
Visualization of Use Cases through Automatically
Generated Activity Diagrams

Javier J. Gutiérrez1, Clémentine Nebut2, María J. Escalona1, Manuel Mejías1,
and Isabel M. Ramos1

1 Department of Languages and Computer Systems,
University of Sevilla, Spain

{javierj,mjescalona,risoto,ramos}@us.es
2 LIRMM, CNRS and university of Montpellier 2, France

nebut@lirmm.fr

Abstract. Functional requirements are often written using use cases formatted
by textual templates. This textual approach has the advantage to be easy to
adopt, but the requirements can then hardly be processed for further purposes
like test generation. In this paper, we propose to generate automatically through
a model transformation an activity diagram modeling the use case scenario.
Such an activity diagram allows us to guess in a glimpse the global behavior of
a use case, and can easily be processed. The transformation is defined using the
QVT-Relational language, and is illustrated on a case study using a supporting
tool.

1 Introduction

Requirement engineering is a crucial activity for a successful project. Among the
different tasks to achieve in this activity is the writing of the elicited requirements in a
given language (formal, semi-formal, or natural).

Structured use cases is a classical standard used in industry and taken as entry point
of several research work [3][4][5][14]. By structured use cases, we mean use cases as
defined in UML [22], enhanced with additional information like pre and post condi-
tions, and scenarii. Such use cases usually follow templates like Cockburn one [3],
defining in natural language usage scenarii, quality of service constraints, or graphical
interface elements, like [4].

A UML use case model does not contain much information. It allows to define the
frontier of the system, actors, name of use cases, and relations between the use cases,
the actors, and linking actors and use cases. UML methodologies like RUP [23] or
Catalysis [24] recommend to enhance this model with other UML artifacts like con-
straints to define contracts, and sequence diagrams to define system scenarii in a
graphical way.

Both use case templates and UML methodologies thus incite the requirement
writer to define scenarii, in a graphical or textual notation. Graphical notations for
scenarii (system sequence diagrams [19] or activity diagrams [25]) have the advan-
tage to give in a glimpse a good idea of the dynamic aspects of a use case
(loops,

alternatives, choices). Moreover, they can be easily used by a tool to be analyzed (for
example for test generation purposes, also in [19]). On the other hand, they can be
difficult to design, and domain experts cannot reasonably asked to draw them. On the
opposite, textual scenarii are easy to write: the scenarii are composed of various steps,
each one is described by natural language sentences, and linked with natural language
connectors. Such textual scenarii do not give an immediate intuition of the behavior
of the use case, and cannot easily be processed by a tool.

The original contribution of this paper is a process to generate in an automated way an
activity diagram modeling use case dynamic from textual scenarii. The generation is
performed by a model transformation, taking as input use case textual scenarii (conform
to a metamodel defined in this paper), and producing an activity diagram (conform to a
restricted part of the UML activity diagram metamodel). The transformation is defined
using QVT-relational language and implemented in Java in a prototype tool.

This transformation allows to benefit both from graphical and textual scenarii ad-
vantages. Textual scenarii can be written. Then they can be transformed in a graphical
view. This allows an easier integration to UML tools, and to use the activity diagram
for further treatments like test generation for example.

The rest of this paper is organized as follows. Section 2 introduces the source and
target metamodels, this means, the textual requirement metamodel and an excerpt of
the UML activity metamodel. Section 3 describes the transformation to generate an
activity diagram from a tabular requirement. Section 4 introduces a case study. Sec-
tion 5 describes other related approaches and, finally, section 5 summarizes conclu-
sions and ongoing works.

2 Functional Requirements and Activity Diagrams Metamodels

This section introduces the artifacts we deal with: functional requirements and activity
diagrams. Both ones are described by metamodels: our own metamodel for functional
requirements and a subset of the UML metamodel for the activity diagrams.

2.1 Functional Requirement Metamodel

There are many approaches to define textual requirements [3][4][5][14]. However the
majority of the existing approaches are based on a common core of elements. These
elements include the participants, preconditions, post-conditions, a set of main steps
(to achieve the goal of the use case) and a set of exceptional steps (to manage alterna-
tive and erroneous scenarios). These common elements have been extracted from the
cited approaches and modeled in the functional requirement metamodel introduced in
figure 1 and briefly described in the following.

A FRActor element models an external actor who participates in the functional
requirement performing the steps. The FunctionalRequirement element defines an
interaction among the system and a set of external actors. The behavior of Function-
alRequirement is defined with three different sequences of steps. The main sequence
defines the steps performed by FRActor elements and the system to achieve the goal
of the functional requirement. The alternative steps indicate variants or additional
behavior for the steps of the main sequence. The erroneous steps indicate erroneous
scenarios after performing a step from the main sequence. Alternative and erroneous
steps are modeled with ExceptionalStep element.

class Functional Requirement Metamodel

FRActor

- name: String

FunctionalRequirement

- name: String
- precondition: Constraint [0..*]
- postcondition: Constraint [0..*]
- description: String [0..1]

MainStep

- action: String

ExceptionalStep

- action: String [0..1]
- exceptionCondition: Constraint [1..*]
- result: ResultType
- nextStep: MainStep [0..1]

«enumeration»
ResultType

«enum»
 continue
 repeat / goto
 end

+functionalRequirement

+mainSequence
1..*
{ordered}

+performedBy

0..1

+performs

0..1
+erroneousStep

0..* {ordered}

+alternativeStep

0..* {ordered}

Fig. 1. Functional Requirement Metamodel

Fig. 2. Example use case (in XML format)

In this paper, the only relevant information for a MainStep element is the action
performed (attribute action) and who performs the action. In an ExceptionalStep ele-
ment, the action is not mandatory and the performer is the same one than the main
step. The exceptionCondition attribute indicates a boolean expression that must be
true to perform the step and the result attribute indicates the action to perform at the
end of the exceptional step. Three possible results have been defined as the enumer-
ated ResultType element: end the execution, continue the execution and repeat/go-to
to another step. A continue result indicates that the execution of the functional re-
quirement continues with the next step after the end of the alternative or erroneous
step. The repeat or go-to result indicates that the execution of the scenario follows the

execution of the step indicated in the nextStep attribute, and the end result indicates
than the use case scenario ends. The nextStep attribute is only mandatory when the
result type is repeat / go-to. An end result indicates that the execution of the scenario
is finished. We have defined a concrete syntax to define functional requirements con-
form to this metamodel (figure 2). The concrete syntax is XML-based to make an
approach available. One tool, available in [1], has been development to generate this
XML for our modeling tool (described in section 4).

2.2 Activity Diagram Metamodel

The UML activities metamodel contains a vast amount of elements which improves
the flexibility and semantic of activity diagrams. A subset of the activity diagrams
metamodel (as defined in UML 2.0) has been selected (figure 3). This subset defines
the elements automatically generated by the transformations introduced in next sec-
tion. Indeed, after the automatic generation of the activity diagrams, additional
elements, like data flow, may be added by hand.

class Activ ity diagram

ActivityNodeActivityEdge

- guard: ValueSpecification

ControlFlow

Activ ityPartition

- name: String [0..1]

ExecutableNode

Action

- effect: String [0..1]

ControlNode

InitialNodeActiv ityFinalNode DecisionNode

- desicionInput: FunctionalBehavior [0..1]

Activ ity

- name: String [0..1]
- precondition: Constraint [0..*]
- postcondition: Constraint [0..*]

0..1

+partition *

+edge *

+activity

0..1

+node *

+activity

0..1

+inPartition

*

+nodeContains
*

+inParti tion

*

+containedEdge*

+outgoing

*

+target

1

+incoming

*

+source

1

Fig. 3. Activity diagrams metamodel

Since UML 2.0, the activity diagram element has been replaced with the Activity
metaclass. Indeed, this metaclass groups all the elements of an activity diagram: con-
trol flows, nodes and activity partitions. Activity partitions are groups of the elements
of an activity diagram. Control flows indicate the incomings and outgoings of a node.
Action nodes define a behavior. Decision node allows to select a flow as result of
evaluating boolean predicates. Finally, the InitialNode and ActivityFinalNode ele-
ments indicate where the control flow begins and ends.

Next section, describes how these elements represents the concepts defined in the
functional requirement metamodel.

Fig. 4. From functional requirement to activity

3 Transformation from Textual Scenarios to Activity Diagrams

This section defines the transformation to generate an activity diagram (as an instance
of the metamodel of figure 3) from a functional requirement (as an instance of the
metamodel of figure 1). The objective of this transformation is to generate from a
functional requirement an activity that models the whole functional requirement (with
the same name, pre-conditions and post-conditions). In this activity, the activity parti-
tions model the different actors implied in the functional requirement and the system
under development, control flows model the execution paths or scenarios and actions
and decision nodes model the steps and the exception conditions. Transformation
performs next tasks:

1. generating an activity for each functional requirement,
2. generating an action for each main step and generate a decision node and addi-

tional actions for each exceptional step,
3. all elements in the activity diagram are connected using control flows.

All the tasks are defined using QVT-Relational [26]. We here present only the
main ones in QVT-Relational; the whole transformation can be found in [1]. The
steps are described in detail in next sections.

3.1 From Functional Requirements to Activity Diagrams

Initially, one activity is generated for each functional requirement. The related rela-
tion (called FR_2_AD), in QVT-Relational language, is showed in figure 4. The
name, preconditions and post-conditions of the activity are the same than the ones in
the functional requirement (lines 17, 18 and 19).

Fig. 5. (a) From actor to activity partition. (b) From main step to action.

As seen in the previous section, one activity partition is also generated for each ac-
tor participant in the functional requirement (relation Actor_2_ActivityPartition,
called in line 22) plus one additional partition for the system (as showed in figure
5(a), lines from 42 to 49). The next task is to transform the behavior, defined with
three sequences of steps, of the functional requirement.

3.2 From Main Sequence to Actions

One action is generated for each step in the main sequence. The related QVT relation
is given in figure 5(b). The attribute effect of the action is the attribute action of the
step (line 67). The actions are included in the corresponding activity partition which
may be identified using the performedBy attribute of the main step (lines 69, 70 and
71). However, if a step is performed by the system, this attribute is empty, so the
action is classified in the system partition. This behavior is codified in the auxiliary
function APName (line 76, figure 5(b)). The next step is to transform alternative and
erroneous sequences in decision nodes and actions.

3.3 From Alternative and Erroneous Sequences to Actions

Two elements are generated from an alternative or an erroneous step. The QVT rela-
tion goes in figure 6.

The first element is a decision node (class DesicionNode, line 101), which evaluates
the exception condition to allow or not the execution of the alternative or erroneous be-
havior. This exception condition is stored in the attribute desicionInput, which is gener-
ated with the auxiliary function generatePredicate (used in line 103). Due the exception
condition was defined as constraints in the functional requirement metamodel (figure 1),
this auxiliary function builds a string from a set of Constraint elements.

The second element is an action describing the additional behavior if any (as it has
been seen in the functional requirement metamodel, an action attribute for exceptional

steps is not mandatory). This action is generated by the auxiliary function Gener-
ateAction (line 113). This function has been omitted from figure 7, but its code is
quite similar to the QVT transformation MainStep_2_Action (figure 5(b)).

Then, every possible result has also a different representation in an activity dia-
gram, so three different relations are called to generate the adequate elements for each
type of results (only one, relation GenerateEnd, has been included in the where clause
of figure 6, line 115).

Fig. 6. From exceptional step to decision node

Fig. 7. Exceptional step of type end

With an end use case result, a new activity end node (class ActivityFinalNode) is
added and it is linked with the decision (or action if any) generated in previous rela-
tion using a new ControlFlow (from line 124 to 136, figure 7).

For a continue use case, the action corresponding to the next step (in the main se-
quence) is obtained and linked with the decision (or action if any) using a control flow
element. Finally, for a repeat/ go-to result type, the action corresponding for the next
step attribute (see metamodel in figure 1) is obtained and linked with the decision (or
action if any) using a control flow.

The last task is to add control flow elements among the elements that are still
unlinked.

3.4 Linking Element with Control Flows

At this time of the transformation process, all elements have been created in the activ-
ity diagram, but only a few of them have been linked with other elements (the
elements created in section 3.3). The final task is to link all the other elements with
ControlFlow instances. No control flow may be added until all the elements are gen-
erated because the control flow source and target is different depending if the actions
have been generated from main steps with or without alternative and erroneous steps
(a step-by-step example is provided in next section).

This task is, mainly, an algorithmic task. However, it has been possible to define a
set of relations to achieve every specific situation at the time to link the elements.
These relations are briefly described in next points.

1 Initial node with first element and activity final node with last element
If the first main step of the functional requirement has not an alternative step, then, the
initial node is linked with the action generated from the first step. In other case, the initial
node is linked with the decision node generated from the exception condition of the first
alternative. This relation is showed in figure 8. The same process is applied in the relation
to link the last element in the activity diagram with an activity final node.

2 Decision nodes among them
As seen in the functional requirement metamodel (figure 1) all exceptional steps (alter-
native and erroneous steps) are ordered. So, the next task is to link the decision node
generated from the first alternative step of a main step with the decision node generated
from the second alternative step of the same main step, the decision node generated
from the second one with the decision node generated from the third one, etc. This proc-
ess is also done with the decisions nodes generated from the erroneous steps.

3 Decision nodes with activities
Next, the decision node generated from the last alternative step of a main step (if any)
must be linked with the action element generated from this main step. In the same
way, this action element must be linked with the decision node generated.

4 Nodes from one step with nodes from other step
Finally, the last decision node generated from the last erroneous step of the first main
step is linked with the first decision node generated from the first alternative step of
the second main step, and so on.

At this time, the activity diagram is finished.

Fig. 8. From initial node to first element

4 Case Study

This section describes a case study of the transformation defined in previous sections.
The case study chosen is an incident report system. This system is running in a public
organism in Spain. Use cases were written one year ago using NDT approach [5][6],
which contains all the common elements of the metamodel in figure 1. No additional
information was needed to apply our transformation. This system has 9 use cases,
however, two of them have been discarded since they describe interactions among a
concrete digital sign service that is not available for us. The total number of steps is
46. One activity diagram has been automatically generated from each use case. The
total number of activity nodes is 41 and the total number of decision nodes is 15. The
complete results of this case study can be found in [1]. One use case has been chosen
(Login, from figure 2) to illustrate the transformations described in previous section.

To be able to apply our approach, we have first rewritten the use cases using our
XML syntax. The transformations in previous sections have been implemented in a
Java open-source tool (also available in [1]). The input is a XML file as the one
showed in figure 2 (generated automatically from Sparx Enterprise Architect tool) and
the output is a XMI activity diagram file. In following figures, the activity diagram
has been loaded also with Sparx Enterprise Architect tool.

act RF-01. Logging

RF-01. Logging

(from RF-01. Logging)

systemuser

1. User asks access
into the system.

(from RF-01. Logging) 2. System asks for a
name and a key.

(from RF-01. Logging)

3. User introduces a
name and a key.

(from RF-01. Logging)
4. System validates

name and key.

(from RF-01. Logging)

5. System allows
access.

(from RF-01. Logging)

Fig. 9. (a) Elements generated from the functional requirement. (b) Actions from main step.

act RF-01. Logging

RF-01. Logging

(from RF-01. Logging)

systemuser

1. User asks access
into the system.

2. System asks for a
name and a key.

3. User introduces a
name and a key.

4. System v alidates
name and key.

(from RF-01. Logging)

5. System allows
access.

(from RF-01. Logging)

D01

D02

D03

2.1. the system shows an
error message.

4.1. the system
shows an error

message.

4.2. the system
shows and error

message.

[Not(the number of tries is
greater than three)]

[the number of tries is
greater than three.]

[the name of the key
size is less than four
characters.]

[the name or the key
are not registered.]

Fig. 10. From exceptional steps to decision nodes and actions

All the elements generated from the login functional requirement are showed in
figure 9(a). The result of the relations introduced in sections 3.1 and 3.2 are showed in
the incomplete activity diagram of figure 9(b). As described before, one activity,
activity partitions and actions generated from main sequence have been added.

act RF-01. Logging

RF-01. Logging

(from RF-01. Logging)

systemuser

1. User asks access
into the system.

2. System asks for a
name and a key.

3. User introduces a
name and a key.

4. System v alidates
name and key.

(from RF-01. Logging)

5. System allows
access.

(from RF-01. Logging)

D01

D02

D03

2.1. the system shows an
error message.

4.1. the system
shows an error

message.

4.2. the system
shows and error

message.

(from RF-01. Logging)

[Not(the number of tries is
greater than three)]

[the number of tries is
greater than three.]

[the name of the key
size is less than four
characters.]

[the name or the key
are not registered.]

[Not(the name of the key size
is less than four characters)]

[Not(the name or the key
are not registered)]

Fig. 11. Final activity diagram

The result of the relation introduced in section 3.3 is showed in the incomplete ac-
tivity diagram in figure 10. As described before, a decision node and an action (if any)
have been added for each alternative and erroneous step and some elements have been
linked with control flows.

Finally, the result of relations described in section 3.4 is showed in the activity dia-
gram in figure 11 and, now, this activity diagram is complete. As described before, all
the elements of the diagram, plus an initial and final node, are linked using Control
Flow element.

5 Related Works

At the time to write this paper, few works exists dealing with automatic processing of
textual requirements from a model-based point of view. Reference [11] introduces a
requirement metamodel and a set of transformations (in Kermeta language) to build

an executable model from the requirements (defined as a labeled transition system).
Functional requirements are treated as black boxes and only pre-conditions and post-
conditions are used to generate the executable model. On the opposite, our approach
focuses in the scenarios of each use case and not in the ordering of use cases. In [12] a
complete requirement model for web system, called WebRE, is introduced. This new
model merges two previous approaches: NDT [5] and UWE [13]. However, this
model introduces web specific concepts like the browser or the links and navigation,
so it is not as generic as the approach introduced in this paper.

There are also approaches which extend activity diagrams to describe use case be-
havior more precisely. For example, in [16] actions are stereotyped to indicate if they
are performed by an actor, by the system or reflect inclusions and extensions. In our
approach this goal is achieved using activity partitions. Another related work may be
found in [18]. This paper presents a method for describing use cases with activity
charts. Support for inclusion and extension is provided. The main difference with our
approach is that [18] works with UML Use Case, but not with textual templates. This
fact imposes that activity diagrams describes a sequence of use cases, instead of the
behavior of one use case. Other papers about modeling sequences of use cases are
[19] and [20], which are test-generated oriented.

Another example is [2], which uses language analysis techniques to generate state-
charts diagrams from unformatted textual requirements. Reference [21] describes a
systematic but manual process to build state-charts from textual requirements. Refer-
ence [17] defines an algebraic framework for composing state charts and shows how
to leverage the algebraic structure of UML sequence diagrams to get a direct algo-
rithm for synthesizing a composition of state charts out of them. In this paper, sce-
nario diagrams are used to define scenarios, as an artifact to model functional
requirement. This process goes from specific (a concrete scenario) to general (a state-
chart to describe the whole behavior) while our work starts from general (the behavior
of a whole scenario). In our approach, scenarios may be defined as a path obtained
from the generated activity diagram.

6 Conclusions

This paper introduced a metamodel for functional requirements and a set of QVT
relations to combine functional requirements in the form of use cases with activity
diagrams (as described in UML 2.0) in an automatic way. These transformations
allow requirement engineers and system users to work with the most valuable repre-
sentation at any time. However, some drawbacks appear at the time of combining
textual requirements with activity diagrams. The most obvious one is the loss of
flexibility, for example at the time of adding new kind of result types. The task of
adding a new result type implies add a new set of transformation for implementing the
right activity diagram fragment for that new result and modify existing transforma-
tions for detecting the new result.

The representation of the functional requirement is not limited to XML. This paper
has introduced a fragment of XML due it is the input of our supporting tool, as men-
tioned above. Other implementations may use different representations and it is even

possible to design adapters. For example, in the supporting web site [1], a simple Java
program to obtain XML from Enterprise Architect project file is provided.

As mentioned in previous sections, the functional requirement metamodel includes
a common subset of the elements that may be found in existing functional require-
ments approaches. The main advantage is that the metamodel may be used with any
of those approaches with very little or no changes. Furthermore this metamodel may
be easily extended to include additional information like priority, stability of require-
ments, performing issues, traceability, etc.

Although the transformation process has been defined with QVT-Relational, it has
been implemented in Java language. Java allowed us to implement a prototype (also
available in [1]) in a shorter time than existing implementations of QVT-Relational or
other transformation languages like ATL. However, one of our main ongoing works is
to develop a stable version of the tool using one of the cited transformations lan-
guages.

Actually, we use the transformations described in this paper as a first step to gener-
ate test cases from use cases automatically. Transforming the textual requirements
into activity diagrams allows us to apply graph coverage criteria, like covering all
nodes or covering all flows, to generate concrete usage scenarios easily. Some papers
describing our preliminary work (which was not formalized with metamodels and
transformation) are [7][8][9]. Two additional case studies with empirical results are
introduced in [10].

Acknowledgements

This work is partially supported by the Ministry of Science and Education (Spain)
under the National Program for Researching, Development and Innovation, project
QSimTec (TIN2007-67843-C06-03) and REPRIS (TIN2005-24792-E). Authors also
wants to remark the help provided for the student who developed the system used in
the case study.

References

[1] Supporting web site, http://www.lsi.us.es/~javierj/
[2] Boddu, R., Guo, L., Mukhopadhyay, S.: RETNA: From Requirements to Testing in Natu-

ral Way. In: 12th IEEE International Requirements Engineering RE 2004 (2004)
[3] Cockburn, A.: Writing Effective Use Cases, 1st edn. Addison-Wesley, Reading (2000)
[4] Dustin, E., Rashka, J., McDiarmid, D.: Quality Web Systems. Performance, Security, and

Usability. Addison Wesley, Reading (2002)
[5] Escalona, M.J.: Models and Techniques for the Specification and Analysis of Navigation

in Software Systems. Ph. European Thesis. University of Seville. Seville, Spain (2004)
[6] Escalona, M.J., Gutiérrez, J.J., Villadiego, D., León, A., Torres, A.H.: Practical Experi-

ences in Web Engineering. In: 15th International Conference on Information Systems
Development, Budapest, Hungary, 31 August – 2 September (2006)

[7] Gutiérrez, J.J., Escalona, M.J., Mejías, M., Torres, J.: Derivation of test objectives auto-
matically. In: Fifteenth International Conference on Information Systems Development
(ISD 2006), Budapest, Hungary, 31 August – 2 September (2006)

[8] Gutiérrez, J.J., Escalona, M.J., Mejías, M., Torres, J.: Modelos Y Algoritmos Para La
Generación De Objetivos De Prueba. In: Jornadas sobre Ingeniería del Software y Bases
de Datos JISBD 2006, Sitges, Spain (2006)

[9] Gutiérrez, J.J., Escalona, M.J., Mejías, M., Torres, J., Torres, A.: Generación automática
de objetivos de prueba a partir de casos de uso mediante partición de categorías y vari-
ables operacionales. In: XIV Jornadas sobre Ingeniería del Software y Bases de Datos
JISBD, Zaragoza, Spain (2007)

[10] Gutiérrez, J.J., Escalona, M.J., Mejías, M., Torres, J., Zenteno, A.H.: A Case Study for
Generating Test Cases from Use Cases. Research Challenges in Information Science,
Marrakech (2008)

[11] Baudry, B., Nebut, C., Le Traon, Y.: Model-driven Engineering for Requirement Analy-
sis. In: Enterprise Distributed Object Computing Conference, Annapolis, MD, USA (Oc-
tober 2007)

[12] Koch, N., Zhang, G., Escalona, M.J.: Model Transformations from Requirements to Web
System Design. In: Webist 2006. LNBIP, vol. 1. Springer, Heidelberg (2007)

[13] Koch, N.: Software Engineering for Adaptative Hypermedia Applications. Ph. Thesis,
FAST Reihe Softwaretechnik, Munich, Germany, vol. 12. Uni-Druck Publishing Com-
pany (2001)

[14] Ben Achour, C.: Writing and Correcting Textual Scenarios for System Design. In: Natu-
ral Language and Information Systems Workshop, Vienna, Austria (1998)

[15] Roubtsov, S., Heck, P.: Use Case-Based Acceptance Testing of a Large Industrial Sys-
tem: Approach and Experience Report. In: TAIC-PART 2006, Windsor, UK (2006)

[16] Kösters, G., Six, H.-W., Winter, M.: Coupling Use Cases and Class Models as a Mean for
Validation and Verification of Requirements Specifications. Requirements Eng. 6(1), 3–
17 (2001)

[17] Ziadi, T., Hélouët, L., Jézéquel, J.-M.: Revisiting Statechart Synthesis with an Algebraic
Approach. In: 26th International Conference on Software Engineering (ICSE 2004), Scot-
land, United Kindom (2004)

[18] Almendros-Jiménez, J.M., Iribarne, L.: Describing Use Cases with Activity Charts. In:
Wiil, U.K. (ed.) MIS 2004. LNCS, vol. 3511, pp. 141–159. Springer, Heidelberg (2005)

[19] Labiche, Y., Briand, L.C.: A UML-Based Approach to System Testing. Journal of Soft-
ware and Systems Modelling (SoSyM) 1(1), 10–42 (2002)

[20] Nebut, C., Fleurey, F., Le Traon, Y., Jézéquel, J.M.: Automatic Test Generation: A Use
Case Driven Approach. IEEE Transactions on Software Engineering 32(3) (March 2006)

[21] Fröhlich, P., Link, J.: Automated Test Case Generation from Dynamic Models. In: Ber-
tino, E. (ed.) ECOOP 2000. LNCS, vol. 1850, pp. 472–491. Springer, Heidelberg (2000)

[22] Object Management Group. The UML Superstructure (2007), http://www.omg.org
[23] Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process,

USA. Object Technology. Addison-Wesley, Reading (1999)
[24] D’Souza, D.F., Wills, A.C.: Objects, Components, and Frameworks with UML: The Ca-

talysis(SM) Approach, USA. Addison-Wesley Professional, Reading (1998)
[25] Hartmann, J., Vieira, M., Foster, H., Ruder, A.: TDE/UML: A UML-based Test Genera-

tor to Support System Testing. In: 5th Annual International Software Testing Conference,
India (2005)

[26] Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification. Final Adopted Specification (2007), http://www.omg.org

	Visualization of Use Cases through Automatically Generated Activity Diagrams
	Introduction
	Functional Requirements and Activity Diagrams Metamodels
	Functional Requirement Metamodel
	Activity Diagram Metamodel

	Transformation from Textual Scenarios to Activity Diagrams
	From Functional Requirements to Activity Diagrams
	From Main Sequence to Actions
	From Alternative and Erroneous Sequences to Actions
	Linking Element with Control Flows

	Case Study
	Related Works
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

