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Abstract. Functional requirements are often written using use cases formatted 
by textual templates. This textual approach has the advantage to be easy to 
adopt, but the requirements can then hardly be processed for further purposes 
like test generation. In this paper, we propose to generate automatically through 
a model transformation an activity diagram modeling the use case scenario. 
Such an activity diagram allows us to guess in a glimpse the global behavior of 
a use case, and can easily be processed. The transformation is defined using the 
QVT-Relational language, and is illustrated on a case study using a supporting 
tool. 

1   Introduction 

Requirement engineering is a crucial activity for a successful project. Among the 
different tasks to achieve in this activity is the writing of the elicited requirements in a 
given language (formal, semi-formal, or natural). 

Structured use cases is a classical standard used in industry and taken as entry point 
of several research work [3][4][5][14]. By structured use cases, we mean use cases as 
defined in UML [22], enhanced with additional information like pre and post condi-
tions, and scenarii. Such use cases usually follow templates like Cockburn one [3], 
defining in natural language usage scenarii, quality of service constraints, or graphical 
interface elements, like [4]. 

A UML use case model does not contain much information. It allows to define the 
frontier of the system, actors, name of use cases, and relations between the use cases, 
the actors, and linking actors and use cases. UML methodologies like RUP [23] or 
Catalysis [24] recommend to enhance this model with other UML artifacts like con-
straints to define contracts, and sequence diagrams to define system scenarii in a 
graphical way. 

Both use case templates and UML methodologies thus incite the requirement 
writer to define scenarii, in a graphical or textual notation. Graphical notations for 
scenarii (system sequence diagrams [19] or activity diagrams [25]) have the advan-
tage to give in a glimpse a good idea of the dynamic aspects of a use case 
(loops, 



alternatives, choices). Moreover, they can be easily used by a tool to be analyzed (for 
example for test generation purposes, also in [19]). On the other hand, they can be 
difficult to design, and domain experts cannot reasonably asked to draw them. On the 
opposite, textual scenarii are easy to write: the scenarii are composed of various steps, 
each one is described by natural language sentences, and linked with natural language 
connectors. Such textual scenarii do not give an immediate intuition of the behavior 
of the use case, and cannot easily be processed by a tool. 

The original contribution of this paper is a process to generate in an automated way an 
activity diagram modeling use case dynamic from textual scenarii. The generation is 
performed by a model transformation, taking as input use case textual scenarii (conform 
to a metamodel defined in this paper), and producing an activity diagram (conform to a 
restricted part of the UML activity diagram metamodel). The transformation is defined 
using QVT-relational language and implemented in Java in a prototype tool. 

This transformation allows to benefit both from graphical and textual scenarii ad-
vantages. Textual scenarii can be written. Then they can be transformed in a graphical 
view.  This allows an easier integration to UML tools, and to use the activity diagram 
for further treatments like test generation for example. 

The rest of this paper is organized as follows. Section 2 introduces the source and 
target metamodels, this means, the textual requirement metamodel and an excerpt of 
the UML activity metamodel. Section 3 describes the transformation to generate an 
activity diagram from a tabular requirement. Section 4 introduces a case study. Sec-
tion 5 describes other related approaches and, finally, section 5 summarizes conclu-
sions and ongoing works. 

2   Functional Requirements and Activity Diagrams Metamodels 

This section introduces the artifacts we deal with: functional requirements and activity 
diagrams. Both ones are described by metamodels: our own metamodel for functional 
requirements and a subset of the UML metamodel for the activity diagrams. 

2.1   Functional Requirement Metamodel 

There are many approaches to define textual requirements [3][4][5][14]. However the 
majority of the existing approaches are based on a common core of elements. These 
elements include the participants, preconditions, post-conditions, a set of main steps 
(to achieve the goal of the use case) and a set of exceptional steps (to manage alterna-
tive and erroneous scenarios). These common elements have been extracted from the 
cited approaches and modeled in the functional requirement metamodel introduced in 
figure 1 and briefly described in the following. 

A FRActor element models an external actor who participates in the functional 
requirement performing the steps. The FunctionalRequirement element defines an 
interaction among the system and a set of external actors. The behavior of Function-
alRequirement is defined with three different sequences of steps. The main sequence 
defines the steps performed by FRActor elements and the system to achieve the goal 
of the functional requirement. The alternative steps indicate variants or additional 
behavior for the steps of the main sequence. The erroneous steps indicate erroneous 
scenarios after performing a step from the main sequence. Alternative and erroneous 
steps are modeled with ExceptionalStep element. 



class Functional Requirement Metamodel

FRActor

- name:  String

FunctionalRequirement

- name:  String
- precondition:  Constraint [0..*]
- postcondition:  Constraint [0..*]
- description:  String [0..1]

MainStep

- action:  String

ExceptionalStep

- action:  String [0..1]
- exceptionCondition:  Constraint [1..*]
- result:  ResultType
- nextStep:  MainStep [0..1]

«enumeration»
ResultType

«enum»
 continue
 repeat / goto
 end

+functionalRequirement

+mainSequence
1..*
{ordered}

+performedBy

0..1

+performs

0..1
+erroneousStep

0..* {ordered}

+alternativeStep

0..* {ordered}

Fig. 1. Functional Requirement Metamodel 

Fig. 2. Example use case (in XML format) 

In this paper, the only relevant information for a MainStep element is the action 
performed (attribute action) and who performs the action. In an ExceptionalStep ele-
ment, the action is not mandatory and the performer is the same one than the main 
step. The exceptionCondition attribute indicates a boolean expression that must be 
true to perform the step and the result attribute indicates the action to perform at the 
end of the exceptional step. Three possible results have been defined as the enumer-
ated ResultType element: end the execution, continue the execution and repeat/go-to 
to another step. A continue result indicates that the execution of the functional re-
quirement continues with the next step after the end of the alternative or erroneous 
step. The repeat or go-to result indicates that the execution of the scenario follows the 



execution of the step indicated in the nextStep attribute, and the end result indicates 
than the use case scenario ends. The nextStep attribute is only mandatory when the 
result type is repeat / go-to. An end result indicates that the execution of the scenario 
is finished. We have defined a concrete syntax to define functional requirements con-
form to this metamodel (figure 2). The concrete syntax is XML-based to make an 
approach available. One tool, available in [1], has been development to generate this 
XML for our modeling tool (described in section 4). 

2.2   Activity Diagram Metamodel 

The UML activities metamodel contains a vast amount of elements which improves 
the flexibility and semantic of activity diagrams. A subset of the activity diagrams 
metamodel (as defined in UML 2.0) has been selected (figure 3). This subset defines 
the elements automatically generated by the transformations introduced in next sec-
tion. Indeed, after the automatic generation of the activity diagrams, additional 
elements, like data flow, may be added by hand. 

class Activ ity diagram

ActivityNodeActivityEdge

- guard:  ValueSpecification

ControlFlow

Activ ityPartition

- name:  String [0..1]

ExecutableNode

Action

- effect:  String [0..1]

ControlNode

InitialNodeActiv ityFinalNode DecisionNode

- desicionInput:  FunctionalBehavior [0..1]

Activ ity

- name:  String [0..1]
- precondition:  Constraint [0..*]
- postcondition:  Constraint [0..*]

0..1

+partition *

+edge *

+activity

0..1

+node *

+activity

0..1

+inPartition

*

+nodeContains
*

+inParti tion

*

+containedEdge*

+outgoing

*

+target

1

+incoming

*

+source

1

Fig. 3. Activity diagrams metamodel 

Since UML 2.0, the activity diagram element has been replaced with the Activity 
metaclass. Indeed, this metaclass groups all the elements of an activity diagram: con-
trol flows, nodes and activity partitions.  Activity partitions are groups of the elements 
of an activity diagram. Control flows indicate the incomings and outgoings of a node. 
Action nodes define a behavior. Decision node allows to select a flow as result of 
evaluating boolean predicates. Finally, the InitialNode and ActivityFinalNode ele-
ments indicate where the control flow begins and ends. 

Next section, describes how these elements represents the concepts defined in the 
functional requirement metamodel. 



Fig. 4. From functional requirement to activity 

3   Transformation from Textual Scenarios to Activity Diagrams 

This section defines the transformation to generate an activity diagram (as an instance 
of the metamodel of figure 3) from a functional requirement (as an instance of the 
metamodel of figure 1). The objective of this transformation is to generate from a 
functional requirement an activity that models the whole functional requirement (with 
the same name, pre-conditions and post-conditions). In this activity, the activity parti-
tions model the different actors implied in the functional requirement and the system 
under development, control flows model the execution paths or scenarios and actions 
and decision nodes model the steps and the exception conditions. Transformation 
performs next tasks: 

1. generating an activity for each functional requirement,
2. generating an action for each main step and generate a decision node and addi-

tional actions for each exceptional step,
3. all elements in the activity diagram are connected using control flows.

All the tasks are defined using QVT-Relational [26]. We here present only the 
main ones in QVT-Relational; the whole transformation can be found in [1]. The 
steps are described in detail in next sections. 

3.1   From Functional Requirements to Activity Diagrams 

Initially, one activity is generated for each functional requirement. The related rela-
tion (called FR_2_AD), in QVT-Relational language, is showed in figure 4. The 
name, preconditions and post-conditions of the activity are the same than the ones in 
the functional requirement (lines 17, 18 and 19).  



Fig. 5. (a) From actor to activity partition. (b) From main step to action. 

As seen in the previous section, one activity partition is also generated for each ac-
tor participant in the functional requirement (relation Actor_2_ActivityPartition, 
called in line 22) plus one additional partition for the system (as showed in figure 
5(a), lines from 42 to 49). The next task is to transform the behavior, defined with 
three sequences of steps, of the functional requirement. 

3.2   From Main Sequence to Actions 

One action is generated for each step in the main sequence. The related QVT relation 
is given in figure 5(b). The attribute effect of the action is the attribute action of the 
step (line 67). The actions are included in the corresponding activity partition which 
may be identified using the performedBy attribute of the main step (lines 69, 70 and 
71). However, if a step is performed by the system, this attribute is empty, so the 
action is classified in the system partition. This behavior is codified in the auxiliary 
function APName (line 76, figure 5(b)). The next step is to transform alternative and 
erroneous sequences in decision nodes and actions. 

3.3   From Alternative and Erroneous Sequences to Actions 

Two elements are generated from an alternative or an erroneous step. The QVT rela-
tion goes in figure 6. 

The first element is a decision node (class DesicionNode, line 101), which evaluates 
the exception condition to allow or not the execution of the alternative or erroneous be-
havior. This exception condition is stored in the attribute desicionInput, which is gener-
ated with the auxiliary function generatePredicate (used in line 103). Due the exception 
condition was defined as constraints in the functional requirement metamodel (figure 1), 
this auxiliary function builds a string from a set of Constraint elements. 

The second element is an action describing the additional behavior if any (as it has 
been seen in the functional requirement metamodel, an action attribute for exceptional 



steps is not mandatory). This action is generated by the auxiliary function Gener-
ateAction (line 113). This function has been omitted from figure 7, but its code is 
quite similar to the QVT transformation MainStep_2_Action (figure 5(b)). 

Then, every possible result has also a different representation in an activity dia-
gram, so three different relations are called to generate the adequate elements for each 
type of results (only one, relation GenerateEnd, has been included in the where clause 
of figure 6, line 115). 

Fig. 6. From exceptional step to decision node 

Fig. 7. Exceptional step of type end 



With an end use case result, a new activity end node (class ActivityFinalNode) is 
added and it is linked with the decision (or action if any) generated in previous rela-
tion using a new ControlFlow (from line 124 to 136, figure 7).  

For a continue use case, the action corresponding to the next step (in the main se-
quence) is obtained and linked with the decision (or action if any) using a control flow 
element. Finally, for a repeat/ go-to result type, the action corresponding for the next 
step attribute (see metamodel in figure 1) is obtained and linked with the decision (or 
action if any) using a control flow. 

The last task is to add control flow elements among the elements that are still 
unlinked. 

3.4   Linking Element with Control Flows 

At this time of the transformation process, all elements have been created in the activ-
ity diagram, but only a few of them have been linked with other elements (the 
elements created in section 3.3). The final task is to link all the other elements with 
ControlFlow instances. No control flow may be added until all the elements are gen-
erated because the control flow source and target is different depending if the actions 
have been generated from main steps with or without alternative and erroneous steps 
(a step-by-step example is provided in next section). 

This task is, mainly, an algorithmic task. However, it has been possible to define a 
set of relations to achieve every specific situation at the time to link the elements. 
These relations are briefly described in next points. 

1 Initial node with first element and activity final node with last element 
If the first main step of the functional requirement has not an alternative step, then, the 
initial node is linked with the action generated from the first step. In other case, the initial 
node is linked with the decision node generated from the exception condition of the first 
alternative. This relation is showed in figure 8. The same process is applied in the relation 
to link the last element in the activity diagram with an activity final node. 

2 Decision nodes among them 
As seen in the functional requirement metamodel (figure 1) all exceptional steps (alter-
native and erroneous steps) are ordered. So, the next task is to link the decision node 
generated from the first alternative step of a main step with the decision node generated 
from the second alternative step of the same main step, the decision node generated 
from the second one with the decision node generated from the third one, etc. This proc-
ess is also done with the decisions nodes generated from the erroneous steps. 

3 Decision nodes with activities  
Next, the decision node generated from the last alternative step of a main step (if any) 
must be linked with the action element generated from this main step. In the same 
way, this action element must be linked with the decision node generated. 

4  Nodes from one step with nodes from other step 
Finally, the last decision node generated from the last erroneous step of the first main 
step is linked with the first decision node generated from the first alternative step of 
the second main step, and so on. 

At this time, the activity diagram is finished. 



Fig. 8. From initial node to first element 

4   Case Study 

This section describes a case study of the transformation defined in previous sections. 
The case study chosen is an incident report system. This system is running in a public 
organism in Spain. Use cases were written one year ago using NDT approach [5][6], 
which contains all the common elements of the metamodel in figure 1. No additional 
information was needed to apply our transformation. This system has 9 use cases, 
however, two of them have been discarded since they describe interactions among a 
concrete digital sign service that is not available for us. The total number of steps is 
46. One activity diagram has been automatically generated from each use case. The
total number of activity nodes is 41 and the total number of decision nodes is 15. The
complete results of this case study can be found in [1]. One use case has been chosen
(Login, from figure 2) to illustrate the transformations described in previous section.

To be able to apply our approach, we have first rewritten the use cases using our 
XML syntax. The transformations in previous sections have been implemented in a 
Java open-source tool (also available in [1]). The input is a XML file as the one 
showed in figure 2 (generated automatically from Sparx Enterprise Architect tool) and 
the output is a XMI activity diagram file. In following figures, the activity diagram 
has been loaded also with Sparx Enterprise Architect tool. 



act RF-01. Logging

RF-01. Logging

(from RF-01. Logging)

systemuser

1. User asks access 
into the system.

(from RF-01. Logging) 2. System asks for a 
name and a key.

(from RF-01. Logging)

3. User introduces a 
name and a key.

(from RF-01. Logging)
4. System validates 

name and key.

(from RF-01. Logging)

5. System allows 
access.

(from RF-01. Logging)

Fig. 9. (a) Elements generated from the functional requirement. (b) Actions from main step. 

act RF-01. Logging

RF-01. Logging

(from RF-01. Logging)

systemuser

1. User asks access 
into the system.

2. System asks for a 
name and a key.

3. User introduces a 
name and a key.

4. System v alidates 
name and key.

(from RF-01. Logging)

5. System allows 
access.

(from RF-01. Logging)

D01

D02

D03

2.1. the system shows an 
error message.

4.1. the system 
shows an error 

message.

4.2. the system 
shows and error 

message.

[Not(the number of tries is
greater than three) ]

[the number of tries is
greater than three.]

[the name of the key
size is less than four
characters.]

[the name or the key
are not registered.]

Fig. 10. From exceptional steps to decision nodes and actions 

All the elements generated from the login functional requirement are showed in 
figure 9(a). The result of the relations introduced in sections 3.1 and 3.2 are showed in 
the incomplete activity diagram of figure 9(b). As described before, one activity, 
activity partitions and actions generated from main sequence have been added. 



act RF-01. Logging

RF-01. Logging

(from RF-01. Logging)

systemuser

1. User asks access 
into the system.

2. System asks for a 
name and a key.
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name and a key.
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(from RF-01. Logging)
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D01
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2.1. the system shows an 
error message.

4.1. the system 
shows an error 

message.

4.2. the system 
shows and error 

message.

(from RF-01. Logging)

[Not(the number of tries is
greater than three) ]

[the number of tries is
greater than three.]

[the name of the key
size is less than four
characters.]

[the name or the key
are not registered.]

[Not(the name of the key size
is less than four characters)]

[Not(the name or the key
are not registered)]

Fig. 11. Final activity diagram 

The result of the relation introduced in section 3.3 is showed in the incomplete ac-
tivity diagram in figure 10. As described before, a decision node and an action (if any) 
have been added for each alternative and erroneous step and some elements have been 
linked with control flows. 

Finally, the result of relations described in section 3.4 is showed in the activity dia-
gram in figure 11 and, now, this activity diagram is complete. As described before, all 
the elements of the diagram, plus an initial and final node, are linked using Control 
Flow element. 

5   Related Works 

At the time to write this paper, few works exists dealing with automatic processing of 
textual requirements from a model-based point of view. Reference [11] introduces a 
requirement metamodel and a set of transformations (in Kermeta language) to build 



an executable model from the requirements (defined as a labeled transition system). 
Functional requirements are treated as black boxes and only pre-conditions and post-
conditions are used to generate the executable model. On the opposite, our approach 
focuses in the scenarios of each use case and not in the ordering of use cases. In [12] a 
complete requirement model for web system, called WebRE, is introduced. This new 
model merges two previous approaches: NDT [5] and UWE [13]. However, this 
model introduces web specific concepts like the browser or the links and navigation, 
so it is not as generic as the approach introduced in this paper.  

There are also approaches which extend activity diagrams to describe use case be-
havior more precisely. For example, in [16] actions are stereotyped to indicate if they 
are performed by an actor, by the system or reflect inclusions and extensions. In our 
approach this goal is achieved using activity partitions. Another related work may be 
found in [18]. This paper presents a method for describing use cases with activity 
charts. Support for inclusion and extension is provided. The main difference with our 
approach is that [18] works with UML Use Case, but not with textual templates. This 
fact imposes that activity diagrams describes a sequence of use cases, instead of the 
behavior of one use case. Other papers about modeling sequences of use cases are 
[19] and [20], which are test-generated oriented.

Another example is [2], which uses language analysis techniques to generate state-
charts diagrams from unformatted textual requirements. Reference [21] describes a 
systematic but manual process to build state-charts from textual requirements. Refer-
ence [17] defines an algebraic framework for composing state charts and shows how 
to leverage the algebraic structure of UML sequence diagrams to get a direct algo-
rithm for synthesizing a composition of state charts out of them. In this paper, sce-
nario diagrams are used to define scenarios, as an artifact to model functional 
requirement. This process goes from specific (a concrete scenario) to general (a state-
chart to describe the whole behavior) while our work starts from general (the behavior 
of a whole scenario). In our approach, scenarios may be defined as a path obtained 
from the generated activity diagram. 

6   Conclusions 

This paper introduced a metamodel for functional requirements and a set of QVT 
relations to combine functional requirements in the form of use cases with activity 
diagrams (as described in UML 2.0) in an automatic way. These transformations 
allow requirement engineers and system users to work with the most valuable repre-
sentation at any time. However, some drawbacks appear at the time of combining 
textual requirements with activity diagrams. The most obvious one is the loss of 
flexibility, for example at the time of adding new kind of result types. The task of 
adding a new result type implies add a new set of transformation for implementing the 
right activity diagram fragment for that new result and modify existing transforma-
tions for detecting the new result. 

The representation of the functional requirement is not limited to XML. This paper 
has introduced a fragment of XML due it is the input of our supporting tool, as men-
tioned above. Other implementations may use different representations and it is even 



possible to design adapters. For example, in the supporting web site [1], a simple Java 
program to obtain XML from Enterprise Architect project file is provided. 

As mentioned in previous sections, the functional requirement metamodel includes 
a common subset of the elements that may be found in existing functional require-
ments approaches. The main advantage is that the metamodel may be used with any 
of those approaches with very little or no changes. Furthermore this metamodel may 
be easily extended to include additional information like priority, stability of require-
ments, performing issues, traceability, etc. 

Although the transformation process has been defined with QVT-Relational, it has 
been implemented in Java language. Java allowed us to implement a prototype (also 
available in [1]) in a shorter time than existing implementations of QVT-Relational or 
other transformation languages like ATL. However, one of our main ongoing works is 
to develop a stable version of the tool using one of the cited transformations lan-
guages. 

Actually, we use the transformations described in this paper as a first step to gener-
ate test cases from use cases automatically. Transforming the textual requirements 
into activity diagrams allows us to apply graph coverage criteria, like covering all 
nodes or covering all flows, to generate concrete usage scenarios easily. Some papers 
describing our preliminary work (which was not formalized with metamodels and 
transformation) are [7][8][9]. Two additional case studies with empirical results are 
introduced in [10]. 
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