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Abstra
tA d-dimensional simplex S is 
alled a k-reptile (or a
k-reptile simplex ) if it 
an be tiled without overlaps by
k simpli
es with disjoint interiors that are all mutu-ally 
ongruent and similar to S. For d = 2, triangular
k-reptiles exist for many values of k and they havebeen 
ompletely 
hara
terized by Snover, Waiveris,and Williams. On the other hand, the only k-reptilesimpli
es that are known for d ≥ 3, have k = md,where m is a positive integer. We substantially sim-plify the proof by Matou²ek and the se
ond authorthat for d = 3, k-reptile tetrahedra 
an exist only for
k = m3. We also prove a weaker analogue of thisresult for d = 4 by showing that four-dimensional k-reptile simpli
es 
an exist only for k = m2.1 Introdu
tionA 
losed set X ⊂ Rd with nonempty interior is
alled a k-reptile (or a k-reptile set) if there aresets X1, X2, . . . , Xk with disjoint interiors and with
X = X1 ∪X2 ∪ · · · ∪Xk that are all mutually 
ongru-ent and similar to X . Su
h sets have been studied in
onne
tion with fra
tals and also with 
rystallographyand tilings of Rd [4, 8, 9, 11℄.It easy to see that whenever S is a d-dimensional
k-reptile simplex, then all of Rd 
an be tiled by 
on-gruent 
opies of S: indeed, using the tiling of S by itssmaller 
opies S1, . . . , Sk as a pattern, one 
an indu
-tively tile larger and larger similar 
opies of S. Onthe other hand, not all spa
e-�lling simpli
es must be
k-reptiles for some k ≥ 2.Clearly, every triangle tiles R2. Moreover, everytriangle T is a k-reptile for k = m2, sin
e T 
an betiled in a regular way with m2 
ongruent tiles, ea
h
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positively or negatively homotheti
 to T . See e. g.Snover et al. [19℄ for an illustration.The question of 
hara
terizing the tetrahedra thattile R3 is still open and apparently rather di�
ult.The �rst systemati
 study of spa
e-�lling tetrahedrawas made by Sommerville. Sommerville [20℄ dis
ov-ered a list of exa
tly four tilings (up to isometry andres
aling), but he assumed that all tiles are prop-erly 
ongruent (that is, 
ongruent by an orientation-preserving isometry) and meet fa
e-to-fa
e. Ed-monds [6℄ noti
ed a gap in Sommerville's proof andby 
ompleting the analysis, he 
on�rmed that Som-merville's 
lassi�
ation of proper, fa
e-to-fa
e tilingsis 
omplete. In the non-proper and non fa
e-to-fa
esituations there are in�nite families of non-similartetrahedral tilers. Goldberg [10℄ des
ribed three su
hfamilies, obtained by partitioning a triangular prism.In fa
t, Goldberg's �rst family was found by Som-merville [20℄ before, but he sele
ted only spe
ial 
aseswith a 
ertain symmetry. Goldberg [10℄ noti
ed thateven the general 
ase admits a proper tiling of R3.Goldberg's �rst family also 
oin
ides with the familyof simpli
es found by Hill [14℄, whose aim was to 
las-sify re
ti�able simpli
es, that is, simpli
es that 
an be
ut by straight 
uts into �nitely many pie
es that 
anbe rearranged to form a 
ube. The simpli
es in Gold-berg's se
ond and third families are obtained from thesimpli
es in the �rst family by splitting into two 
on-gruent halves. A

ording to Sene
hal's survey [17℄, noother spa
e-�lling tetrahedra than those des
ribed bySommerville and Goldberg are known.For general d, Debrunner [5℄ 
onstru
ted ⌊d/2⌋+ 2one-parameter families and a �nite number of addi-tional spe
ial types of d-dimensional simpli
es thattile Rd. Smith [18℄ generalized Goldberg's 
on-stru
tion and using Debrunner's ideas, he obtained
(⌊d/2⌋ + 2)φ(d)/2 one-parameter families of spa
e-�lling d-dimensional simpli
es; here φ(d) is the Eu-ler's totient fun
tion. It is not known whether forsome d there is an a
ute spa
e-�lling simplex or atwo-parameter family of spa
e-�lling simpli
es [18℄.In re
ent years the subje
t of tilings has re
eiveda 
ertain impulse from 
omputer graphi
s and other
omputer appli
ations. In fa
t, our original motiva-tion for studying simpli
es that are k-reptiles 
omesfrom a problem of probabilisti
 marking of Internet
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es in R3 and R4pa
kets for IP tra
eba
k [1, 2℄. See [15℄ for a briefsummary of the ideas of this method. For this appli-
ation, it would be interesting to �nd a d-dimensionalsimplex that is a k-reptile with k as small as possible.For dimension 2 there are several possible typesof k-reptile triangles, and they have been 
ompletely
lassi�ed by Snover et al. [19℄. In parti
ular, k-reptiletriangles exist for all k of the form a2 + b2, a2 or
3a2 for arbitrary integers a, b. In 
ontrast, for d ≥ 3,reptile simpli
es seem to be mu
h more rare. Theonly known 
onstru
tions of higher-dimensional k-reptile simpli
es have k = md. The best known exam-ples are the Hill simpli
es (or the Hadwiger�Hill sim-pli
es) [5, 12, 14℄. A d-dimensional Hill simplex is the
onvex hull of ve
tors 0, b1, b1 + b2, . . . , b1 + · · ·+ bd,where b1, b2, . . . , bd are ve
tors of equal length su
hthat the angle between every two of them is the sameand lies in the interval (0, π

2
+ arcsin 1

d−1
).Con
erning nonexisten
e of k-reptile simpli
es indimension d ≥ 3, Hertel [13℄ proved that a 3-dimensional simplex is an m3-reptile using a �stan-dard� way of disse
tion (whi
h we will not de�ne here)if and only if it is a Hill simplex. He 
onje
turedthat Hill simpli
es are the only 3-dimensional reptilesimpli
es. Herman Haverkort re
ently pointed us toan example of a k-reptile tetrahedron whi
h is notHill, whi
h 
ontradi
ts Hertel's 
onje
ture. In fa
t,ex
ept for the one-parameter family of Hill tetrahe-dra, three other spa
e-�lling tetrahedra des
ribed bySommerville [20℄ and Goldberg [10℄ are also k-reptilesfor every k = m3. The simpli
es and their tiling arebased on the bary
entri
 subdivision of the 
ube. The
onstru
tion 
an be naturally extended to �nd simi-lar examples of d-dimensional k-reptile simpli
es for

d ≥ 4 and k = md. Matou²ek [15℄ showed that thereare no 2-reptile simpli
es of dimension 3 or larger. Fordimension d = 3 Matou²ek and the se
ond author [16℄proved the following theorem.Theorem 1 [16℄ In R3, k-reptile simpli
es (tetrahe-dra) exist only for k of the form m3, where m is apositive integer.We give a new, simple proof of Theorem 1 in Se
-tion 3.Matou²ek and the se
ond author [16℄ 
onje
turedthat a d-dimensional k-reptile simplex 
an exist onlyfor k of the form md for some positive integer m.We prove a weaker version of this 
onje
ture for four-dimensional simpli
es.Theorem 2 Four-dimensional k-reptile simpli
es
an exist only for k of the form m2, where m is apositive integer.Four-dimensional Hill simpli
es are examples of k-reptile simpli
es for k = m4. Whether there exists a

four-dimensionalm2-reptile simplex for m non-squareremains an open question.2 Angles in simpli
es and Cox-eter diagramsGiven a d-dimensional simplex S with verti
es
v0, . . . , vd, let Fi be the fa
et opposite to vi. A dihe-dral angle βi,j of S is the internal angle of the fa
ets
Fi and Fj , that meet at the (d− 2)-fa
e Fi ∩ Fj .An edge-angle of S is the internal (d − 1)-dimensional angle in
ident to an edge and 
an be rep-resented by a (d− 2)-dimensional spheri
al simplex.The Coxeter diagram of S is a graph c(S) with la-beled edges su
h that the verti
es of c(S) representthe fa
ets of S and for every pair of fa
ets Fi and Fj ,there is an edge ei,j labeled by the dihedral angle βi,j .Observation 3 The edge-angles of a four-dimensional simplex S 
an be represented byspheri
al triangles, whose angles are dihedral anglesin S. Therefore, an edge-angle in S represented by aspheri
al triangle with angles α, β, γ 
orresponds to atriangle in the Coxeter diagram with edges labeled by
α, β, γ. �The most important tool we use is Debrunner'slemma [5, Lemma 1℄, whi
h 
onne
ts the symmetriesof a d-simplex with the symmetries of its Coxeter di-agram (whi
h represents the �arrangement� of the di-hedral angles). This lemma allows us to substantiallysimplify the proof of Theorem 1 and enables us tostep up by one dimension and prove Theorem 2, whi
hseemed unmanageable before.Lemma 4 (Debrunner's lemma [5℄) Let S be a
d-dimensional simplex. The symmetries of S are inone-to-one 
orresponden
e with the symmetries of itsCoxeter diagram c(S) in the following sense: ea
hsymmetry ϕ of S indu
es a symmetry Φ of c(S) sothat ϕ(vi) = vj ⇔ Φ(Fi) = Fj , and vi
e versa.3 A simple proof of Theorem 1We pro
eed as in the original proof, but instead of us-ing the theory of s
issor 
ongruen
e, Jahnel's theoremabout values of rational angles and Fiedler's theorem,we only use Debrunner's lemma (Lemma 4).Assume for 
ontradi
tion that S is a k-reptile tetra-hedron where k is not a third power of a positive inte-ger. A dihedral angle α is 
alled indivisible if it 
annotbe written as a linear 
ombination of other dihedralangles in S with nonnegative integer 
oe�
ients.The following lemmas are proved in [16℄.
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XV Spanish Meeting on Computational Geometry, June 26-28, 2013Lemma 5 [16, Lemma 3.1℄ If α is an indivisible di-hedral angle in S, then the edges of S with dihedralangle α have at least three di�erent lengths.Lemma 6 [16, Lemma 3.3℄ One of the following twopossibilities o

ur:(i) All the dihedral angles of S are integer multiplesof the minimal dihedral angle α, whi
h has theform π

n
for an integer n ≥ 3.(ii) There are exa
tly two distin
t dihedral angles β1and β2, ea
h of them o

urring three times in S.First we ex
lude 
ase (ii) of Lemma 6. If S has twodistin
t dihedral angles β1 6= β2, ea
h o

urring atthree edges, then they 
an be pla
ed in S in two essen-tially di�erent ways; see Fig. 1. In both 
ases, for ea
h

i ∈ {1, 2}, the Coxeter diagram of S has at least onenontrivial symmetry whi
h swaps two distin
t edgeswith label βi. By Debrunner's lemma, the 
orrespond-ing symmetry of S swaps two distin
t edges with di-hedral angle βi, whi
h thus have the same length. Butthen the edges with dihedral angle βi have at most 2di�erent lengths and this 
ontradi
ts Lemma 5, sin
ethe smaller of the two angles β1, β2 is indivisible.
β1

β1β2

β2 β2

β1

β1

β1β1

β2 β2

β2

Figure 1: Two possible 
on�gurations of two dihedralangles.Now we ex
lude 
ase (i) of Lemma 6. Call the edgesof S (and of c(S)) with dihedral angle α the α-edges.Sin
e there are at least three α-edges in S, there is avertex v of S where two α-edges meet. Let β be thedihedral angle of the third edge in
ident to v (possibly
β 
an be equal to α).We have 2α+ β > π, using a well-known fa
t thatthe sum of the three dihedral angles o

urring at avertex of S ex
eeds π. Writing β = mα = m

n
· π, wehave 2 · π

n
+ m

n
·π > π, whi
h implies m > n−2. Sin
e

m < n, we have m = n− 1 and hen
e β = π − α.Now we distinguish several 
ases depending on thesubgraph Hα of c(S) formed by the α-edges.
• Hα 
ontains three edges in
ident to a 
ommonvertex (whi
h 
orrespond to a triangle in S).Then all the other edges must have the angle βand we get the 
on�guration as in Fig. 1 (right),whi
h we ex
luded earlier.
• Hα 
ontains a triangle (the 
orresponding edgesin S meet at a single vertex). Then β = α, and

thus α = π

2
, whi
h 
ontradi
ts the 
ondition n ≥

3 from Lemma 6 (i).
• Hα is a path of length three (this 
orresponds toa path in S, too). Then two edges have the angle
β > α and the remaining edge has some angle
γ 6= α. See Figure. 2 (left). The resulting Coxeterdiagram has a nontrivial involution swapping two
α-edges. By Debrunner's lemma, this 
ontradi
tsLemma 5.

• It remains to deal with the 
ase where Hα is afour-
y
le (whi
h 
orresponds to a four-
y
le in
S). In this 
ase the remaining two edges havedihedral angle β, so the Coxeter diagram has adihedral symmetry group D4 a
ting transitivelyon the α-edges. By Debrunner's lemma, all the
α-edges have the same length. This again 
on-tradi
ts Lemma 5.

α

αβ

γ β

α

α

αβ

α β

α

Figure 2: The α-edges form a path (left) or a four-
y
le (right) in c(S)We obtained a 
ontradi
tion in ea
h of the 
ases,hen
e the proof of Theorem 1 is �nished.4 The proof of Theorem 2The method of the proof is similar to the three-dimensional 
ase.Assume for 
ontradi
tion that S is a four-dimensional k-reptile simplex where k is not a squareof a positive integer. Let S1, . . . , Sk be mutually 
on-gruent simpli
es similar to S that tile S. Then ea
h
Si has volume k-times smaller than S, and thus Si iss
aled by the ratio ρ := k−1/4 
ompared to S. For
k non-square, ρ is an irrational number of algebrai
degree 4 over Q.Similarly to [16℄ we de�ne an indivisible edge-angle(spheri
al triangle) as a spheri
al triangle whi
h 
an-not be tiled with smaller spheri
al triangles represent-ing the other edge-angles of S or their mirror images.Clearly, the edge-angle with the smallest surfa
e areais indivisible. We 
onsider a spheri
al triangle and itsmirror image as the same spheri
al triangle.We obtain a result similar to Lemma 5: if T0 is anindivisible edge-angle in S, then the edges of S withedge-angle T0 have at least four di�erent lengths (andin parti
ular, there are at least four su
h edges).
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On the nonexisten
e of k-reptile simpli
es in R3 and R4The strategy of the proof is now the following. Firstwe ex
lude the 
ase of two indivisible edge-angles, us-ing only elementary 
ombinatorial arguments and De-brunner's lemma.Then we 
onsider the 
ase of one indivisible edge-angle. Here we need more involved arguments. Westudy the problem of tiling spheri
al triangles by 
on-gruent triangular tiles, whi
h might be of independentinterest. We give a partial 
lassi�
ation of su
h tilings,whi
h might be possible to extend to a full 
lassi�
a-tion using a reasonable amount of e�ort. A relatedquestion, a 
lassi�
ation of edge-to-edge tilings of thesphere by 
ongruent triangles, has been 
ompletelysolved by Agaoka and Ueno [3℄.To rule out several 
ases, we use a 
hara
teriza-tion of (d+1

2

)-tuples of dihedral angles by Fiedler [7℄.The 
hara
terization implies, in parti
ular, that if
βi,j , i, j = 1, 2, . . . , d + 1, are the dihedral an-gles of some d-dimensional simplex, then the ma-trix (ai,j ; i, j = 1, 2, . . . , n + 1), where ai,i = 0 and
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