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Phase field models
Justification and motivation

The models
Can be OK for phase change analysis
Incorporate complex phenomena
Appropriate for numerics
For solidification and melting: Fix[1983], followed by
Cagnalp, Hoffman-Jiong, etc.
The variables:
τ = τ(x , t) (temperature)
u = u(x , t), v = v(x , t) (solid fractions)
w = w(x , t) (liquid fraction)
We expect: u + v + w ≡ 1, u, v ,w ≥ 0
Motion is neglected!
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Phase field models

The considered model

τt − b∆τ = `1ut + `2vt + `3wt + f u
v
w

− k∆

 u
v
w

 =

 g1
g2
g3


gi = cubic in u, v ,w , linear in τ
g1 + g2 + g3 ≡ 0

+ Neumann conditions + initial conditions
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Phase field models
Existence and uniqueness

Hypotheses:

0 < T < +∞, Ω ⊂ R3 open, connected, bounded, C2

τ0,u0, . . . in H2(Ω), nonnegative, compatible, with
u0 + v0 + w0 = 1
f ∈ Lq(Ω× (0,T )), q > 5/2

Theorem (Existence and uniqueness)

∃! (strong) solution (τ,u, v ,w) ∈W 2,1
2 (Omega× (0,T ))4

with u, v ,w ≥ 0, u + v + w ≡ 1
(τ ∈ L2(0,T ; H2(Ω)), τt ∈ L2(Ω× (0,T )), etc.)
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Phase field models

Comments:
Estimates
Well-posedness, regularity, etc.
OK with other boundary conditions, nonlinear terms, etc.
Essential: the same diffusion coefficient k for u, v ,w

τt − b∆τ = `1ut + `2vt + `3wt + f u
v
w

−
 k1∆u

k2∆v
k3∆w

 =

 g1
g2
g3


Global existence?
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Phase field models
Optimal control

Formulation:
f ∈ Uad ⊂ Lq(Ω× (0,T )) is the control
(τ,u, v) is the state, τ ∈ Θad ⊂ Lq(Ω× (0,T ))

The cost function:

J((τ,u, v , f ) = α0
2

∫∫
|τ − τd |2 + α1

2

∫∫
|u − ud |2

α2
2

∫∫
|v − vd |2 + N

q

∫∫
|f |q

The problem:{
Minimize J(τ,u, v , f )
Subject to f ∈ Uad , τ ∈ Θad , M(τ,u, v , f ) = 0

M(τ,u, v , f ) = 0: (τ,u, v) is the state associated to f

7 / 28



Phase field models
Optimal control existence

Hypotheses:
αi ≥ 0, N > 0
Uad , Θad are nonempty, closed and convex
The admissible set Ead is nonempty

Ead = {(τ,u, v , f ) : f ∈ Uad , τ ∈ Θad , M(tau,u, v , f ) = 0}

Theorem (Existence of optimal controls)

∃(τ̂ , û, v̂ , f̂ ) ∈ Ead with
J(τ̂ , û, v̂ , f̂ ) ≤ J(τ,u, v , f ) ∀(τ,u, v , f ) ∈ Ead
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Phase field models
Optimality conditions

Characterization (Dubovitskii-Milyoutin formalism):{
Minimize J(τ,u, v , f )
Subject to f ∈ Uad , τ ∈ Θad , M(τ,u, v , f ) = 0

The main idea: if (τ,u, v , f ) is optimal,

DC(J) ∩ TC(M) ∩ FC(Uad ) ∩ FC(Θad ) = ∅

Consequence: ∃Gi , not all zero, with

G0 ∈ DC(J)∗, G1 ∈ TC(M)∗, G2 ∈ FC(Uad )∗, G3 ∈ FC(Θad )∗

and
G0 + G1 + G2 + G3 = 0
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Phase field models
Optimality conditions

The adjoint state (θ,p,q)

(associated to the linearized system at (τ,u, v , f ))

−θt − b∆θ = H1p + H2q + α0(τ − τd )

−
(

p
q

)
t
−b∆

(
p
q

)
=−

(
`′1
`′2

)
θt +K

(
p
q

)
+

(
α1(u−ud )
α2(v−vd )

)
“starting” from zero at t = T , etc.

Then, after some computations:
∃g2,g3 such that∫∫ (

N|f |q−2f + θ
)

h =
∫∫

g2h +
∫∫

g3ψ
∀h ∈ Lq(Ω× (0,T )), M ′(τ,u, v , f )(ψ, , λ, η,h) = 0∫∫

g2(h − f ) ≥ 0 ∀h ∈ Uad∫∫
g3(ψ − τ) ≥ 0 ∀ψ ∈ Θad
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Phase field models
A particular case

Pointwise constraints on f and τ :
Uad = {f ∈ Lq(Ω× (0,T )) : |f | ≤ C0}
Θad = {τ ∈ L2(Ω× (0,T )) : 0 < C1 ≤ τ ≤ C2}

For appropriate (large) C0:

Ead 6= ∅ and existence holds
Dubovitskii-Milyoutin’s formalism can be applied

The optimality system:∫∫ (
N|f |q−2f + θ

)
h =

∫∫
g2h +

∫∫
g3ψ

∀h ∈ Lq(Ω× (0,T )), M ′(τ,u, v , f )(ψ, , λ, η,h) = 0

g2 =


≤ 0 f = C0
= 0 |f | < C0
≥ 0 f = −C0

g3 =


≤ 0 τ = C2
= 0 C1 < τ < C2
≥ 0 τ = C1
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Phase field models
Controllability

Exact controllability to the trajectories:
Locally supported distributed controls:
f1ω, with ω ⊂⊂ Ω, f ∈ Lq(ω × (0,T ))

The controllability problem: Fix τ0,u0, v0 and find
f ∈ Lq(ω × (0,T )) with

τt − b∆τ = `′1ut + `′2vt + f1ω(
u
v

)
t
− k∆

(
u
v

)
=

(
g1
g2

)
etc.

τ(T ) = τ̂(T ) ( and
(

u
v

)
(T ) =

(
û
v̂

)
(T ) )

(τ̂ , û, v̂) is an uncontrolled trajectory
The aim: solve this problem at least for small
dist. ((τ0,u0, v0), (τ̂(0), û(0), v̂(0)))
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Phase field models
Reformulation - null controllability

Set (τ,u, v) = (τ̂ , û, v̂) + (ϕ, y , z) and find f with

ϕt − b∆ϕ = `′1yt + `′2zt + f1ω(
y
z

)
t
− k∆

(
y
z

)
=

(
g′1
g′2

)
ϕ(T ) = 0 ( and

(
y
z

)
(T ) = 0 )

etc.

After linearization at (ϕ̃, ỹ , z̃):

ϕt − b∆ϕ = `′1yt + `′2zt + f1ω(
y
z

)
t
− k∆

(
y
z

)
= M

(
y
z

)
+ ϕ

(
h1
h2

)
ϕ(T ) = 0 ( and

(
y
z

)
(T ) = 0 )

etc.

The strategy:

Prove ∃ for this LNC problem
Find a fixed point of (ϕ̃, ỹ , z̃) 7→ (M,h1,h2) 7→ (ϕ, y , z)
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Phase field models
In order to solve the LNC problem . . .

•We introduce the adjoint state

θt − b∆θ = h1p + h2q

−
(

p
q

)
t
− k∆

(
p
q

)
= M∗

(
p
q

)
− θt

(
`′1
`′2

)
•We try to prove a Carleman estimate{ ∫∫

ρ−2θ2 ≤
∫∫
ω×(0,T ) ρ

−2θ2

∀ solution (θ,p,q)

• Even better{ ∫∫
ρ−2(θ2 + p2 + q2) ≤

∫∫
ω×(0,T ) ρ

−2θ2

∀ solution (θ,p,q)

This would imply observability for (θ,p,q) and thus null
controllability for (ϕ, y , z)
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Phase field models
The LNC problem

Unfortunately it is unknown whether Carleman holds

−θt − b∆θ = h1p + h2q

−
(

p
q

)
t
− k∆

(
p
q

)
= M∗

(
p
q

)
− θt

(
`′1
`′2

)
What is known:{ ∫∫

ρ−2(θ2 + p2 + q2) ≤
∫∫
ω×(0,T ) ρ

−2(θ2 + q2)

∀ solution (θ,p,q)

A consequence of the results of Fursikov-Imanuvilov[1996]

This provides partial null controllability for (ϕ, y , z)
(with an additional control in the z-equation; realistic?)
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Phase field models
Approximate controllability

A weaker question - unique continuation:
Assume that

−θt − b∆θ = h1p + h2q

−
(

p
q

)
t
− k∆

(
p
q

)
= M∗

(
p
q

)
− θt

(
`′1
`′2

)
θ = 0 in ω × (0,T )

Do we have θ ≡ 0?

Unfortunately, this is also unknown
This would lead to (local) approximate controllability results . . .
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Binary alloy Carman-Kozeny models
Description

The models
Appropriate to describe seggregation phenomena in binary
alloys
Again suitable for numerical analysis (shown below)
First introduced by Carman[1939], modified by
Kozeny[1970], Scheidegger[1974]
The variables:
τ = τ(x , t) (temperature)
c = c(x , t) (solute concentration)
u = u(x , t), p = p(x , t) (velocity field and pressure)
We expect: c ≥ c` ≥ 0, c`: liquid conc. of the solute
Motion effects are crucial!
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Binary alloy Carman-Kozeny models
Description

The equations:

τt + u · ∇τ − b∆τ = f
ct + u · ∇c`(c, τ)− k∆c = 0
ut + (u · ∇)u− ν∆τ + aε(c, τ)u +∇p = B(c, τ)
∇ · u = 0

Additional relations:

c` = ψ(fs)c, fs = fs(c, τ): solid fraction, 0 ≤ fs ≤ 1
aε = α f 2

s (1 + ε− fs)−3 (Carman-Kozeny)
B = b0 + b1τ + b2c`(c, τ) (Boussinesq approximation)

+ Neumann conditions + initial conditions

Formally, the case ε = 0 corresponds to a free-boundary model:
fs = 1 in the solid, 0 ≤ fs < 1 in the rest
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Binary alloy Carman-Kozeny models
Existence

Hypotheses:

0 < T < +∞, Ω ⊂ R3 open, connected, bounded, C2

τ0, c0,u0 in H1(Ω), compatible
f ∈ L2(Ω× (0,T ))

Theorem (Existence)

∃ weak solution (τ, c,u)
(τ ∈ L2(0,T ; H1(Ω)), τt ∈ L2(0,T ; H−1(Ω)), etc.)

Comments:
The interesting question: what happens as ε→ 0?
There are results for Ω ⊂ R2 Boldrini-Planas[2005]
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Binary alloy Carman-Kozeny models
Optimal control

Formulation:
The cost function:

J(τ, c,u, f ) = α0
2

∫∫
|τ − τd |2 + α1

2

∫∫
|c − cd |2

α2
2

∫∫
|u− ud |2 + N

2

∫∫
|f |2

The problem:{
Minimize J(τ, c,u, f )
Subject to f ∈ Uad , τ ∈ Θad , M(τ, c,u, f ) = 0
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Binary alloy Carman-Kozeny models
Optimal control existence

Hypotheses:
αi ≥ 0, N > 0
Uad , Θad are nonempty, closed and convex
The admissible set Ead is nonempty

Ead = {(τ, c,u, f ) : f ∈ Uad , τ ∈ Θad , M(τ, c,u, f ) = 0}

Theorem (Existence of optimal controls)

∃(τ̂ , ĉ, û, f̂ ) ∈ Ead with
J(τ̂ , ĉ, û, f̂ ) ≤ J(τ, c,u, f ) ∀(τ, c,u, f ) ∈ Ead

Again: what happens as ε→ 0?
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Binary alloy Carman-Kozeny models
Optimality conditions

Characterization
The adjoint state (θ, ψ,w)

−θt − u · ∇θ − b∆θ − ∂c`
∂τ u · ∇ψ = α0(τ − τd ) + . . .

−ψt − ∂c`
∂c u · ∇ψ − k∆ψ = α1(c − cd ) + . . .

−wt − (u · ∇)w− ν∆w + aεw +∇q = α2(w−wd ) + . . .
∇ ·w = 0

“starting” from zero at t = T , etc.
After some computations: ∃g2,g3 such that∫∫

(Nf + θ) h =
∫∫

g2h +
∫∫

g3ψ

∀h ∈ L2(Ω× (0,T )), M ′(τ,u, v , f )(ψ, , λ, η,h) = 0∫∫
g2(h − f ) ≥ 0 ∀h ∈ Uad∫∫
g3(ψ − τ) ≥ 0 ∀ψ ∈ Θad
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Binary alloy Carman-Kozeny models
Optimal time control

Formulation (motivations in industrial problems):
A second cost function:

J(τ, c,u, f ) = T ∗(f , ce; δ) + N
q

∫∫
|f |q

with T ∗(f , ce; δ) = inf{T > 0 : ‖c(T )− ce‖L2 ≤ δ}
The problem:{

Minimize J(τ, c,u, f )
Subject to f ∈ Uad , τ ∈ Θad , M(τ,u, v , f ) = 0

Some questions:
Existence?
Optimality conditions for f̂ , T̂?
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Binary alloy Carman-Kozeny models

More comments and questions:
Characterization leads to algorithms (as usual; work in
progress . . . )
Controllability results can also be considered
For instance: for N = 2, local null controllability of τ and u
Also: large time null controllability of τ and u
EFC-Guerrero-Imanuvilov-Puel[2005]
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The (linearized) FitzHugh-Nagumo equation
The problem under consideration

The approximate controllability problem:

Fix u0,uT , ε > 0. Find f ∈ L2(ω × (0,T )) with

ut − k∆u + v + α(x , t)u = f1ω, u(0) = u0
vt − σu + γv = 0, v(0) = 0

etc.

‖u(T )− uT‖L2 ≤ ε

Describes excitability and bistability phenomena,
Hodgkin-Huxley[1952], Hastings[1975]. Also related to
solidification.
Memory effects:

ut − k∆u + σ
∫ t

0 e−γ(t−s)u(s) ds + α(x , t)u = f1ω
u(0) = u0

etc.
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The (linearized) FitzHugh-Nagumo equation
Approximate controllability

Fix u0,uT , ε > 0. Find f ∈ L2(ω × (0,T )) with

ut − k∆u + v + α(x , t)u = f1ω, u(0) = u0
vt − σu + γv = 0, v(0) = 0

etc.

‖u(T )− uT‖L2 ≤ ε

This is unknown

What is known:
OK if σ = 0
OK if v satisfies vt − κ∆v + σu + γv = 0, v(0) = 0
Uniformly bounded controls fε,κ as κ→ 0?
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The (linearized) FitzHugh-Nagumo equation
The case α = α(x)

Approximate controllability also holds if α = α(x)

The proof:

Consider the adjoint h = h(x , t) with

−ht − k∆h + σ
∫ T

t e−γ(s−t)h(s) ds + α(x , t)h = 0
h(0) = hT

We prove unique continuation:

h = 0 in ω × (0,T )⇒ h ≡ 0

This relies on the properties of h . . .
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THANK YOU VERY MUCH . . .
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