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Abstract

We focus on the development of approximated algo-
rithms to �nd high quality triangulations of minimum
dilation because the complexity status of the Min-
imum Dilation Triangulation problem for a general
point set is unknown. We propose an operator to
generate the neigborhood which is used in di�erent
algorithms: Local Search, Iterated Local Search, and
Simulated Annealing. Besides, an algorithm called
Random Local Search is presented where good and
bad solutions are accepted using the previous men-
tioned operator. We use the Sequential Parameter
Optimization method for tuning the parameters of the
SA algorithm. We compare our results with the only
available algorithm found in the literature that uses
the obstacle value to sort the edges in the construc-
tive process. Through the experimental evaluation
and statistical analysis, we assess the performance of
the proposed algorithms using this operator.

Introduction

Di�erent measures are adopted to design optimal tri-
angulations. The most popular are the weight, stab-
bing number, area, and dilation. Although the us-
age of approximated approaches to solve complex op-
timization problems is common nowadays, this last
measure has not been used as selection criterion when
optimizing triangulations by using metaheuristic algo-
rithms [10].
Let S be a �nite planar point set, T a triangulation

of S and u, v two points in S. There are two distance
metrics: the Euclidean distance between u and v, |uv|,
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and the length of the shortest path between u and v
with in the triangulation T , distT (u, v). The dilation
between u and v with respect to T is the ratio between
the shortest path and the Euclidean distances between

u and v, and is de�ned as ∆T (u, v) =
dist(u,v)

|uv| .

The maximum over all the dilations between pairs
of points in T is called the dilation of T (or stretch
factor) and is represented by ∆(T ). The best possible
dilation of any triangulation of S is the dilation of S
and is denoted by ∆(S). Thus, we have

∆(T ) = max
u,v∈S

∆T (u, v) and ∆(S) = min
TofS

∆(T )

The triangulation T ∗ whose dilation is the dilation
of S, i.e. ∆(T ∗) = ∆(S), is called minimum dila-
tion triangulation of S. Note that there are several
triangulations of minimum dilation for a given set of
points.

Computing the minimum dilation triangulation for
a set of points in the plane is listed as an Open Prob-
lem in Eppstein's survey [6], i.e., no polynomial algo-
rithm that can build it is known and no proof that
the problem is NP-hard is shown. Neither the greedy
nor the delaunay triangulation algorithms generate
the minimum dilation triangulation of a planar point
set, as shown in Figure 1. Therefore, one approach is
to use metaheuristic techniques for obtaining approx-
imate solutions to the optimum.

(a) GT (b) DT (c) MDT

Figure 1: A point set for which the MDT neither is
the GT nor the DT.
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1 Approximated algorithms for

the MDT problem

A set of simple techniques is presented because, to the
best of the authors' knowledge, there are no works in
the literature where the MDT problem is approached
using metaheuristics. We present the general overview
of the studied algorithms: Greedy [5], Local Search
[1, 11], Iterated Local Search [9], Simulated Anneal-
ing [3, 7], and Random Local Search describing their
features and parameters. For all the algorithms the
solution space E is represented by all possible trian-
gulations of a set S of n points in the plane. An n×n
matrix of ones and zeros is used to represent a possi-
ble solution. A 1 at position (i, j) means that there
is an edge connecting points i and j, otherwise a 0 is
placed. The objective function, f : E → R, assigns a
real value to each element of E . For each E ∈ E , the
function f is de�ned as the maximum dilation among
all pairs of points in E.

Greedy Algorithm (G-MDT) It starts with an
empty solution Sol and inserts edges until a triangu-
lation for a given set of point S is generated. Let A
be the set of all possible edges that have not been in-
serted in Sol, u, v ∈ S and e = uv ∈ A. If the dilation
of the points u and v determines the dilation of the
solution, i.e., ∆Sol(u, v) = ∆(Sol), then the edge e is
inserted in the solution Sol. This reduces the dilation
of the points u and v to 1 because dist(u, v) = |uv|
and consequently decreases the dilation of the solu-
tion Sol. The insertion is performed whenever the
new edge to insert produces no intersections with the
edges already inserted.

Local Search Algorithm (LS-MDT) It starts
from a random initial solution and then iteratively
moves to a neighbor solution. These moves are per-
formed by applying an operator looking for a better
solution. If a better solution is found, it replaces the
current solution by the new one and it continues the
process until it can not improve the current solution.
When no improved solutions are present in the neigh-
borhood, local search is stuck at a local optimal so-
lution. The moves in the search space are performed
using the retriang() operator that works as follows.
Let a, b ∈ S, if the dilation of the points a and b de-
termines the dilation of the current solution Sol, i.e.,
∆Sol(a, b) = ∆(Sol) (see Figure 2(a)), then a and b
are joined by an edge. The egdes intersected by ab
are deleted and the region delimited by these edges
(see Figure 2(b)) is retriangulated in a greedy way.
The edge whose points have the higher dilation is in-
serted at each step if it does not intersect with the
edges previously added and if a complete triangula-
tion is not achieved (see Figure 2(c)). Therefore the

current solution is improved because its dilation has
been reduced. Due to the behavior of this operator
only a single neighbor is obtained.
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Figure 2: retriang() operator. In (a), ∆Sol(a, b) =
∆(Sol) is shown in dashed style. In (b), the edge ab
is added and the dashed edges intersected by ab are
deleted. The grey region is retriangulated in a greedy
way (c).

Iterated Local Search Algorithm (ILS-MDT)
First, a local search is applied to an initial random
solution and yields a local optimum using the LS-
MDT algorithm. At each iteration, a perturbation of
Sol is carried out and then, a local search is applied
to the perturbed solution Sol′. This process iterates
until the number of perturbations is less than 50 and
the current solution is improved, always keeping the
best solution found so far Solbest. The perturb(Sol)
procedure is performed by the perturbation operator
where n/5 random local retriangulations over random
selected points of S are performed worsening the cur-
rent solution, i.e., a point b ∈ S is randomly chosen
and all the points adjacent to b form the grey region
that has to be retriangulated. The edges belonging to
the region are deleted and then this region is retrian-
gulated in a random way. The edges of the region are
inserted at random if they do not intersect with the
edges previously added and if a complete triangula-
tion is not achieved.

Simulated Annealing Algorithm (SA-MDT)
From an initial solution, it executes a number of iter-
ations where a neighbor of the current solution Sol is
generated in each one of them. The moves that im-
prove the cost function are always accepted. Other-
wise, the neighbor Sol′ is selected with a given prob-
ability that depends on the current temperature T .
This probability is usually called acceptance function
and it is evaluated according to p(T, Sol, Sol′) = e−

δ
T
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where δ = f(Sol′) − f(Sol). M(Tk) moves are per-
formed for each temperature Tk. Finally, the value of
Tk is decreased at each algorithm iteration k. The al-
gorithm continues this way until the termination con-
dition is met.

We use two operators to obtain the neighborhood of
a solution: 1) Local random retriangulation (RR) as
used in the perturbation operator in ILS-MDT algo-
rithm; 2) Local greedy retriangulation (GR) is similar
to the RR described above, but the edges are inserted
in a greedy way. A point b ∈ S is randomly chosen
and all the points adjacent to b are recovered. Then
the grey region that forms the adjacent points to b
is retriangulated using at each step the edges whose
points have the higher dilation (if it does not inter-
sect with those previously added). The scheduling of
application for these operators is as follows. GR is
performed g times and RR is performed r times. We
considered g ∈ {4, 6, 8} and r = 2 as will be described
later in the next section.

Due to the complexity involved in tuning the pa-
rameters of metaheuristic techniques, we used Sequen-
tial Parameter Optimization (SPO) [2] for tuning the
parameters required by SA. All SPO-tuning exper-
iments for the SA-MDT algorithm were performed
with the following settings: 50 sequence steps, 5 new
design points in each step, up to 2 repeats per design
point, and 7 initial design points. Random Forest was
used as a fast surrogate model building tool. Latin
hypercube sampling was chosen as the generator of
design points. We obtained better results with Tk

moves at each temperature (M(Tk) = Tk), using lo-
cal retriangulation interleaving with g = 8 and r = 2
and with a initial temperature equal the maximum
length of the paths in the initial solution.

Random Local Search Algorithm (RLS-MDT)
Initially, the proposed SA algorithm used the operator
retriang() to move in the solution space. We observed
that such algorithm converged too early to suboptimal
regions (the best solution was achieved during the �rst
temperature value). Therefore we proposed another
operator for the SA algorithm to avoid this condition
of premature convergence. On the other hand, the re-
sults obtained with operator retriang() were encour-
aging with the LS and ILS algorithms. Therefore, we
propose a new algorithm; we called it Random Local
Search algorithm, which starts with a random initial
solution. maxEvals = 2n evaluations are performed,
accepting good and bad solutions. This mechanism
allows to explore and exploit the search space, always
keeping the best solution found so far Solbest. We
consider the operator retriang() but the retriangula-
tion of the region is calculated in a random manner
because better results were obtained that way.

2 Experimental Evaluation and

Statistical Analysis

We generated 20 problem instances, each one is called
n-i, where n = {40, 80, 120, 160, 200} is the size of
the instance and i is the number of the instance
(1 ≤ i ≤ 4). The points are randomly generated,
uniformly distributed and for each point (x, y), the
coordinates x, y ∈ [0, 1000]. For stochastic algorithms
25 runs were carried out with di�erent initial seeds
and di�erent initial triangulations for each run.
Table 1 shows the best values obtained with the

proposed algorithms: G-MDT, LS-MDT, ILS-MDT,
SA-MDT, and RLS-MDT. The lowest dilations are
bolded. Xia proved that the dilation of the Delau-
nay triangulation of a set of points in the plane is
less than 1.998 [12]. All the results obtained by the
algorithms are less than 1.998 and the Delaunay trian-
gulation never obtains better results for the instances
considered (see the �DT � column). We compared our
results with those obtained with the algorithm pro-
posed in [8]. We called it OV-MDT because it com-
putes the Obstacle Value of the edges for approximat-
ing the minimum dilation triangulation. We used the
Java-applet available at the Geometry Lab site at the
University of Bonn (www.geometrylab.de) to obtain
the results. For some instances the applet did not
produce a result giving an error and halting the exe-
cution of the algorithm. It should be noted that the
applet yielded results after several days of execution
(see the �OV-MDT � column). TheG-MDT algorithm
obtained solutions of poor quality even for the small-
est instances. The RLS-MDT algorithm obtained the
lowest (best) dilations for all problem instances (ex-
cept for one instance of 120 points). We observed
that the OV-MDT algorithm did not obtain better
results than RLS-MDT. Although in some instances
equal best values were obtained by some algorithms,
the RLS-MDT algorithm showed to be less complex
and faster than the other algorithms.
As all samples had a non-Normal distribution

(Kolmogorov-Smirnov test) we used non-parametric
statistical tests to evaluate the con�dence on the sta-
tistical results provided by the algorithms. In order
to carry out a comparison which involved results from
more than two algorithms Kruskal Wallis test was
used for multiple comparisons with independent sam-
ples [4]. We used the post-hoc Tukey test to �nd
which algorithms' results are signi�cantly di�erent
from one another. These tests are well-known and
they are usually included in standard statistics pack-
ages (such as Matlab, R, etc.). After applying the
Kruskal Wallis test, we observed that there was al-
ways a signi�cant di�erence between the algorithms
(1.e-16 < p-value≤ 0.0015) being this di�erence much
larger when considering sets with more points. The
ILS-MDT and RLS-MDT algorithms had similar per-
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Instance DT OV-MDT G-MDT LS-MDT ILS-MDT SA-MDT RLS-MDT

40-1 1.31871 132.863 1.37203 130.959 1.29467 1.29467 1.29467

40-2 1.37491 1.36881 1.37491 1.36881 1.36881 1.36881 1.36881

40-3 1.32268 1.32268 1.36026 1.32268 1.32268 1.32268 1.32268

40-4 1.35391 1.32330 1.34919 1.32330 1.32330 1.32557 1.32330

80-1 1.33034 1.32363 1.39394 1.32363 1.32363 1.40844 1.32363

80-2 1.40500 135.181 1.38199 1.35339 1.32418 1.50331 1.32418

80-3 1.37791 1.30519 1.36180 1.34065 1.31457 1.37791 1.30519

80-4 1.42547 134.239 1.39362 1.33176 1.31583 1.47561 1.31583

120-1 1.37428 1.34442 1.42386 1.35398 1.34825 1.72082 1.34442

120-2 1.33973 131.194 1.37778 1.31194 1.30366 1.65921 1.31194
120-3 1.37724 134.016 1.43027 1.40314 1.31985 1.74912 1.29786

120-4 1.38529 1.33600 1.39972 1.35152 1.34272 1.68163 1.33600

160-1 1.34365 1.31050 1.43076 1.35236 1.33384 1.95530 1.31050

160-2 1.35409 NA 1.33260 1.36463 1.33260 1.97896 1.33260

160-3 1.35797 133.278 1.37723 1.37178 1.36352 1.87574 1.32995

160-4 1.37922 1.34941 1.37922 1.37922 1.35037 1.87033 1.34941

200-1 1.35751 NA 1.42220 1.41867 1.35751 2.08064 1.35751

200-2 1.39512 NA 1.39512 1.36451 1.36350 2.06324 1.36350

200-3 141.962 NA 1.45763 1.40645 1.40645 2.09818 1.40645

200-4 1.36965 NA 1.40765 1.35499 1.35251 2.00110 1.35251

Table 1: Best results of DT, OV-MDT, G-MDT, LS-MDT, ILS-MDT, SA-MDT, and RLS-MDT algorithms.

formances for the whole set of instances because there
were no signi�cant di�erences between these two al-
gorithms (using the Tukey test).

3 Conclusions

In this work four metaheuristic techniques were
implemented to �nd high quality triangulations
of minimum dilation. The set of instances
generated and used in the experimental evalu-
ation are available at the research project site
(www.dirinfo.unsl.edu.ar/bd2/GeometriaComp/)

After performing the experimental evaluation and
statistical analysis, we assessed the applicability of
the LS, ILS, SA, and RLS algorithms for the MDT
problem. The RLS-MDT and ILS-MDT algorithms
had similar competitive performances with respect to
the other algorithms in the problem instances consid-
ered. These algorithms achieved a dilation reduction
between 0.4% and 9.2% with respect to the greedy
strategy (GT-MDT ). Although both algorithms be-
have similarly, the RLS-MDT algorithm required less
evaluations than ILS-MDT. It should be noted that
the existing algorithm (OV-MDT ) yielded no results
for four of the instances considered as either it re-
turned an error or halted. The RLS-MDT algorithm
outperformed the OV-MDT algorithm in 50% of the
instances considered and obtained the same results in
the other instances.
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