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Phase field models

Justification and motivation

The models

@ Can be OK for phase change analysis
@ Incorporate complex phenomena
@ Appropriate for numerics

@ For solidification and melting: Fix[1983], followed by
Cagnalp, Hoffman-dJiong, etc.

@ The variables:
T = 7(x,t) (temperature)
u=u(x,t), v=v(x,t) (solid fractions)
w = w(x, t) (liquid fraction)
We expect: u+v+w=1,u,v,w >0
@ Motion is neglected!




Phase field models

The considered model

Tt — bAT = l1up + lovy + bawy + f

(G

g; = cubic in u, v, w, linear in 7
g1 +92+93=0
+ Neumann conditions + initial conditions




Phase field models
Existence and uniqueness

Hypotheses:

00<T<+00,QcCR® open, connected, bounded, C?

@ 79, Up, ... in H?(Q), nonnegative, compatible, with
Up+ Vo + wp =1

@ feld2x(0,T)),qg>5/2

Theorem (Existence and uniqueness)

31 (strong) solution (, u, v, w) € W2 (Omega x (0, T))*
withu,v,w>0,u+v+w=1
(r € L2(0, T; H?(Q)), 7t € L?(Q x (0, T)), etc.)




Phase field models

Comments:

@ Estimates

@ Well-posedness, regularity, etc.
@ OK with other boundary conditions, nonlinear terms, etc.
@ Essential: the same diffusion coefficient k for u, v, w

7t — AT = (U + Lo Vi + lawi + f

u kiAu 91
v | - | kAv | =] @
w ksAw g3

Global existence?




Phase field models
Optimal control

Formulation:

@ f €Uy C LIYQ x (0, T)) is the control
@ (r,u,v)isthe state, 7 € ©,9 C LY x (0, T))
@ The cost function:

J((TUVf aoff‘T—Td|2 1ff|U—Ud|2
F v —val* + fo!flq

@ The problem:

Minimize J(7,u,v,f)
Subjectto felyy, 7€ Oz9, M(r,u,v,f)=0

M(r,u,v,f) =0: (7, u, V) is the state associated to f




Phase field models
Optimal control existence

Hypotheses:

@ o, >0, N>0
@ Uy, ©,49 are nonempty, closed and convex
@ The admissible set E,4 is nonempty

E.g={(r,u,v,f): f €Uz, T € Oay, M(tau,u,v,f) =0}

y

Theorem (Existence of optimal controls)

(% 0,0,f) € Eaq with
J(7,0,V,f) < J(r,u, v, f) Y(r,u,v,f) € Egq




Phase field models
Optimality conditions

Characterization (Dubovitskii-Milyoutin formalism):

Minimize J(7,u,v,f)
Subjectto f e Uy, 7€ Oy, M(r,u,v,f)=0

The main idea: if (7, u, v, f) is optimal,

DC(J) N TC(M) N FC(Uzg) N FC(Oaq) =0
Consequence: 3G;j, not all zero, with
Go € DC(J)*, Gy € TC(M)*, Go € FC(Uaqg)*, Gs € FC(Oa9)*

and

Go+G +G+G3=0




Phase field models
Optimality conditions

The adjoint state (0, p, q)
(associated to the linearized system at (7, u, v, f))

—0t — bAO = Hip + Hoq + ao(T — 74)
p p 4 ) <p> (a1(U—Ud)>
— —bA =— 01+ K +
( q ), < q ) < 6 )"\ g az(vV—Vy)
“starting” from zero at t = T, etc.

Then, after some computations:

390, g3 such that

[[(N|fl92f+0)h= [[gh+ [[ gz

Vh e Lq(Q x(0,T)), M(r,u,v,f)(2,,\n,h)=0
[[ga(h—f) >0 Vhe Uy

[[gs(p —7) >0 Vip € Oy
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Phase field models
A particular case

Pointwise constraints on f and 7:

@ Uy ={fe L9 x(0,T)):|f| <Co}

@ O,y={7€l?(Qx(0,T):0<Cy <7<C}
For appropriate (large) Coy:

@ E,y # () and existence holds

@ Dubovitskii-Milyoutin’s formalism can be applied

The optimality system:

JI (NIf|T=2f +6) h = [[ geh+ [[ gs¥
Vhe L9(Qx (0,T)), M(r,u,v,f)(t,, A, h) =0

<0 f=0GC <0 7=0C
@=4q =0 [f|<Cy B=4 =0 Ci<7<(C

>0 f=-GCy >0 7= Cq
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Phase field models
Controllability

Exact controllability to the trajectories:

@ Locally supported distributed controls:
fl,, withw cc Q,fe L9w x (0, 7))

@ The controllability problem: Fix 7o, ug, vp and find
fel9wx (0,T)) with

7t — AT = €y + Lyvi + 1,
(V),-(V)-(8) =
w(M=#1 (and (y)(D=(5)M)

(7, 0, V) is an uncontrolled trajectory

@ The aim: solve this problem at least for small
dist. ((7—07 Uo, V0)7 (’?(0)7 0(0)7 ‘7(0)))

= =
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Phase field models
Reformulation - null controllability

Set (,u,v) = (#,0, V) + (¢, y, z) and find f with
ot — bAp = L1yt + Lozt + 1,

<}z/>t_kA<}z/):<gi) etc.
AT =0 (and (% )(n=0)

After linearization at (3, y, 2):

ot — bAp = Ly + 6oz + 1,

<}z/>t_kA<}z/>_M<}z/>+(p<Z;> etc.
AT =0 (and (4 )(n=0)

The strategy:

@ Prove 3 for this LNC problem
@ Find a fixed point of (3, y,2) — (M, hy, h2) — (¢, ¥, 2)
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Phase field models
In order to solve the LNC problem ...
e We introduce the adjoint state

0 — bAO = h1p—|—h2q

/
(), (5) =2 (5) (1)
q/; q q ty
e We try to prove a Carleman estimate

{ JI 7207 < [[ 0.1y P 207

V solution (6, p, q)
e Even better

J[ o722 +P* + @) < [[ 0.1y P 20"
V solution (4, p, q)

This would imply observability for (¢, p, ) and thus null
controllability for (¢, y, z)
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Phase field models
The LNC problem

Unfortunately it is whether Carleman holds

—0; — bAO = h1,0 a4 hgq

/
~(5), - a(§)=m(5)-=(4)
q/; q q 143
What is known:

JI o207 + PP+ ) < [[oxomy P 207+ G)
v solution (6, p, q)

A consequence of the results of Fursikov-Imanuvilov[1996]

This provides partial null controllability for (y, y, 2)
(with an additional control in the z-equation; realistic?)
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Phase field models
Approximate controllability

A weaker question - unique continuation:

Assume that

—0; — bAO = hip+ hoq

(), (2) - (2)-w( )

=0 in wx(0,T)

Do we have § = 07?

Unfortunately, this is also unknown
This would lead to (local) approximate controllability results . ..
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Binary alloy Carman-Kozeny models

Description

The models

@ Appropriate to describe seggregation phenomena in binary
alloys
@ Again suitable for numerical analysis (shown below)
@ First introduced by Carman[1939], modified by
Kozeny[1970], Scheidegger[1974]
@ The variables:
T = 7(x,t) (temperature)
¢ = c(x, t) (solute concentration)
u=u(x,t), p=p(x,t) (velocity field and pressure)
We expect: ¢ > ¢, > 0, ¢;: liquid conc. of the solute
@ Motion effects are crucial!

17/28



Binary alloy Carman-Kozeny models

Description

The equations:

t+Uu-Vr—bAT =f
ct+u-Vel(e,7)—kAc=0
us+ (u-Vu—vAr+a.(c,7)u+ Vp=B(c, 1)
V-u=0

Additional relations:

Y(fs)e, fs=1fs(c X 7): solid fraction, 0 < fs < 1
aE =af?(1+4e—f)~3 (Carman-Kozeny)
B = by + biT + bacy(c, r) (Boussinesq approximation)

+ Neumann conditions + initial conditions

Formally, the case ¢ = 0 corresponds to a free-boundary model:
fs = 1inthe solid, 0 < fs < 1 in the rest
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Binary alloy Carman-Kozeny models

Existence

Hypotheses:
@ 0 < T < 400, Q c RS open, connected, bounded, C?
@ 79, Co, Ug in H'(Q), compatible
o fel2(Qx(0,T))

Theorem (Existence)

3 weak solution (T, c,u)
(r € L2(0, T; H'(Q)), 7t € L?(0, T; H=1(Q)), etc.)

v

Comments:

@ The interesting question: what happens as ¢ — 07
@ There are results for Q ¢ R? Boldrini-Planas[2005]
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Binary alloy Carman-Kozeny models

Optimal control

Formulation:

@ The cost function:

Jr,eu, £y =L [[|r—142+ % [[ |c— cq4l?
2 [[lu—ugl?+ 5 [[If]2

@ The problem:

Minimize J(r,c,u,f)
Subjectto fe Uy, ™€ Oyy, M(1,c,u,f)=0
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Binary alloy Carman-Kozeny models

Optimal control existence

Hypotheses:

@ >0,N>0
@ Uy, ©,49 are nonempty, closed and convex
@ The admissible set E,4 is nonempty

Ead: {(T,C,U,f) : feuada TE @ada M(T,C,U,f) :0}

v

Theorem (Existence of optimal controls)

,C, 0 z) € E,q with
J( ,&,ﬁ f)y < J(r,c,u,f) VY(r,c,u,f) € Egg

Again: what happens as ¢ — 07? |
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Binary alloy Carman-Kozeny models

Optimality conditions

Characterization

@ The adjoint state (0,1, w)

—0;—u- V0 — bAO — 2%y - Vyp = ag(1 — 74) + ...
—tpr — U Vo — kA¢—a1(c—cd)+

—wt—(u V)w —qu+a€w+Vq—a2(w Wy)+...
V-w=0

“starting” from zero at t = T, etc.
@ After some computations: 3g», g5 such that

JI (Nf+0)h= [[ goh+ [[ gat)

Whe L2(Q x (0,T)), M(r.u,v, ), \n h) =0
ffgg —f)>0 Vhely

J[gs( —7) >0 Vi) € Oy
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Binary alloy Carman-Kozeny models

Optimal time control

Formulation (motivations in industrial problems):
@ A second cost function:

J(r,6,u,f) = T*(f,ce:6) + & [ |1]7

with T*(f, Ce; ) =iInf{T > 0: ||c(T) — Cell;2 < I}
@ The problem:

Minimize J(r,c,u,f)
Subjectto felyy, 7€ Oy, M(r,u,v,f)=0

Some questions:

@ Existence?
@ Optimality conditions for f, T2
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Binary alloy Carman-Kozeny models

More comments and questions:

@ Characterization leads to algorithms (as usual; work in
progress ...)

@ Controllability results can also be considered
For instance: for N = 2, local null controllability of 7 and u
Also: large time null controllability of 7 and u
EFC-Guerrero-Imanuvilov-Puel[2005]
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The (linearized) FitzHugh-Nagumo equation

The problem under consideration

The approximate controllability problem:

@ Fix ug, ur,e > 0. Find f € L2(w x (0, T)) with

ur— kAu+ v+ a(x,t)u=fl,, u(0)=uw

Vi—ou+~yv =0, v(0)=0 etc.

[u(T) = urllz <€

@ Describes excitability and bistability phenomena,
Hodgkin-Huxley[1952], Hastings[1975]. Also related to
solidification.

@ Memory effects:

U — kAu + o [ e 7=9y(s) ds + a(x, t)u = fl,,

U(O) = U etc.
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The (linearized) FitzHugh-Nagumo equation

Approximate controllability

Fix ug, ur,e > 0. Find f € L?(w x (0, T)) with

ur— kAu+ v+ a(x,t)u=f,, u(0)=u

Vi—ou+~yv =0, v(0)=0 etc.

lu(T) = urlle <

This is unknown

@ OKife =0

@ OKif v satisfies vi — kAv +ou+~yv =0, v(0)=0
Uniformly bounded controls f. ., as x — 0?
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The (linearized) FitzHugh-Nagumo equation

The case a = a(x)

Approximate controllability also holds if a = «a(x)

The proof:

@ Consider the adjoint h = h(x, t) with

—ht — kAh+ o [T e Dh(s) ds + a(x, t)h = 0
h(0) = hr

@ We prove unique continuation:

h=0in wx(0,T)=h=0

@ This relies on the properties of h ...
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THANK YOU VERY MUCH ...
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