
XV Spanish Meeting on Computational Geometry, June 26-28, 2013

Reporting �ock patterns on the GPU

Marta Fort, J.Antoni Sellarès, and Nacho Valladares∗

Departament Informàtica, Matemàtica Aplicada i Estadística. Universitat de Girona.

Abstract

In this paper we study the problem of �nding �ock
patterns in a set of trajectories of moving entities. A
�ock refers to a large enough subset of entities that
move close to each other for a given time interval. We
present a parallel approach, to be run on a Graph-
ics Processing Unit, for reporting maximal �ocks. We
also provide experimental results that show the e�-
ciency and scalability of our approach.

1 Introduction

A trajectory is a sequence of sampled time-stamped
point locations describing the path of a moving entity
over a period of time. Assuming that the movement
of an entity between two consecutive positions is done
at constant speed and without changing direction, its
trajectory is modelled by the polygonal line, that can
self-intersect, whose vertices are the trajectory points.
In this paper we study the �ock pattern [1, 2, 3],

that identi�es a group of entities moving close to-
gether during a given time interval (see Figure 1).

e2

e3
e0
e1

x

y

tτ−1

D1

D2

t0

Figure 1: Example of two �ocks.

The increasing programmability and high compu-
tational rates of Graphics Processing Units (GPUs),
together with CUDA (Compute Uni�ed Device Archi-
tecture) and some programming languages which use
this architecture, make them attractive to solve prob-
lems which can be treated in parallel as an alternative
to CPUs. GPUs are used in di�erent computational
tasks where a big amount of data or operations have
to be done, whenever they can be processed or done
in parallel. Some recent works show that demanding
algorithms in di�erent �elds can take advantage of the
GPU parallel processing [4, 5, 6].

∗Email:(mfort,sellares,ivalladares)@imae.udg.edu.
Authors research supported by TIN2010-20590-C02-02.

In this paper, we present an e�cient parallel GPU-
based algorithm, designed under CUDA architecture,
for reporting maximal �ocks. The experimental re-
sults obtained with the implementation of our algo-
rithm show the signi�cance of the presented approach
according to its performance and scalability.

2 The �ock pattern

Let E = {e0, . . . , en−1} be a set of n moving entities.
The trajectory Ti of the entity ei is a sequence of τ
points in the plane Ti : e

i
0, . . . , e

i
τ−1, where e

i
j denotes

the position of ei at time tj with 0 ≤ j < τ . We
assume that the positions are sampled synchronously
for all the entities, and that entity ei moves between
two consecutive positions eij , e

i
j+1 with constant speed

and without changing direction. Consequently, the
trajectory Ti is described by the polygonal line, which
may self-intersect, whose vertices are the trajectory
points.
Flocks identify groups of entities whose trajectories

are close together during a minimum period of time.
Formally, according to [2], given a set E of entities,
a minimum number of entities µ ∈ N, a number of
time-steps δ ∈ N, a time interval Iδj = [tj , tj+δ−1],
and a distance ϵ ∈ R:
De�nition 1 A �ock f(δ, µ, ϵ) in a time interval Iδj ,
consists of at least µ entities such that for every dis-
crete time step tℓ ∈ Iδj , there is a disk of radius ϵ that
contains all the µ entities.

The number of reported or determined �ocks is a crit-
ical issue that can adversely a�ect the response time
and the proper interpretation of the �nal results. For
a time-step tℓ ∈ Iδj there may be several circles with
radius ϵ that yield a �ock with the same subset of enti-
ties of E, so we consider that two �ocks are di�erent if
they involve two di�erent subsets. Since there can be
Θ(n2) combinatorially distinct ways to place a circle
of radius ϵ among n points in the plane, at each time-
step there can be Θ(n2) �ock candidates involving dif-
ferent subsets of entities [9]. An algorithm having as
output the position of the entities involved in a �ock,
would have an output size of Θ(n3) per time-step.
Moreover, it is easy to observe that a set of entities
could be present in many �ocks, and even one single
entity can be involved in several �ocks. For example, a
�ock of µ+1 entities contains µ+1 �ocks of µ entities.

19

Reporting �ock patterns

To overcome this problem, as in [3], instead of �nding
all the existent �ocks, we are interested only in max-
imal �ocks, so that the entities of one �ock may not
be a subset of the entities of another �ock. Even in
the case of �nding maximal �ocks, at every time-step
there may still asymptotically be Θ(n2) �ock candi-
dates, although in many real situations the number of
candidates decreases considerably.

De�nition 2 A maximal �ockmf(δ, µ, ϵ) in the time
interval Iδj , is a maximal �ock f(δ, µ, ϵ) in Iδj with
respect to the subset inclusion.

We will denote Mδ
j the family of maximal �ocks in

the time interval Iδj , andMδ the family of all maximal

�ocks, that is, the �ocks of Mδ
j , for j = 0, . . . , τ − 1.

2.1 Characterization

Vieira et al. [3] prove that, for each pair of entity lo-
cations, there exists two such disks. Thus, 2n2 disks
per time step must be tested. Since we are interested
in those �ocks that are maximal, we prove that keep-
ing just one of the two disks is enough. Consequently,
only n2 disks per time step must be tested, thus the
number of tests is reduced by half.
The following lemma, similar to one presented in

[3], allows us to bound the number of disks to be
tested in each time step.

Lemma 3 Let P be a set of n points and D′ be a disk
of radius r that covers a subset P ′ ⊆ P , |P ′| = k ≤ n.
There exist another disk D′′ of radius r such that: a)
has at least two points pi, pj ∈ P ′ on its boundary; b)
covers a superset P ′′ of P ′, P ′ ⊆ P ′′ ⊆ P ; c) it is
located at the right side of points pi, pj.

3 Reporting �ock patterns

In this paper study the problem of reporting the fam-
ily Mδ of all maximal �ocks. To report Mδ, we
must �nd the family Mδ

j in the time interval Iδj , for
j = 0, . . . , τ − 1.

3.1 Computing the family Mδ
j

Next, we describe the two main steps of the algorithm
used to compute the family Mδ

j in the time interval

Iδj .
First step. At each time step ti in the time inter-

val Iδj , we compute the family Fi of potential �ocks
containing at least µ entities. Each family Fi is ob-
tained by using the characterization given in Lemma
3. Next, we �nd the maximal sets of each family Fi.
Abusing of notation, we still denote Fi the obtained
subfamily of potential maximal �ocks. At the end
of the step, we have the array of families of poten-
tial maximal �ocks Fδ

j = [Fj , . . . ,Fj+δ−1] in the time

interval Iδj .

Second step. We �rst compute the family Iδ
j ob-

tained intersecting the δ families of potential maxi-
mal �ocks in Fδ

j . That is, Iδ
j contains the sets which

are the intersection of δ sets, one of each family Fi

in Fδ
j . Finally, we �nd the subfamily of maximal sets

of Iδ
j that contain at least µ elements. The obtained

subfamily is the desired Mδ
j .

4 GPU implementation

In this Section, we describe how to implement the
di�erent steps of the algorithm that computes Mδ

j ,
when GPU parallel techniques are used.

4.1 The multi-grid structure G
We denote by Ei = {e0i , . . . , e

n−1
i } the set of locations

of the entities of E at time step ti, i ∈ {0, . . . , τ −
1}. In [3], a single grid is used to perform quick disk
range searching queries over each set Ei. Instead of
using a grid for each time step, we build a multi-grid
structure, denoted G, in parallel in the GPU, that
allows us to search simultaneously in each one of the
δ sets of Eδ

j = [Ej , . . . , Ej+δ−1].
The multi-grid structure contains δ regular grids,

where the edges of the grid cells have length ϵ. Each
grid j contains the set of points corresponding to Ej .
In order to maximize the parallel performance, the
top-right corner is de�ned so that the grid is a square,
that is, it has the same number of rows and columns
(see Figure 2).
The multi-grid structure G is composed of 7 arrays

allocated in the GPU global memory. In Figure 2 we
can see an example for δ = 3. The bottom-left and
the top-right corners of each grid are stored in the
array bδ of size δ, where bδ[j] stores the two corner
points of the grid containing Ej . The number of cells
per row (or per column) of each grid is stored in c̃δ
and its pre�x sum is stored in p̃δ. Both arrays are
integer arrays of size δ.
To represent the δ grids, we use the array of inte-

gers cδ, whose size depends on the size of the di�erent
grids which directly depend on the distribution of the
points. For a given grid cell, we store in the corre-
sponding cδ position the number of points contained
on that cell. The array pδ of the same size of cδ is ob-
tained as the pre�x sum of cδ. Note that, for a better
understanding, in Figure 2 the arrays cδ and pδ are
showed as several 2D grids, but in the GPU memory
they are stored one 1D array each, by storing one grid
after the other starting from left to right and from top
to bottom, thus, the �rst grid corresponds to the time
step ti and the last one of the time step ti+δ. With
this structure we can easily access, in a parallel way,
to any element of the δ grids, by using the fact that
the set of points of a cell w starts at position pδ[w]
of eδ, and is stored in cδ[w] consecutive positions of
eδ. In each eδ position we store the two �oats of the

20

XV Spanish Meeting on Computational Geometry, June 26-28, 2013

corresponding location. Finally, ẽδ is an integer array
of size nδ containing at position j the entity id of the
eδ[j] location.

cδ

pδ

t0 t1 t2

2

1

1 1

1

3

0 0

0 0

0

0

0

0

0 2

2 2

3 3 4

5 5 5

5 6 6

6

p0
0

eδ p1
0 p2

0

t0

c̃δ

p̃δ

2 3 1

0 2 5

t0 t1 t2

0ẽδ 21

p0
1

p1
1

p2
1

p1
2

p2
2

p0
2

021 021

t1 t2

bδ b0 b1 b2

ǫ

e0
e1

e2

ǫ

Figure 2: Example of multi-grid G for δ = 3.

We construct the G structure in parallel as follows.
We allocate CPU arrays c̃δ

′, p̃δ
′, b′δ of size δ, and p′

and ẽδ
′ of size nδ. While we load the input P into p′

the arrays c̃δ
′, p̃δ

′ and b′δ are accordingly �lled. Then
c̃δ, p̃δ, bδ and p are allocated in GPU memory and
the c̃δ

′, p̃δ
′, b′δ and p′ values are transferred to GPU

memory to c̃δ, p̃δ, bδ and p respectively.
Then, cδ and pδ are allocated in the GPU memory

according to c̃δ and p̃δ values. Additionally, the ar-
rays eδ and ẽδ are allocated with size nδ also in GPU
memory. Because GPU has no dynamic memory we
have to construct G in two steps.
First, we �ll cδ by counting the number of points

contained in each cell. This is done in parallel by
launching a kernel with nδ threads, that is, a thread
per point and per time step. Each thread idx reads its
p[idx] value and determines its position in the grid by
using its position on the plane, the grid corresponding
to the time step which the point belongs to, and the c̃δ
and p̃δ arrays. The corresponding cδ position is incre-
mented in 1. Because many threads may correspond
to the same cδ position we use atomic operations to
ensure no thread interferences.
Once cδ is computed, pδ is obtained as the pre�x

sum of cδ and we allocate an auxiliary array v with the
same size of cδ, initialized to zeros. Now, we launch
a parallel kernel with nδ threads where each thread
idx reads its p[idx] value, determines its position w in
the grid and stores p[idx] at eδ[pδ[w] + v[w]]. Every
time a thread stores its associated point into eδ the
corresponding v value is incremented in one by using
an atomic operation.

4.2 Finding potential �ocks

The computation of the array of potential �ocks Fδ
j of

a given interval Iδj is done in two main steps. First, we

need to �nd the center of the disks which are obtained
applying the characterization given in Lemma 3, and
second, we need to report the entities contained in
those disks. Additionally, because GPUs do not have
dynamic memory, we split the process in several steps.

First, we allocate an array of integers Dc of size nδ
to count how many disks there exist. This is done in
parallel by launching a kernel with nδ threads, that
is, a thread per point within Iδj . Using the struc-
ture G each thread idx goes through its neighbors
and counts the number of points which are at dis-
tance ≤ 2ϵ. The results are stored in Dc[idx]. Be-
cause this is computed in parallel, each disk will be
reported twice, once for each of the two points de�n-
ing the disk. In order to avoid this, we force threads
to check those points whose entity id is bigger than
itself. Then, Dp of size nδ, is computed as the pre-
�x sum of Dc, and the array D is allocated with size
Dp[nδ−1]+Dc[nδ−1], where we will store the centers
of disks. The same process is repeated, but, instead of
counting, each thread reports the center of the disk.
Let us recall that only the right disk per paired point
has to be reported.

In the second step, we actually report the poten-
tial �ocks. To do this we use G to perform the range
searching queries, using the values of the array D as
the center of the queries with radius ϵ. Note that,
because in order that the regular grid structure works
for range searching queries, we must be able to locate
any point within the grid. It may happen that some
disk centers were placed outside the grid for a given
time step. Thus, before we perform the range search-
ing queries we have to reconstruct G so that the center
of the disks were contained in G. We could modify G,
but it is faster to rebuild it than to modify it.

To count the number of points contained on each
disk we �rst allocate Pc, the array of integers of size
equal to the total number of disks reported which is
Dp[nδ−1]+Dc[nδ−1], initialize it to zeros and launch
a kernel with one thread per disk. Each thread idx
reads the center of its disk D[idx], locates D[idx] on
the grid and checks the distance between the center
of the disk and the points of its cell neighbors. Each
thread counts how many points are at distance ≤ ϵ to
its disk center, and if there are at least µ the number
is stored in Pc[idx]. Finally, we compute Pp as the
pre�x sum of Pc.

If there is at least one disk per time step with at
least µ entities, we continue to report the potential
�ocks. The last position of Pp plus the last position
of Pc gives us ω, the size of the array used to store the
potential �ocks. Thus, the array P is allocated as an
integer array with size ω and is �lled in parallel using
a thread per disk. The process is the same as before
but this time, instead of counting, each thread stores
in P the entities contained inside each disk.

Note that, Pc, Pp and P denote a structure contain-

21

Reporting �ock patterns

ing δ families of sets. This is the array of potential
�ocks Fδ

j , that is, δ families of sets containing the po-
tential �ocks of δ consecutive time steps starting at
time step tj . We denote Fj the family of potential
�ocks of the time step tj .
The last step is to reduce each Fi ∈ Fδ

j so that it
only contains the sets which are maximal, with respect
to the partial order induced by the subset relation in
each family. To this end, we use the parallel algorithm
of Fort et al. [7]. When the process �nishes, we have
in Fδ

j the maximal potential �ocks with µ or more

entities at each time step of the interval Iδj .

4.3 Reporting Mδ �ocks

We want to report all the �ocks Mδ
j for all Iδj , j =

[0, . . . , τ − δ]. Thus, we could perform the same algo-
rithm over each Iδj , but many information computed
for a given time step within a time interval can be
reused for the following time intervals. The idea is
to compute the potential �ocks for a given interval
and compute their intersections in a way that we can
reuse the information for the next time interval. To
this aim we proceed as follows.
We start at the interval Iδ0 and we compute Fδ

0 .
Then, in order to obtain Mδ

0 = Fδ−1∩Fδ−2∩· · ·∩F0

we start at Fδ−1 and we intersect Fδ−2 ∩Fδ−1. Next,
we intersect Fδ−3∩Fδ−2∩Fδ−1 and so on. After each
intersection, we compute the maximal sets for each
resulting intersection discarding those sets which are
non maximal or containing less than µ entities. When
we are done, we add, to Mδ, the family Mδ

0, which
contains the �ocks of Iδ0 .
For the following time steps, instead of recomput-

ing all the potential �ocks and all the intersections, we
reuse the previous computations. If for a given time
step tj , a family of potential �ocks Fk, j ≤ k < j+δ is
not inside the array Fδ

j , we compute Fδ
j+δ−1. That is,

instead of computing the potential �ocks of one single
time step we compute them in δ intervals. Then, we
perform the corresponding intersections. This tech-
nique does not decrease the number of intersection we
have to do, but, in practice, the δ families we intersect
in each step are smaller than the ones containing the
potential �ocks, leading to faster results. We repeat
the process until j = τ − δ.
The intersection process is also performed in paral-

lel using the GPU algorithm presented by Fort et al
in. [8].

5 Experimental results

The experimental results are obtained using an In-
tel Core2 CPU 6400 with a Nvidia GTX 480. We
split the running time into 2 main steps, the potential
�ocks reporting process and the intersection process.
The accumulated value, corresponding to the columns
height, gives the total running time of the algorithm.

The algorithm has been tested with a data set ex-
tracted from [10], that consists of 145 trajectories of
2 school buses around Athens metropolitan area in
Greece with a total of 66, 096 time steps.
The results (Figure 3) shows that when we vary ϵ

while we maintain µ = 5 and δ = 10, the number of
�ocks reported increases as long as we increase ϵ. The
most a�ected part is the intersection process. This is
because the more �ocks we report the more intersec-
tions we have to compute. When the parameter µ is
varied, while ϵ = 1200 and δ = 10, the condition to
form �ock is more restrictive. Thus, the number of
�ocks decreases and, consequently, the running times
too.

Figure 3: Running times varying ϵ and µ.

References

[1] J. Gudmundsson, M. J. van Kreveld, B. Speckmann, E�-
cient Detection of Patterns in 2D Trajectories of Moving
Points, GeoInformatica 11 (2) (2007) 195�215.

[2] M. Benkert, J. Gudmundsson, F. Hübner, T. Wolle, Report-
ing �ock patterns, Computational Geometry 41 (3) (2008)
111�125.

[3] M. R. Vieira, P. Bakalov, V. J. Tsotras, On-line discovery
of �ock patterns in spatio-temporal data, in: D. Agrawal,
W. G. Aref, C.-T. Lu, M. F. Mokbel, P. Scheuermann,
C. Shahabi, O. Wolfson (Eds.), GIS, ACM, 2009, pp. 286�
295.

[4] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krüger, A. E. Lefohn, T. J. Purcell, A survey of
general-purpose computation on graphics hardware, Com-
puter Graphics Forum 26 (1) (2007) 80�113.

[5] N. Coll, M. Fort, N. Madern, J. A. Sellarès, Multi-visibility
maps of triangulated terrains, International Journal of Ge-
ographical Information Science 21 (10) (2007) 1115�1134.

[6] M. Fort, J. A. Sellarès, N. Valladres, Computing popular
places using graphics processors, in: Proc. SSTDM'10 in
cooperation with IEEE ICDM'10, IEEE Computer Society,
2010, pp. 233�241.

[7] M. Fort, J.A. Sellaès, N. Valladares, Finding extremal sets
on the GPU (Submitted).

[8] M. Fort, J.A. Sellaès, N. Valladares, Intersecting two fami-
lies of sets on the GPU (Submitted).

[9] J. Gudmundsson, M. van Kreveld, B. Speckmann, E�cient
Detection of Motion Patterns in Spatio-Temporal Data
Sets, in: D. Pfoser, I. F. Cruz, M. Ronthaler (Eds.), GIS,
ACM, 2004, pp. 250�257.

[10] Y. Theodoridis, R-Tree portal,
http://www.rtreeportal.org (2011).

22

	papers
	6-egc_paper_23_final

