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Strong spatial dispersion in wire media in the very large wavelength limit
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It is found that there exist composite media that exhibit strong spatial dispersion even in the very large
wavelength limit. This follows from the study of lattices of ideally conducting parallel thin wires~wire media!.
In fact, our analysis reveals that the description of this medium by means of a local dispersive uniaxial
dielectric tensor is not complete, leading to unphysical results for the propagation of electromagnetic waves at
any frequencies. Since nonlocal constitutive relations have been usually considered in the past as a second-
order approximation, meaningful in the short-wavelength limit, the aforementioned result presents a relevant
theoretical interest. In addition, since such wire media have been recently used as a constituent of some discrete
artificial media ~or metamaterials!, the reported results open the question of the relevance of the spatial
dispersion in the characterization of these artificial media.
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Causality imposes that all material media must be disp
sive. In most cases this behavior results in local dispers
constitutive relations, i.e., in frequency-dependent const
tive permittivity and permeability tensors. Nonlocal dispe
sive behavior~i.e., spatial dispersion!, which results in con-
stitutive operators depending also on the spatial derivat
of the mean fields~or, for plane electromagnetic waves, o
the wave-vector components!, is usually considered as
small effect, meaningful in the short-wavelength limit. Sp
cifically, spatial dispersion will always appear when t
higher-order terms in the series expansion of the constitu
parameters in power series of the dimensionless param
a/l (a is the lattice constant of the crystal andl the wave-
length inside the medium! are not neglected.1 Thus, it is
usually assumed that nonlocal dispersive reations are
meaningful whenl approachesa. The usually weak natura
optical activity of some materials is a well-known examp
of the application of this principle.1 When such principle is
translated to the analysis of discrete artificial media, a
called metamaterials, it would imply that nonlocal dispers
constitutive relations are only expected to be a sm
refinement of the local constitutive relations usually co
sidered. However, there is at least a counterexample for
assumption.

The parallel wire medium is a medium formed by a reg
lar lattice of ideally conducting wires with small radii com
pared to the lattice periods and the wavelength, see Fig.
has been known in microwave applications for a long time2–4

as an artificial dielectric, also calledrodded mediumand qua-
sistatic models of the effective permittivity are available5

Recently, some attention to wire media has been paid als
optics ~e.g., Refs. 6,7! and in the realization of left-hande
media8,9 as composite media made from lattices of long co
ducting wires and split ring resonators10–12 ~see discussions
corresponding to that in13!. The electromagnetic reponse
the specific wire medium shown in Fig. 1 is analyzed
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Refs. 3,7 following different approaches. Both analysis
carried out for wave propagation perpendicular to the wi
and show that, for electric-field polarization along the wire
the medium is characterized~if a/l,b/l!1) by a frequency-
dependent effective dielectric constant given by

«5«0S 12
k0

2

k2D 5«0S 12
v0

2

v2D . ~1!

The constantv0 ~the corresponding wave numberk0

5v0A«0m0) in Eq. ~1! plays the role of an equivalen
‘‘plasma frequency.’’ Thus, this medium is often called ‘‘a
tificial plasma’’ since the ideal~collisionless! electron plasma
is described by the same equivalent parameter. If the w

FIG. 1. The geometry of wire media: A lattice of parallel id
ally conducting thin wires.
©2003 The American Physical Society03-1
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are assumed to be very thin, so that their polarization in
direction orthogonal to the wires can be neglected, the ef
tive permittivity for electric-field polarization orthogonal t
the wires is«0.

The aforementioned analysis suggests that this wire
dium could be modeled as a uniaxial dielectric with the f
lowing local permittivity dyadic:

«̄̄5«z0z01«0~x0x01y0y0!, ~2!

whose permittivity in the axial direction,«, would be given
by Eq. ~1!. However, it will be shown in the following tha
this naivehypothesis leads to unphysical results and mus
substituted by a nonlocal dispersive relation. In fact, ass
ing that the medium can be described by the uniaxial dya
~2!, the dispersion equation for extraordinary plane wa
(EzÞ0) with the wave vector (qx ,qy ,qz)

T in this uniaxial
dielectric reads14,15

«0~qx
21qy

2!5«~k22qz
2!, ~3!

wherek5vA«0m0 is the phase constant of the host matr
On the other hand, these extraordinary waves correspon
the well-known TM ~to z) set of modes, allowed by th
invariance of the boundary conditions alongz. Thus, for any
extraordinary wave traveling with a phase constantqz along
the z axis, theEz field must satisfy the Helmholtz equation

H ]

]x2
1

]

]y2
1~k22qz

2!J Ez50, ~4!

with the boundary conditionEz50 on the wires. It is clear
from this equation that any ‘‘plane’’ extraordinary wave mu
satisfy

k~qx ,qy ,qz!5Ak2~qx ,qy,0!1qz
2. ~5!

This last result is incompatible with Eq.~1!–~3!, as can be
easily seen by substitution of Eq.~1! into Eq. ~3!. However,
if we choose

«~k,qz!5«0S 12
k0

2

k22qz
2D ~6!

instead of Eq.~1!, then Eqs.~2! and ~3! become compatible
with Eq. ~5!, giving the following dispersion equation for th
plane wave:

q2[qx
21qy

21qz
25k22k0

2 , ~7!

where we have assumed thatqzÞk ~the case withqz5k will
be analyzed at the end of this paper!. The above rationale
suggests that the considered wire media still can be descr
by the permittivity dyadic~2!, but the axial permittivity«
must be a nonlocal parameter of the form~6!. The conven-
tional expression~1! would be only a particular case of Eq
~6!, valid for wave propagation in thex-y plane.

The main difference between the local uniaxial mod
Eq. ~1!, and the proposed nonlocal model, Eq.~6!, for the
parallel wire medium is that the nonlocal model predicts
stop band~at frequencies belowv05k0 /A«0m0) for extraor-
11310
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dinary waves propagating along any direction in the med
On the contrary, Eqs.~1!–~3! predict propagation of extraor
dinary waves at any frequency providedqz.k5vAm0«0.
Thus, both models predict qualitatively very different beha
iors, even near the cutoff plasma frequencyv0 where q2

→0 ~i.e., a/l→0). That is, the nonlocality of the propose
constitutive relations affects the electromagnetic respons
the medium even in the very large wavelength limit, th
being important for any values of thea/l ratio inside the
medium. Other relevant differences between the predicti
of both models will be developed along this paper.

The rigorous proof of Eq.~6! is based on the local-field
approach which is described in detail in Ref. 16. In Ref.
the low-frequency stop band of the wire medium has be
analyzed, as well as its high-frequency band-gap struct
This analysis reveals that, in the thin wire medium~Fig. 1!
and for qzÞk, two sets of modes can propagate: ordina
~with Ez50) and extraordinary~with EzÞ0) waves. The
ordinary waves do not interact with the wires and propag
in the host media. For extraordinary waves, an explicit d
persion equation connecting the wave vectorq
5(qx ,qy ,qz)

T with the wave number of the host isotrop
matrix k5vA«0m0 has been derived in Ref. 16. It can b
written as

1

p
ln

b

2pr 0
1

1

bkx
(0)

sinkx
(0)a

coskx
(0)a2cosqxa

1 (
nÞ0

S 1

bkx
(n)

sinkx
(n)a

coskx
(n)a2cosqxa

2
1

2punu D 50.

~8!

Here kx
(n) denotes thex component ofnth Floquet mode

wave vector:

kx
(n)52 jAS qy1

2pn

b D 2

1qz
22k2, Re$A~ !%.0. ~9!

The other notations are clear from Fig. 1. Numerical solut
of this dispersion equation shows that there exists a lo
frequency stop band for all propagation directions~except
for the particular case ofqz5k that will be analyzed later!.
Let us simplify the dispersion equation~8! for the quasistatic
casea,b!p/k. Using the Taylor expansion of sin(x) and
cos(x) functions for small arguments we obtain Eq.~7! with

k0
25

2p/s2

ln
s

2pr 0
1F~r !

, ~10!

wheres5Aab, r 5a/b, and

F~r !52
1

2
ln r 1 (

n51

1` S coth~pnr !21

n D1
pr

6
. ~11!

Therefore, we have shown the suitability of the sugges
approach for the description of the wire medium, withk0
given by Eq.~10!. Parameterk0 here plays the role of the
3-2
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wave number corresponding to the plasma frequency. M
exactly, it indicates the upper edge of the low-frequency s
band. Naturally,k0 as a function of two lattice periodsa and
b is a symmetric function:k0(a,b)5k0(b,a). It means that
functionF(r ) has the following property:F(1/r )5F(r ). For
the commonly used case of the square grid (a5b), F(1)
50.5275. Expression~10! looks similar to the approximate
expressions for the plasma frequency developed earlie
Refs. 2–4,6, but for thin wires it is more accurate and ta
into account the geometry of the lattice. Notice that the d
persion equation~7! for extraordinary waves is indifferent t
the direction of the wires’ axis: the wave-vector compone
qx ,qy ,qz enter into this equation completely symmetrical
It means that, within the low-frequency stop band, the
traordinary wave decays with the same decay factor along
directions in space. The same can be said for propagatio
the first frequency passband. This isotropy of the dispers
equation is rather surprising since the medium is stron
anisotropic. However, it can be shown from the very fund
mental facts summarized in Eqs.~5! and~3! by assuming, as
usual, that Eq.~1! is valid for extraordinary waves propaga
ing in thex-y plane.

It is possible to transit Eq.~6! from the spectral domain
(q,v) to the physical domain (r ,t). The following nonlocal
material equation can be derived from Eq.~6! using the
double Fourier transform:

D~x,y,z!5«0E~x,y,z!1
«0k0

2c

2
z0E

2`

t E
z2c(t2t8)

z1c(t2t8)

3Ez~x,y,z8,t8!dz8dt8, ~12!

wherec51/A«0m0 is the speed of light in the host matrix
Here, the area of integration in thez-t plane is the light cone
uz2z8u,c(t2t8). In other words, the kernel in the Fourie
convolution is u@c(t2t8)2uz2z8u#, where u(x) is the
Heaviside step function. It means that the point (x,y,z) in-
side the wire medium~described as a dispersive continuum!
at momentt is affected by thez components of electric field
coming from the domain„x,y,z6c(t2t8)… surrounding
~along the wire axis! this point during all the past time (t8
,t). This result illustrates the consistency of the repor
model from the relativistic standpoint.

In the following we will describe some relevant effects
the analyzed parallel wire medium, associated with the s
tial dispersion. Refraction and reflection of plane waves a
plane interface show strong differences between the lo
and nonlocal models. Let us consider an interface betw
an isotropic dielectric with the permittivity«1 and a uniaxial
dielectric with« described by Eq.~1!. The interface is in the
y-z plane and it is illuminated by a plane wave coming fro
the isotropic dielectric. The wave vector and electric-fie
vector lie in x-z plane (qy50,Ey50). The incidence angle
of the plane wave isu. If «1.«0 , «,0, and sin2(u)
,«0 /«1 the wave will be completely reflected, but fo
sin2(u).«0 /«1 some part of the wave will be transmitte
through the interface. This transmitted wave will be an e
traordinary wave, as it follows from its polarization sta
and can be excited at any frequency. This amazing beha
11310
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disappears when the nonlocal model summarized in Eq.~6!
is used. Indeed, if the nonlocal axial permittivity~6! is used
for the wire medium, we observe that no transmission ins
the wire medium is possible fork,k0. At k5k0 transmis-
sion is possible only in the case of the normal inciden
Only if k.k0, a refracted wave appears.

Let us next consider the guidance of electromagne
waves in a parallel-plate waveguide infinite in thex and y
directions and bounded by parallel perfectly conduct
planes orthogonal to thez axis. Separation between the co
ducting walls isd. We assume that this waveguide is fille
with a wire medium with the wires along thez direction. We
will consider eigenwave propagation along thex axis of the
TM 01 mode (Hy ,Ex ,EzÞ0). For waveguides filled by a lo
cal uniaxial dielectric with anisotropy axis along thez direc-
tion we have from Eq.~3!

«0qx
25«~k22qz

2!, qx5A «

«0
Fk22S p

d D 2G . ~13!

If «.0, Eq.~13! gives a cutoff fork,p/d and propagation
for k.p/d. In contrast, if «,0, propagation is allowed
whenk,p/d ~and forbidden fork.p/d). Within this pass-
band a backward wave (dq/dv,0) propagates, as one ca
see in Fig. 2~thin solid lines!.

This amazing behavior disappears if one fills the wa
guide with the analyzed nonlocal wire medium. Using E
~7!, we have in this case

qx
21qz

25k22k0
2 , qx5Ak22k0

22S p

d D 2

, ~14!

and we obtain the usual frequency behavior: cutoff fork
,A(p/d)21k0

2 and propagation fork.A(p/d)21k0
2. An

increase of the cutoff frequency is observed compared to

FIG. 2. Normalized propagation factors in a parallel-plate wa
guide vs normalized frequency for different types of wavegu
filling: Thin solid lines, uniaxial dielectric with a negative permi
tivity; thick solid line, wire medium; dashed line, empty waveguid
The wire medium and the uniaxial dielectric have the samek0

5p/(2d).
3-3
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case when there is no filling medium, as one can see in
2 ~thick solid line and dashed line!.

Let us finally analyze the propagation of plane wav
along the wire medium for the particular case ofqz5k. In
this case, the nonlocal permittivity along thez axis ~6! be-
comes infinite. To avoid the singularity problem we use m

terial equation of the formE5 «̄̄21D. In this case, the Max-
well equations have plane-wave solutions for all frequenc
For these waves the transverse wave vectorq'5(qx ,qy)

T is
arbitrary. The waves are transverse with respect to the w
axis: Hz50 andEz50. The electric field is parallel to the
transverse wave vector,q'3E50.

Such waves can be interpreted as transmission-line m
propagating along the parallel wires. In fact, a set ofN infi-
nite parallel wires can be viewed as a system of coup
transmission lines. This system can supportN degenerate
transmission-line waves withHz50, Ez50, and phase con
stantqz5k. The electric field of these waves can be obtain
from

E52~ux]x1uy]y!f~x,y!exp~2 jkz!, ~15!

wheref(x,y) is a quasielectrostatic potential taking consta
but arbitrary valuesfn (n51,2, . . . ,N) at each wire. In fact,
the plane wave with transverse wave numberq' andqz5k
h

et

11310
g.

s

-

s.

re

es

d

d

t

corresponds to the transmission-line wave withfn

5f0 exp(2jq'•rn), wherern5(xn ,yn)T is the location of
the nth wire in the transversex-y plane.

In summary, it has been shown that parallel wire me
possess very strong spatial dispersion effects at any freq
cies, including the very large wavelength limit. An analytic
model for the nonlocal permittivity dyadic of these med
has been presented and discussed. Inconsistency of the
model for parallel wire media with nonvanishing wav
vector component along the wires has been shown. Dram
differences in the predicted behavior of that media, aris
from the use of the conventional local and/or the nonlo
model for the permittivity are shown. Finally, the propos
nonlocal model for the permittivity has been found to be a
suitable for the description of the transmission-line modes
the structure. We feel that the reported results open the q
tion of the role of spatial dispersion in the adequate char
terization of discrete metamaterials as effective media
least if arbitrary directions of propagation and/or polarizati
of the electromagnetic field should be considered in
analysis. In addition, an example has been presented o
effective medium in which spatial dispersion is important
any frequency, in contrast with some commonly assum
ideas about the physical relevance of this effect.
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