected by event providers and
this information is delivered as an event to all the
subscribed equipments of the urban network.

The CosEventService and the real-time event services
have been compared in terms of latency measurements,
from the side of the supplier and the side of the consumer.
In both cases, latency is measured as a function of the
number of supplied events. Supplier latency time includes
initialisation of the ORB and argument analysis, obtaining
the reference from the event channel, the reference from
SupplierAdmin used for the supplier connection, obtaining
the reference to a ProxyPushConsumer, and, in the case of
RT supplier, publishing the SourceIB and the event type.

On the other hand, the consumer latency time includes:

• Initialisation of the ORB which represents the interface
to the ORB functions, the POA Manager and analysing
arguments.

• Obtaining the POA object reference ‘RootPOA’.

• Getting the specific reference to event channel. The
consumer is created and registered with the POA.

• Activating the servant with the POA and returning the
object reference.

• Getting the ProxyPushSupplier for connecting as a
consumer. The consumer who wants to connect to the
event channel obtains the object reference from the
supplier through the consumer_admin interface. In the
case of RT Event_Service, the consumer should
provide some information on QoS using the object
ACE_ConsumerQOS_Factory.

Figure 6 and Figure 7 compare the latency times of
CosEventService and RT Event Service as a function of the
number of events from the side of the supplier and the
consumer. The RT event service exhibit less latency times
than CosEventService in the supplier side, and they remain
approximately constant in average. This is not the case of
the consumer side, where additional data concerning event
filtering and requirements must be processed.

Obviously, the presented example can be generalised to
all the equipments connected to the urban traffic networks,
and event channels can be remotely set or removed from the
traffic control centre. The result is that equipments are
working in a cooperative environment, and services are
available to new equipments connected to the same
network.

Figure 6 Event supplier latency time (see online version for colours)

 Distributed urban traffic applications based on CORBA event services 95

Figure 7 Event consumer latency time (see online version for colours)

10

20

30

40

50

60

70

80

90

100

110

120

100 200 300 400 500 600 700 800 900 1000

Ti
m

e
(m

s.
)

Numer of events

CosEventService EventService

6 Conclusions

This paper introduces the advantages of distributed
computing in road traffic networks. The public
infrastructure based on modern electronic equipments and
devoted to road traffic monitoring and control, can take
advantage of the increasing processing and networking
capabilities of embedded processors. A simple road traffic
network has been developed to prove the validity of the
proposed model. The distributed applications have been
performed using an open source middleware
implementation of CORBA. In particular, event services
have been used to deliver critical information to other
subscribed devices. Results show the feasibility of the
proposed solution and highlight the possibility of creating
new value added services capable of transforming urban
environments into intelligent environments.

Acknowledgements

This work has been supported by the Spanish Ministry of
Education and Science (Research Project with reference
DPI2007-60128) and the Consejería de Innovación, Ciencia
y Empresa (Research Project with reference P07-TIC-
02621).

References

Aleksy, M. and Korthaus, A. (2005) Implementing Distributed
Systems with Java and CORBA, Springer, Heidelberg.

Barrero, F., Toral, S.L. and Gallardo, S. (2008) ‘eDSPLab: remote
laboratory for experiments on DSP applications’, Internet
Research, Vol. 18, No. 1, pp.79–92.

Becker, C., Staamann, S. and Salomon, R. (2007) ‘Security
analysis of the utilization of Corba object references as
authorization tokens’, 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed
Computing, ISORC '07, IEEE, Santorini Island, Greece,
pp.196–203.

Bramberger, M., Doblander, A., Maier, A., Rinner, B. and
Schwabach, H. (2006) ‘Distributed embedded smart cameras
for surveillance applications’, Computer, Vol. 39, No. 2,
pp.68–75.

Cheuk Lung, L., da Silva Fraga, J., Farines, J-M., Ogg, M. and
Ricciardi, A. (1999) ‘CosNamingFT-a fault-tolerant CORBA
naming service’, Proceedings of the 18th IEEE Symposium on
Reliable Distributed Systems, IEEE, Lausanne, Switzerland,
pp.254–262.

Choy, M.C., Srinivasan, D. and Cheu, R.L. (2003) ‘Cooperative,
hybrid agent architecture for real-time traffic signal control’,
IEEE Transactions on Systems, Man and Cybernetics, Part A:
Systems and Humans, Vol. 33, No. 5, pp.597–607.

Cook, D. and Das, S. (2004) Smart Environments: Technology,
Protocols and Applications, 1st edition, Wiley-Interscience,
Hoboken, NJ.

Coulouris, G.F., Dollimore, J. and Kindberg, T. (2005) Distributed
Systems: Concepts and Design, Pearson, Essex, England.

Cucchiara, R., Grana, C., Piccardi, M. and Prati, A. (2003)
‘Detecting moving objects, ghosts, and shadows in video
streams’, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 25, No. 10, pp.1337–1342.

Festag, A., Noecker, G., Strassberger, M., Libke, A., Bochow, B.,
Torrent-Moreno, M., Schnaufer, S., Eigner, R., Catrinescu, C.
and Kunisch, J. (2008) ‘(NoW) network on wheels: project
objectives, technology and achievements’, 5th International
Workshop on Intelligent Transportation (WIT), IEEE,
Hamburg, Germany, pp.211–216.

FLEETNET (2008) FleetNet, http://www.et2.tu-
harburg.de/fleetnet/english/vision.html, [accessed on
12/10/2009].

96 S.L. Toral et al.

Fuchs, S., Bankosegger, D. (2009) ‘Developing value networks for
I2V co-operative services: an Austrian example’, IET
Intelligent Transport Systems, Vol. 3, No. 2, pp.216–224.

Gal, A., Spinczyk, O. and Preikschat, W. (2002) ‘On aspect-
orientation in distributed real-time dependable systems’,
Proceedings of the Seventh International Workshop on
Object-Oriented Real-Time Dependable Systems, IEEE, San
Diego, California, pp.261–267.

Garcia-Sanchez, F., Garcia-Sanchez, A., Pavon-Mariño, P. and
Garcia-Haro, J. (2005) ‘A CORBA bidirectional-event service
for video and multimedia applications’, Lecture Notes on
Computer Science, Vol. 3760, pp.715–731.

Gokhale, A. and Schmidt, D. (1998) ‘Measuring and optimizing
CORBA latency and scalability over high-speed networks’,
IEEE Transactions on Computers, Vol. 47, No. 4,
pp.391–413.

Han, S.W., Song, S.K. and Youn, H.Y. (2006) ‘CALM: an
intelligent agent-based middleware architecture for
community computing’, Proceeding of the 4th Workshop on
Software Technologies for Future Embedded and Ubiquitous
and Systems and 2nd Intl. Workshop on Collaborative
Computing, SEUS-WCCIA'06, IEEE, Gyeongju, Korea,
pp.89–94.

Henning, M., Vinoski, S. (1999) Advanced CORBA(R)
Programming with C++, 1st edition, Addison-Wesley
Professional, NY.

Hinsberger, A., Wieker, H., Riegelhuth, G. and Zurlinden, H.
(2007) ‘Benefits and technology of an intelligent roadside
unit system for vehicle to infrastructure and infrastructure to
centre communication’, 14th World Congress on Intelligent
Transport Systems, ITS, Beijing, China, pp.1–8.

Jacques, J.C.S., Jung, C.R. and Musse, S.R. (2005), ‘Background
subtraction and shadow detection in grayscale video
sequences’, Proc. of the XVIII Brazilian Symposium on
Computer
Graphics and Image Processing (SIBGRAPI’05), IEEE,
Natal, Rio Grande do Norte, Brazil, pp.189–196.

Lee, W-H., Tseng, S-S. and Shieh, W-Y. (2010) ‘Collaborative
real-time traffic information generation and sharing
framework for the intelligent transportation system’,
Information Sciences, Vol. 180, Nos. 1–2, pp.62–70.

Mohamed, N. and Al-Jaroodi, J. (2008) ‘Characteristics of
middleware for networked collaborative robots’, The 2008
International Symposium on Collaborative Technologies and
Systems, ACM, Irvine, California, USA, pp.524–531.

Monekosso, D., Remagnino, P. and Kuno, Y. (2009) Intelligent
Environments: Methods, Algorithms and Applications,
Springer, UK.

Mutlu, U., Edwards, R. and Coulton, P. (2006) ‘QoS aware
CORBA middleware for bluetooth’, 2006 IEEE Tenth
International Symposium on Consumer Electronics, ISCE '06,
IEEE,
St. Petersburg, Russia, pp.1–7.

Object Management Group (OMG) (2001) Real-Time CORBA 2.0,
available at http://www.omg.org, [accessed on 06/10/2010].

OMG (2002) Minimum CORBA 1.0, available at
http://www.omg.org, [accessed on 06/10/2010].

OMG (2003) ‘Common object request broker architecture,
(CORBA/IIOP)’, Technical report, formal/02-11-03.

Pérez, C., Priol, T. and Ribes, A. (2003) ‘A parallel CORBA
component model for numerical code coupling’, The
International Journal of High Performance Computing
Applications, Vol. 17, No. 4, pp.417–429.

Piccardi, M. (2004) ‘Background subtraction techniques: a
review’, Procs. 2004 IEEE International Conference on.
Systems, Man and Cybernetics, IEEE, The Hague,
Netherlands, Vol. 4, pp.3099–3104.

Prati, A., Mikic, I., Trivedi, M.M. and Cucchiara, R. (2003)
‘Detecting moving shadows: algorithms and evaluation’,
IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 25, No. 7, pp.918–923.

Puder, A. (2004) ‘MICO: an open source CORBA
implementation’, IEEE Software, Vol. 21, No. 4, pp.17–19.

Rinner, B., Jovanovic, M. and Quaritsch, M. (2007) ‘Embedded
middleware on distributed smart cameras’, IEEE
International Conference on Acoustics, Speech and Signal
Processing, ICASSP 2007, IEEE, Honolulu, Hawai, USA,
Vol. 4, pp.1381–1384.

Roozemond, D.A. (2001) ‘Using intelligent agents for pro-active,
real-time urban intersection control’, European Journal of
Operational Research, Vol. 131, No. 2, pp.293–301.

Singh, K., Nair, G. and Schulzrinne, H. (2002) ‘Optimization of
signaling traffic in centralized conference using SIP’, Proc.
Second WSEAS International Conference on Multimedia,
Internet and Video Technologies (WSEAS ICOMIV 2002),
IKN, Koukounaries, Skiathos, Greece, pp 2931–2936.

Spanos, S., Meliones, A. and Stassinopoulos, G. (2008) ‘The
internals of advanced interrupt handling techniques:
performance optimization of an embedded Linux network
interface’, Computer Communications, Vol. 31, No. 14,
pp.3460–3468.

Toral, S.L., Martínez-Torres, M.R. and Barrero, F. (2009a)
‘Virtual communities as a resource for the development of
OSS projects: the case of Linux ports to embedded
processors’, Behavior and Information Technology, Vol. 28,
No. 5, pp.405–419.

Toral, S.L., Vargas, M. and Barrero, F. (2009b) ‘Embedded
multimedia processors for road-traffic parameter estimation’,
Computer, Vol. 42, No. 12, pp.61–68.

Toral, S.L., Vargas, M., Barrero, F. and Ortega, M.G. (2009c)
‘Improved sigma-delta background estimation for vehicle
detection’, Electronics Letters, Vol. 45, No. 1, pp.32–34.

Toral, S.L., Martínez-Torres, M.R. and Barrero, F. (2009d) ‘An
empirical study of the driving forces behind online
communities’, Internet Research, Vol. 19, No. 4, pp.378–392.

Toulminet, G., Boussuge, J. and Laurgeau, C. (2008)
‘Comparative synthesis of the 3 main European projects
dealing with cooperative systems (CVIS, SAFESPOT and
COOPERS) and description of COOPERS demonstration site
4’, 11th International IEEE Conference on Intelligent
Transportation Systems, ITSC 2008, IEEE, Beijing, China,
pp.809–814.

Tuominen, A. and Ahlqvist, T. (2010) ‘Is the transport system
becoming ubiquitous? Socio-technical roadmapping as a tool
for integrating the development of transport policies and
intelligent transport systems and services in Finland’,
Technological Forecasting and Social Change, Vol. 77, No.
1, pp.120–134.

Velastin, S.A., Boghossian, B.A, Lo, B.P.L., Jie, S. and Vicencio-
Silva, M.A. (2005) ‘Prismatica: toward ambient intelligence
in public transport environments’, IEEE Transactions on
Systems, Man, and Cybernetics, Vol. 35, No. 1, pp.164–182.

Wang, Y., Velipasalar, S. and Casares, M. (2010) ‘Cooperative
object tracking and composite event detection with wireless
embedded smart cameras’, IEEE Transactions on Image
Processing; Vol. 19, No. 10, pp.2614–2633.

 Distributed urban traffic applications based on CORBA event services 97

Yaghmour, K. (2003) Building Embedded Linux Systems,
O’Reilly, CA.

Yuan, X., Sun, Z., Varol, Y. and Bebis, G. (2003) ‘A distributed
visual surveillance system’, Proc. IEEE Conf. Advanced
Video and Signal Based Surveillance, IEEE, Miami, Florida,
pp.199–204.

Zeigler, B.P. (1990) ‘High autonomy systems: concepts and
models’, Proceedings AI, Simulation, and Planning in High
Autonomy Systems, IEEE, Tucson, Arizona, pp.2–7.

Zheng, J., Wang, Y., Nihan, N.L and Hallenbeck, M.E. (2006)
‘Detecting cycle failures at signalized intersections using
video image processing’, Computer-Aided Civil and
Infrastructure Engineering, Vol. 21, pp.425–435.

Zhu, L-X., Wang, F-Y. (2003) ‘Component-based constructing
approach for application specific embedded operating
systems’, Proceedings of the 2003 IEEE Intemational
Confuence on Intelligent Transportation Systems, IEEE,
Shangai, China, Vol. 2, pp.1338–1343.

View publication statsView publication stats

