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Abstract

A d-dimensional simplex S is called a k-reptile (or a
k-reptile simplex) if it can be tiled without overlaps by
k simplices with disjoint interiors that are all mutu-
ally congruent and similar to S. For d = 2, triangular
k-reptiles exist for many values of k£ and they have
been completely characterized by Snover, Waiveris,
and Williams. On the other hand, the only k-reptile
simplices that are known for d > 3, have k = m¢,
where m is a positive integer. We substantially sim-
plify the proof by Matousek and the second author
that for d = 3, k-reptile tetrahedra can exist only for
k = m3. We also prove a weaker analogue of this
result for d = 4 by showing that four-dimensional k-

reptile simplices can exist only for k = m?2.

1 Introduction

A closed set X C R? with nonempty interior is
called a k-reptile (or a k-reptile set) if there are
sets X1, Xo,..., X} with disjoint interiors and with
X =X UXoU---UXj that are all mutually congru-
ent and similar to X. Such sets have been studied in
connection with fractals and also with crystallography
and tilings of R? [4, [8] 9} [T1].

It easy to see that whenever S is a d-dimensional
k-reptile simplex, then all of R? can be tiled by con-
gruent copies of S: indeed, using the tiling of S by its
smaller copies S, ..., Sk as a pattern, one can induc-
tively tile larger and larger similar copies of S. On
the other hand, not all space-filling simplices must be
k-reptiles for some k > 2.

Clearly, every triangle tiles R2. Moreover, every
triangle T is a k-reptile for k = m?2, since T can be
tiled in a regular way with m? congruent tiles, each
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positively or negatively homothetic to 7. See e. g.
Snover et al. [I9] for an illustration.

The question of characterizing the tetrahedra that
tile R? is still open and apparently rather difficult.
The first systematic study of space-filling tetrahedra
was made by Sommerville. Sommerville [20] discov-
ered a list of exactly four tilings (up to isometry and
rescaling), but he assumed that all tiles are prop-
erly congruent (that is, congruent by an orientation-
preserving isometry) and meet face-to-face. Ed-
monds [6] noticed a gap in Sommerville’s proof and
by completing the analysis, he confirmed that Som-
merville’s classification of proper, face-to-face tilings
is complete. In the non-proper and non face-to-face
situations there are infinite families of non-similar
tetrahedral tilers. Goldberg [10] described three such
families, obtained by partitioning a triangular prism.
In fact, Goldberg’s first family was found by Som-
merville [20] before, but he selected only special cases
with a certain symmetry. Goldberg [I0] noticed that
even the general case admits a proper tiling of R3.
Goldberg’s first family also coincides with the family
of simplices found by Hill [14], whose aim was to clas-
sify rectifiable simplices, that is, simplices that can be
cut by straight cuts into finitely many pieces that can
be rearranged to form a cube. The simplices in Gold-
berg’s second and third families are obtained from the
simplices in the first family by splitting into two con-
gruent halves. According to Senechal’s survey [17], no
other space-filling tetrahedra than those described by
Sommerville and Goldberg are known.

For general d, Debrunner [5] constructed |d/2] + 2
one-parameter families and a finite number of addi-
tional special types of d-dimensional simplices that
tile R Smith [I8] generalized Goldberg’s con-
struction and using Debrunner’s ideas, he obtained
(1d/2] + 2)¢(d)/2 one-parameter families of space-
filling d-dimensional simplices; here ¢(d) is the Eu-
ler’s totient function. It is not known whether for
some d there is an acute space-filling simplex or a
two-parameter family of space-filling simplices [I§].

In recent years the subject of tilings has received
a certain impulse from computer graphics and other
computer applications. In fact, our original motiva-
tion for studying simplices that are k-reptiles comes
from a problem of probabilistic marking of Internet
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packets for IP traceback [I, 2]. See [15] for a brief
summary of the ideas of this method. For this appli-
cation, it would be interesting to find a d-dimensional
simplex that is a k-reptile with & as small as possible.

For dimension 2 there are several possible types
of k-reptile triangles, and they have been completely
classified by Snover et al. [19]. In particular, k-reptile
triangles exist for all k& of the form a? 4 b%, a? or
3a? for arbitrary integers a,b. In contrast, for d > 3,
reptile simplices seem to be much more rare. The
only known constructions of higher-dimensional k-
reptile simplices have & = m¢. The best known exam-
ples are the Hill simplices (or the Hadwiger—Hill sim-
plices) [5, 12, [14]. A d-dimensional Hill simplex is the
convex hull of vectors 0, by, by +ba, ..., by +---+ by,
where by,bs,...,bq are vectors of equal length such
that the angle between every two of them is the same
and lies in the interval (0, 3 + arcsin 15).

Concerning nonexistence of k-reptile simplices in
dimension d > 3, Hertel [I3] proved that a 3-
dimensional simplex is an m3-reptile using a “stan-
dard” way of dissection (which we will not define here)
if and only if it is a Hill simplex. He conjectured
that Hill simplices are the only 3-dimensional reptile
simplices. Herman Haverkort recently pointed us to
an example of a k-reptile tetrahedron which is not
Hill, which contradicts Hertel’s conjecture. In fact,
except for the one-parameter family of Hill tetrahe-
dra, three other space-filling tetrahedra described by
Sommerville [20] and Goldberg [10] are also k-reptiles
for every k = m3. The simplices and their tiling are
based on the barycentric subdivision of the cube. The
construction can be naturally extended to find simi-
lar examples of d-dimensional k-reptile simplices for
d > 4 and k = m?. Matougek [I5] showed that there
are no 2-reptile simplices of dimension 3 or larger. For
dimension d = 3 Matousek and the second author [16]
proved the following theorem.

Theorem 1 [16] In R3, k-reptile simplices (tetrahe-
dra) exist only for k of the form m3, where m is a
positive integer.

We give a new, simple proof of Theorem [ in Sec-
tion [B

Matousek and the second author [16] conjectured
that a d-dimensional k-reptile simplex can exist only
for k of the form m? for some positive integer m.
We prove a weaker version of this conjecture for four-
dimensional simplices.

Theorem 2 Four-dimensional k-reptile simplices
can exist only for k of the form m?, where m is a
positive integer.

Four-dimensional Hill simplices are examples of k-
reptile simplices for k = m®*. Whether there exists a

four-dimensional m?2-reptile simplex for m non-square
remains an open question.

2 Angles in simplices and Cox-
eter diagrams

Given a d-dimensional simplex S with vertices
vo, ..., 04, let F; be the facet opposite to v;. A dihe-
dral angle 3; ; of S is the internal angle of the facets
F,; and Fj, that meet at the (d — 2)-face F; N Fj.

An edge-angle of S is the internal (d — 1)-
dimensional angle incident to an edge and can be rep-
resented by a (d — 2)-dimensional spherical simplex.

The Cozeter diagram of S is a graph ¢(S) with la-
beled edges such that the vertices of ¢(S) represent
the facets of S and for every pair of facets F; and Fj,
there is an edge e; ; labeled by the dihedral angle §3; ;.

Observation 3 The edge-angles of a  four-
dimensional simplex S can be represented by
spherical triangles, whose angles are dihedral angles
in S. Therefore, an edge-angle in S represented by a
spherical triangle with angles o, 8,7 corresponds to a
triangle in the Cozeter diagram with edges labeled by

a, B,7. 0

The most important tool we use is Debrunner’s
lemma [5, Lemma 1], which connects the symmetries
of a d-simplex with the symmetries of its Coxeter di-
agram (which represents the “arrangement” of the di-
hedral angles). This lemma allows us to substantially
simplify the proof of Theorem [ and enables us to
step up by one dimension and prove Theorem 2] which
seemed unmanageable before.

Lemma 4 (Debrunner’s lemma [5]) Let S be a
d-dimensional simplex. The symmetries of S are in
one-to-one correspondence with the symmetries of its
Cozeter diagram c(S) in the following sense: each
symmetry ¢ of S induces a symmetry ® of ¢(S) so
that p(v;) = v; & ®(F;) = Fj, and vice versa.

3 A simple proof of Theorem [I]

We proceed as in the original proof, but instead of us-
ing the theory of scissor congruence, Jahnel’s theorem
about values of rational angles and Fiedler’s theorem,
we only use Debrunner’s lemma (Lemma HI).

Assume for contradiction that S is a k-reptile tetra-
hedron where k is not a third power of a positive inte-
ger. A dihedral angle « is called indivisible if it cannot
be written as a linear combination of other dihedral
angles in S with nonnegative integer coefficients.

The following lemmas are proved in [16].
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Lemma 5 [16, Lemma 3.1] If a is an indivisible di-
hedral angle in S, then the edges of S with dihedral
angle o« have at least three different lengths.

Lemma 6 [16, Lemma 3.3] One of the following two
possibilities occur:

(i) All the dihedral angles of S are integer multiples
of the minimal dihedral angle «, which has the
form - for an integer n > 3.

(ii) There are exactly two distinct dihedral angles 54
and Bo, each of them occurring three times in S.

First we exclude case (ii) of Lemmalf@l If S has two
distinct dihedral angles 5; # (2, each occurring at
three edges, then they can be placed in .S in two essen-
tially different ways; see Fig.[Il In both cases, for each
i € {1,2}, the Coxeter diagram of S has at least one
nontrivial symmetry which swaps two distinct edges
with label 8;. By Debrunner’s lemma, the correspond-
ing symmetry of S swaps two distinct edges with di-
hedral angle 3;, which thus have the same length. But
then the edges with dihedral angle 5; have at most 2
different lengths and this contradicts Lemma 5] since
the smaller of the two angles /31, 82 is indivisible.

B1 B
B2 1 B 1

B2 B2

B B

Figure 1: Two possible configurations of two dihedral
angles.

Now we exclude case (i) of Lemmal6l Call the edges
of S (and of ¢(5)) with dihedral angle o the a-edges.
Since there are at least three a-edges in S, there is a
vertex v of S where two a-edges meet. Let 8 be the
dihedral angle of the third edge incident to v (possibly
B can be equal to «).

We have 2a + 5 > 7, using a well-known fact that
the sum of the three dihedral angles occurring at a
vertex of S exceeds w. Writing 8 = ma = = - 7, we
have 2- =+ .7 > m, which implies m > n —2. Since
m < n, we have m =n — 1 and hence g =7 — a.

Now we distinguish several cases depending on the
subgraph H, of ¢(S) formed by the a-edges.

e H, contains three edges incident to a common
vertex (which correspond to a triangle in S).
Then all the other edges must have the angle g
and we get the configuration as in Fig. [ (right),
which we excluded earlier.

e H, contains a triangle (the corresponding edges
in S meet at a single vertex). Then § = «, and
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thus a = 7, which contradicts the condition n >
3 from Lemma [0 (i).

e H, is a path of length three (this corresponds to
a path in S, too). Then two edges have the angle
B > « and the remaining edge has some angle
v # «a. See Figure.2(left). The resulting Coxeter
diagram has a nontrivial involution swapping two
a-edges. By Debrunner’s lemma, this contradicts
Lemma [l

e It remains to deal with the case where H, is a
four-cycle (which corresponds to a four-cycle in
S). In this case the remaining two edges have
dihedral angle 3, so the Coxeter diagram has a
dihedral symmetry group D, acting transitively
on the a-edges. By Debrunner’s lemma, all the
a-edges have the same length. This again con-
tradicts Lemma Bl

Figure 2: The a-edges form a path (left) or a four-
cycle (right) in ¢(5)

We obtained a contradiction in each of the cases,
hence the proof of Theorem [lis finished.

4 The proof of Theorem

The method of the proof is similar to the three-
dimensional case.

Assume for contradiction that S is a four-
dimensional k-reptile simplex where k is not a square
of a positive integer. Let Si, ..., S, be mutually con-
gruent simplices similar to S that tile S. Then each
S; has volume k-times smaller than S, and thus 5; is
scaled by the ratio p := k~/* compared to S. For
k non-square, p is an irrational number of algebraic
degree 4 over Q.

Similarly to [I6] we define an indivisible edge-angle
(spherical triangle) as a spherical triangle which can-
not be tiled with smaller spherical triangles represent-
ing the other edge-angles of S or their mirror images.
Clearly, the edge-angle with the smallest surface area
is indivisible. We consider a spherical triangle and its
mirror image as the same spherical triangle.

We obtain a result similar to Lemma Bt if 7j is an
indivisible edge-angle in S, then the edges of S with
edge-angle To have at least four different lengths (and
in particular, there are at least four such edges).
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The strategy of the proof is now the following. First
we exclude the case of two indivisible edge-angles, us-
ing only elementary combinatorial arguments and De-
brunner’s lemma.

Then we consider the case of one indivisible edge-
angle. Here we need more involved arguments. We
study the problem of tiling spherical triangles by con-
gruent triangular tiles, which might be of independent
interest. We give a partial classification of such tilings,
which might be possible to extend to a full classifica-
tion using a reasonable amount of effort. A related
question, a classification of edge-to-edge tilings of the
sphere by congruent triangles, has been completely
solved by Agaoka and Ueno [3].

To rule out several cases, we use a characteriza-
tion of (dgl)—tuples of dihedral angles by Fiedler [7].
The characterization implies, in particular, that if
Bij,tj = 1,2,...,d + 1, are the dihedral an-
gles of some d-dimensional simplex, then the ma-
trix (a;;34,5 = 1,2,...,n + 1), where a;;, = 0 and
ai; = cos f3; ; for i # j, is singular.
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