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AbstratA d-dimensional simplex S is alled a k-reptile (or a
k-reptile simplex ) if it an be tiled without overlaps by
k simplies with disjoint interiors that are all mutu-ally ongruent and similar to S. For d = 2, triangular
k-reptiles exist for many values of k and they havebeen ompletely haraterized by Snover, Waiveris,and Williams. On the other hand, the only k-reptilesimplies that are known for d ≥ 3, have k = md,where m is a positive integer. We substantially sim-plify the proof by Matou²ek and the seond authorthat for d = 3, k-reptile tetrahedra an exist only for
k = m3. We also prove a weaker analogue of thisresult for d = 4 by showing that four-dimensional k-reptile simplies an exist only for k = m2.1 IntrodutionA losed set X ⊂ Rd with nonempty interior isalled a k-reptile (or a k-reptile set) if there aresets X1, X2, . . . , Xk with disjoint interiors and with
X = X1 ∪X2 ∪ · · · ∪Xk that are all mutually ongru-ent and similar to X . Suh sets have been studied inonnetion with fratals and also with rystallographyand tilings of Rd [4, 8, 9, 11℄.It easy to see that whenever S is a d-dimensional
k-reptile simplex, then all of Rd an be tiled by on-gruent opies of S: indeed, using the tiling of S by itssmaller opies S1, . . . , Sk as a pattern, one an indu-tively tile larger and larger similar opies of S. Onthe other hand, not all spae-�lling simplies must be
k-reptiles for some k ≥ 2.Clearly, every triangle tiles R2. Moreover, everytriangle T is a k-reptile for k = m2, sine T an betiled in a regular way with m2 ongruent tiles, eah
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positively or negatively homotheti to T . See e. g.Snover et al. [19℄ for an illustration.The question of haraterizing the tetrahedra thattile R3 is still open and apparently rather di�ult.The �rst systemati study of spae-�lling tetrahedrawas made by Sommerville. Sommerville [20℄ disov-ered a list of exatly four tilings (up to isometry andresaling), but he assumed that all tiles are prop-erly ongruent (that is, ongruent by an orientation-preserving isometry) and meet fae-to-fae. Ed-monds [6℄ notied a gap in Sommerville's proof andby ompleting the analysis, he on�rmed that Som-merville's lassi�ation of proper, fae-to-fae tilingsis omplete. In the non-proper and non fae-to-faesituations there are in�nite families of non-similartetrahedral tilers. Goldberg [10℄ desribed three suhfamilies, obtained by partitioning a triangular prism.In fat, Goldberg's �rst family was found by Som-merville [20℄ before, but he seleted only speial aseswith a ertain symmetry. Goldberg [10℄ notied thateven the general ase admits a proper tiling of R3.Goldberg's �rst family also oinides with the familyof simplies found by Hill [14℄, whose aim was to las-sify reti�able simplies, that is, simplies that an beut by straight uts into �nitely many piees that anbe rearranged to form a ube. The simplies in Gold-berg's seond and third families are obtained from thesimplies in the �rst family by splitting into two on-gruent halves. Aording to Senehal's survey [17℄, noother spae-�lling tetrahedra than those desribed bySommerville and Goldberg are known.For general d, Debrunner [5℄ onstruted ⌊d/2⌋+ 2one-parameter families and a �nite number of addi-tional speial types of d-dimensional simplies thattile Rd. Smith [18℄ generalized Goldberg's on-strution and using Debrunner's ideas, he obtained
(⌊d/2⌋ + 2)φ(d)/2 one-parameter families of spae-�lling d-dimensional simplies; here φ(d) is the Eu-ler's totient funtion. It is not known whether forsome d there is an aute spae-�lling simplex or atwo-parameter family of spae-�lling simplies [18℄.In reent years the subjet of tilings has reeiveda ertain impulse from omputer graphis and otheromputer appliations. In fat, our original motiva-tion for studying simplies that are k-reptiles omesfrom a problem of probabilisti marking of Internet
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On the nonexistene of k-reptile simplies in R3 and R4pakets for IP traebak [1, 2℄. See [15℄ for a briefsummary of the ideas of this method. For this appli-ation, it would be interesting to �nd a d-dimensionalsimplex that is a k-reptile with k as small as possible.For dimension 2 there are several possible typesof k-reptile triangles, and they have been ompletelylassi�ed by Snover et al. [19℄. In partiular, k-reptiletriangles exist for all k of the form a2 + b2, a2 or
3a2 for arbitrary integers a, b. In ontrast, for d ≥ 3,reptile simplies seem to be muh more rare. Theonly known onstrutions of higher-dimensional k-reptile simplies have k = md. The best known exam-ples are the Hill simplies (or the Hadwiger�Hill sim-plies) [5, 12, 14℄. A d-dimensional Hill simplex is theonvex hull of vetors 0, b1, b1 + b2, . . . , b1 + · · ·+ bd,where b1, b2, . . . , bd are vetors of equal length suhthat the angle between every two of them is the sameand lies in the interval (0, π

2
+ arcsin 1

d−1
).Conerning nonexistene of k-reptile simplies indimension d ≥ 3, Hertel [13℄ proved that a 3-dimensional simplex is an m3-reptile using a �stan-dard� way of dissetion (whih we will not de�ne here)if and only if it is a Hill simplex. He onjeturedthat Hill simplies are the only 3-dimensional reptilesimplies. Herman Haverkort reently pointed us toan example of a k-reptile tetrahedron whih is notHill, whih ontradits Hertel's onjeture. In fat,exept for the one-parameter family of Hill tetrahe-dra, three other spae-�lling tetrahedra desribed bySommerville [20℄ and Goldberg [10℄ are also k-reptilesfor every k = m3. The simplies and their tiling arebased on the baryentri subdivision of the ube. Theonstrution an be naturally extended to �nd simi-lar examples of d-dimensional k-reptile simplies for

d ≥ 4 and k = md. Matou²ek [15℄ showed that thereare no 2-reptile simplies of dimension 3 or larger. Fordimension d = 3 Matou²ek and the seond author [16℄proved the following theorem.Theorem 1 [16℄ In R3, k-reptile simplies (tetrahe-dra) exist only for k of the form m3, where m is apositive integer.We give a new, simple proof of Theorem 1 in Se-tion 3.Matou²ek and the seond author [16℄ onjeturedthat a d-dimensional k-reptile simplex an exist onlyfor k of the form md for some positive integer m.We prove a weaker version of this onjeture for four-dimensional simplies.Theorem 2 Four-dimensional k-reptile simpliesan exist only for k of the form m2, where m is apositive integer.Four-dimensional Hill simplies are examples of k-reptile simplies for k = m4. Whether there exists a

four-dimensionalm2-reptile simplex for m non-squareremains an open question.2 Angles in simplies and Cox-eter diagramsGiven a d-dimensional simplex S with verties
v0, . . . , vd, let Fi be the faet opposite to vi. A dihe-dral angle βi,j of S is the internal angle of the faets
Fi and Fj , that meet at the (d− 2)-fae Fi ∩ Fj .An edge-angle of S is the internal (d − 1)-dimensional angle inident to an edge and an be rep-resented by a (d− 2)-dimensional spherial simplex.The Coxeter diagram of S is a graph c(S) with la-beled edges suh that the verties of c(S) representthe faets of S and for every pair of faets Fi and Fj ,there is an edge ei,j labeled by the dihedral angle βi,j .Observation 3 The edge-angles of a four-dimensional simplex S an be represented byspherial triangles, whose angles are dihedral anglesin S. Therefore, an edge-angle in S represented by aspherial triangle with angles α, β, γ orresponds to atriangle in the Coxeter diagram with edges labeled by
α, β, γ. �The most important tool we use is Debrunner'slemma [5, Lemma 1℄, whih onnets the symmetriesof a d-simplex with the symmetries of its Coxeter di-agram (whih represents the �arrangement� of the di-hedral angles). This lemma allows us to substantiallysimplify the proof of Theorem 1 and enables us tostep up by one dimension and prove Theorem 2, whihseemed unmanageable before.Lemma 4 (Debrunner's lemma [5℄) Let S be a
d-dimensional simplex. The symmetries of S are inone-to-one orrespondene with the symmetries of itsCoxeter diagram c(S) in the following sense: eahsymmetry ϕ of S indues a symmetry Φ of c(S) sothat ϕ(vi) = vj ⇔ Φ(Fi) = Fj , and vie versa.3 A simple proof of Theorem 1We proeed as in the original proof, but instead of us-ing the theory of sissor ongruene, Jahnel's theoremabout values of rational angles and Fiedler's theorem,we only use Debrunner's lemma (Lemma 4).Assume for ontradition that S is a k-reptile tetra-hedron where k is not a third power of a positive inte-ger. A dihedral angle α is alled indivisible if it annotbe written as a linear ombination of other dihedralangles in S with nonnegative integer oe�ients.The following lemmas are proved in [16℄.
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XV Spanish Meeting on Computational Geometry, June 26-28, 2013Lemma 5 [16, Lemma 3.1℄ If α is an indivisible di-hedral angle in S, then the edges of S with dihedralangle α have at least three di�erent lengths.Lemma 6 [16, Lemma 3.3℄ One of the following twopossibilities our:(i) All the dihedral angles of S are integer multiplesof the minimal dihedral angle α, whih has theform π

n
for an integer n ≥ 3.(ii) There are exatly two distint dihedral angles β1and β2, eah of them ourring three times in S.First we exlude ase (ii) of Lemma 6. If S has twodistint dihedral angles β1 6= β2, eah ourring atthree edges, then they an be plaed in S in two essen-tially di�erent ways; see Fig. 1. In both ases, for eah

i ∈ {1, 2}, the Coxeter diagram of S has at least onenontrivial symmetry whih swaps two distint edgeswith label βi. By Debrunner's lemma, the orrespond-ing symmetry of S swaps two distint edges with di-hedral angle βi, whih thus have the same length. Butthen the edges with dihedral angle βi have at most 2di�erent lengths and this ontradits Lemma 5, sinethe smaller of the two angles β1, β2 is indivisible.
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Figure 1: Two possible on�gurations of two dihedralangles.Now we exlude ase (i) of Lemma 6. Call the edgesof S (and of c(S)) with dihedral angle α the α-edges.Sine there are at least three α-edges in S, there is avertex v of S where two α-edges meet. Let β be thedihedral angle of the third edge inident to v (possibly
β an be equal to α).We have 2α+ β > π, using a well-known fat thatthe sum of the three dihedral angles ourring at avertex of S exeeds π. Writing β = mα = m

n
· π, wehave 2 · π

n
+ m

n
·π > π, whih implies m > n−2. Sine

m < n, we have m = n− 1 and hene β = π − α.Now we distinguish several ases depending on thesubgraph Hα of c(S) formed by the α-edges.
• Hα ontains three edges inident to a ommonvertex (whih orrespond to a triangle in S).Then all the other edges must have the angle βand we get the on�guration as in Fig. 1 (right),whih we exluded earlier.
• Hα ontains a triangle (the orresponding edgesin S meet at a single vertex). Then β = α, and

thus α = π

2
, whih ontradits the ondition n ≥

3 from Lemma 6 (i).
• Hα is a path of length three (this orresponds toa path in S, too). Then two edges have the angle
β > α and the remaining edge has some angle
γ 6= α. See Figure. 2 (left). The resulting Coxeterdiagram has a nontrivial involution swapping two
α-edges. By Debrunner's lemma, this ontraditsLemma 5.

• It remains to deal with the ase where Hα is afour-yle (whih orresponds to a four-yle in
S). In this ase the remaining two edges havedihedral angle β, so the Coxeter diagram has adihedral symmetry group D4 ating transitivelyon the α-edges. By Debrunner's lemma, all the
α-edges have the same length. This again on-tradits Lemma 5.
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Figure 2: The α-edges form a path (left) or a four-yle (right) in c(S)We obtained a ontradition in eah of the ases,hene the proof of Theorem 1 is �nished.4 The proof of Theorem 2The method of the proof is similar to the three-dimensional ase.Assume for ontradition that S is a four-dimensional k-reptile simplex where k is not a squareof a positive integer. Let S1, . . . , Sk be mutually on-gruent simplies similar to S that tile S. Then eah
Si has volume k-times smaller than S, and thus Si issaled by the ratio ρ := k−1/4 ompared to S. For
k non-square, ρ is an irrational number of algebraidegree 4 over Q.Similarly to [16℄ we de�ne an indivisible edge-angle(spherial triangle) as a spherial triangle whih an-not be tiled with smaller spherial triangles represent-ing the other edge-angles of S or their mirror images.Clearly, the edge-angle with the smallest surfae areais indivisible. We onsider a spherial triangle and itsmirror image as the same spherial triangle.We obtain a result similar to Lemma 5: if T0 is anindivisible edge-angle in S, then the edges of S withedge-angle T0 have at least four di�erent lengths (andin partiular, there are at least four suh edges).
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On the nonexistene of k-reptile simplies in R3 and R4The strategy of the proof is now the following. Firstwe exlude the ase of two indivisible edge-angles, us-ing only elementary ombinatorial arguments and De-brunner's lemma.Then we onsider the ase of one indivisible edge-angle. Here we need more involved arguments. Westudy the problem of tiling spherial triangles by on-gruent triangular tiles, whih might be of independentinterest. We give a partial lassi�ation of suh tilings,whih might be possible to extend to a full lassi�a-tion using a reasonable amount of e�ort. A relatedquestion, a lassi�ation of edge-to-edge tilings of thesphere by ongruent triangles, has been ompletelysolved by Agaoka and Ueno [3℄.To rule out several ases, we use a harateriza-tion of (d+1

2

)-tuples of dihedral angles by Fiedler [7℄.The haraterization implies, in partiular, that if
βi,j , i, j = 1, 2, . . . , d + 1, are the dihedral an-gles of some d-dimensional simplex, then the ma-trix (ai,j ; i, j = 1, 2, . . . , n + 1), where ai,i = 0 and
ai,j = cosβi,j for i 6= j, is singular.Referenes[1℄ M. Adler, Tradeo�s in probabilisti paket mark-ing for IP traebak, Pro. 34th Annu. ACMSymposium on Theory of Computing (2002) 407�418.[2℄ M. Adler, J. Edmonds and J. Matou²ek, Towardsasymptoti optimality in probabilisti paketmarking, Pro. 37th Annu. ACM Symposium onTheory of Computing (2005) 450�459.[3℄ Y. Agaoka and Y. Ueno, Classi�ation of tilingsof the 2-dimensional sphere by ongruent trian-gles, Hiroshima Math. J. 32(3) (2002), 463�540.[4℄ C. Bandt, Self-similar sets. V. Integer matriesand fratal tilings of Rn, Pro. Amer. Math. So.112(2) (1991), 549�562.[5℄ H. E. Debrunner, Tiling Eulidean d-spae withongruent simplexes, Disrete geometry and on-vexity (New York, 1982), vol. 440 of Ann. NewYork Aad. Si., New York Aad. Si., New York(1985) 230�261.[6℄ A. L. Edmonds, Sommerville's missing tetrahe-dra, Disrete Comput. Geom. 37(2) (2007), 287�296.[7℄ M. Fiedler, Geometry of the simplex in En (inCzeh, with English and Russian summary), �a-sopis pro p¥stování matematiky 79 (1954), 297�320.[8℄ M. Gardner, The unexpeted hanging and othermathematial diversions , The University ofChiago Press (1991).
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