# 18. Mixed method for determining the airconditioning consumption in households. Application to Andalusia

García-López, Javier (1); Sendra Salas, Juan José (2)

- (1) **Institute of Architecture and Building Science,** School of Architecture, University of Seville. javigalo@us.es, +34 656420654
- (2) Institute of Architecture and Building Science, School of Architecture, University of Seville. jsendra@us.es.

Abstract Energy characterization of the residential building stock is a main objective within the energy efficiency research field. The final-energy consumption profile in households represents the distribution of the actual energy consumed therein. Obtaining this profile from various sources and studies shows major differences depending on the methodology used in each case, when contrasting actual final-energy figures versus prediction based figures. In this research, we focus on the final-energy consumption fraction for household air-conditioning in Andalusia, where the higher cooling demand has become a typical distinctive feature of warm climates. To this end, a new mixed method has been developed as an alternative to other approximations, such as those of the final report of the SECH SPAHOUSEC project. As a result of its application, final-energy consumption in households is obtained by means of the integration of data from various sources: sectorial statistics of energy consumption, statistics of habitual use and domestic equipment or results of energy models simulations, representing the whole residential building stock of Andalusia.

**Keywords** Energy consumption; air-conditioning; households; energy efficiency; energy statistics.

#### 1 Introduction

The final-energy consumption profile in households is a representative indicator of the actual use of the energy consumed therein. Obtaining this profile from various different sources and studies (Ayala, Galarraga and Spadaro, 2016; Castelli et al., 2015; Sendra et al., 2013; León et al., 2010) shows major differences

depending on the methodology used in each case. This work is focused on the fraction of energy consumption used for air-conditioning (heating / cooling) of housing in Andalusia.

The final report of the SECH SPAHOUSEC project (IDAE, 2011) is noteworthy when considering the background studies on the energy consumption profile in Spain in general, and particularly in Andalusia. To date, it could be considered the main reference for Spain.

The EU project, SECH (development of detailed Statistics on Energy Consumption in Households), was promoted in 2009 by Eurostat for the development of energy statistics in the residential sector by means of *bottom-up* methodologies, including monitoring and modelling techniques. The *Instituto para la Diversificación y Ahorro de la Energía* (IDAE) and the Government of Spain submitted to Eurostat the SPAHOUSEC Project (Analysis of the Energy Consumption in the Spanish Households) within the framework of SECH.

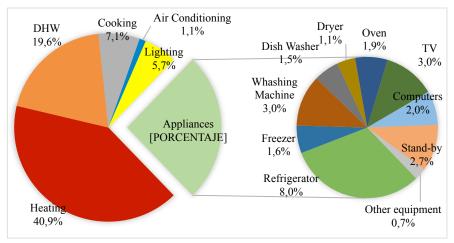
According to the final report of SPAHOUSEC, the study, developed in Spain, included live and telephone surveys about home appliances, behaviour and energy consumptions in households besides electricity consumption monitoring. As a result of the project, the determination of the aggregate energy consumption by services and applications, climate and housing building typologies throughout Spain zones is shown.

The results of residential consumption by the *bottom-up* approach were finally contrasted with the energy information available through procedures *top-down*, from studies such as the official energy statistics (MINETUR, 2013).

The SPAHOUSEC study shows an acceptable degree of affinity between its results and the derived from the official energy statistics, as stated in Table 1.

**Table 1** SPAHOUSEC Energy consumption (IDAE, 2011) vs. 2010 final-energy balance (MINETUR, 2013) (Author's own)

| FINAL-ENERGY | CONSUMPTION IN | SPAIN REPORT  | RESIDENCIAL SECTOR. |
|--------------|----------------|---------------|---------------------|
| TINAL-ENERGI | CONSUME HON IN | STAIN KEFUKI. | RESIDENCIAL SECTOR. |


|                                     | Year 2010   |                      | SPAHOUSEC (ktep) | Final*<br>(ktep) | % Deviation (SPAHOUSEC vs. Final) |
|-------------------------------------|-------------|----------------------|------------------|------------------|-----------------------------------|
| y.                                  | Carbon      | Coal & others        | 15               | 173              | -91%                              |
| erg                                 |             | LPG                  | 1.032            | 1.386            | -26%                              |
| -en                                 | Petroleum   | Gasoil               | 2.216            | 1.871            | 18%                               |
| nal                                 | products    | Others               | 0                | 112              | -100%                             |
| f fii                               |             | TOTAL                | 3.248            | 3.369            | -4%                               |
| Consumption by type of final-energy | Gas         | Natural & gas others | 3.660            | 4.257            | -14%                              |
| y t                                 |             | Solar thermal        | 139              | 144              | -3%                               |
| n k                                 | Renewable   | Geothermal           | 12               | 9                | 33%                               |
| otio                                | energy      | Biomass              | 2.444            | 2.464            | -1%                               |
| lui                                 |             | TOTAL                | 2.595            | 2.617            | -1%                               |
| nsu                                 | ELECTRIC EN | ERGY                 | 5.159            | 6.508            | -21%                              |
|                                     | TOTAL       |                      | 14.676           | 16.924           | -13%                              |

(\*) Actual Final-energy consumption in 2010. Source: MINETUR/IDAE

However, at SPAHOUSEC, an apparently underestimated consumption in the residential sector (-21% in electricity, -4% in petroleum products, -14% of gas) occurs regarding data obtained from energy supply companies (MINETUR, 2013), which may be due to the wide spread presence of consumption of small shops and businesses using domestic energy tariffs. Nevertheless, an overall 13% dispersion of the proposed values compared to those actually registered may be considered as technically acceptable.

SPAHOUSEC also provides a disaggregated energy consumption of households in Spain classified into various services and applications and is further segmented into climatic zones and housing typologies.

According to the aims of this work, in the Figure 1 the results are shown for households in the Andalusia region, which is included within the Mediterranean



area.

**Fig. 1** Household energy consumption according to its use in Spain: Mediterranean area (IDAE, 2011).

As stated in the final report of SPAHOUSEC, the energy consumption for indoor space cooling in household dwellings in Andalusia accounts for only 1.1%, compared with 40.9% for indoor space heating.

These percentages do not coincide with those in other social housing studies in the same region (Leon et al., 2010; Sendra et al., 2013), which have been obtained by means of surveys and monitoring of buildings in real use conditions.

In this paper, we will try to determine, through a bottom-up approach, the energy consumption of air-conditioning (heating + cooling) for the Andalusian residential building stock.

#### 2 Initial data

The different information sources consulted for the determination of the energy consumption of air-conditioning of households in Andalusia are described below.

# 2.1 Energy demand for indoor space heating and cooling and water heating. CO2 emissions and primary-energy consumption

In order to establish the scale of energy efficiency labelling for existing dwellings in Spain, AICIA (2011) conducted a study to obtain a baseline adapted to the typology and climatic zone in each case. To this end, many simulations with several energy models, tested in various orientations and climatic zones, were performed in order to obtain the reference level which would be used in the energy labelling scale in each case. Each location's (provincial capital cities) climate file were taken into account and the standards for use and operational conditions were stablished.

The results themselves, summarized in Table 2, constitute a useful starting point for energy characterization of the Andalusian residential building stock, as they have been obtained by the energy simulation of typological and constructive models, which are representative of the whole set of buildings.

**Table 2** Indicators of energy demand, consumption and CO<sub>2</sub> emissions of households in Andalusia, Ceuta and Melilla (Author's own from AICIA, 2011).

|               |        |       |        | Primar | y-energy | /    |           |                |     |  |  |
|---------------|--------|-------|--------|--------|----------|------|-----------|----------------|-----|--|--|
| Single-family | Energy | 7     | demand | consun | nption   |      | Emissions |                |     |  |  |
| dwellings     | (kWh/ı | m²)   |        | (kWh/1 | m²)      |      | (kgCO     | $(kgCO_2/m^2)$ |     |  |  |
| Location      | Heat.  | Cool. | DHW    | Heat.  | Cool.    | DHW  | Heat.     | DHW            |     |  |  |
| Almería       | 44,7   | 46,8  | 16,6   | 87,4   | 47,8     | 26,1 | 21,4      | 11,7           | 6,3 |  |  |
| Cádiz         | 50,7   | 36,1  | 16,7   | 94,7   | 36,8     | 26,2 | 21,9      | 9,1            | 6,3 |  |  |
| Ceuta         | 75,2   | 14,2  | 17,2   | 134,2  | 18,6     | 28,4 | 35,9      | 5,4            | 7,7 |  |  |
| Córdoba       | 78,8   | 54,4  | 16,9   | 176,4  | 55,4     | 26,5 | 41,6      | 13,7           | 6,4 |  |  |
| Granada       | 127,5  | 29,9  | 17,6   | 240,8  | 30,5     | 27,6 | 56,9      | 7,4            | 6,7 |  |  |
| Huelva        | 70,4   | 44,6  | 16,7   | 165,0  | 45,4     | 26,2 | 37,8      | 11,2           | 6,3 |  |  |
| Jaén          | 104,8  | 53,7  | 16,7   | 198,1  | 54,7     | 26,2 | 46,9      | 13,5           | 6,3 |  |  |
| Málaga        | 50,6   | 39,4  | 16,7   | 108,5  | 40,1     | 26,2 | 24,6      | 9,8            | 6,3 |  |  |
| Melilla       | 45,0   | 35,5  | 16,7   | 97,6   | 46,3     | 27,6 | 26,8      | 13,3           | 7,5 |  |  |
| Sevilla       | 64,4   | 56,4  | 16,7   | 141,1  | 57,6     | 26,2 | 34,0      | 14,2           | 6,3 |  |  |

| Average                                 | 71,2   | 41,1  | 16,9   | 144,4  | 43,3     | 26,7 | 34,8      | 10,9  | 6,6 |  |  |
|-----------------------------------------|--------|-------|--------|--------|----------|------|-----------|-------|-----|--|--|
| Multi-familiy housing build- Energy dem |        |       |        | Primar | y-energy | y    | Emissions |       |     |  |  |
| housing build-<br>ings                  | (kWh/1 |       | demand | (kWh/  |          |      | (kgCO     |       |     |  |  |
| Location                                | Heat.  | Cool. | DHW    | Heat.  | Cool.    | DHW  | Heat.     | Cool. | DHW |  |  |
| Almería                                 | 49,2   | 33,7  | 12,1   | 63,7   | 34,5     | 19,0 | 15,6      | 8,5   | 4,6 |  |  |
| Cádiz                                   | 33,7   | 25,7  | 12,3   | 60,8   | 26,3     | 19,3 | 15,0      | 6,5   | 4,7 |  |  |
| Ceuta                                   | 60,6   | 10,1  | 12,6   | 111,2  | 13,3     | 20,8 | 29,5      | 3,9   | 5,7 |  |  |
| Córdoba                                 | 64,2   | 39,5  | 12,4   | 129,2  | 40,3     | 19,5 | 31,9      | 9,8   | 4,7 |  |  |
| Granada                                 | 106,6  | 22,0  | 12,9   | 193,0  | 22,5     | 20,3 | 46,1      | 5,4   | 4,9 |  |  |
| Huelva                                  | 43,0   | 32,2  | 12,3   | 101,8  | 33,0     | 19,3 | 24,8      | 8,1   | 4,7 |  |  |
| Jaén                                    | 83,5   | 39,4  | 12,3   | 158,1  | 40,0     | 19,3 | 38,2      | 9,8   | 4,7 |  |  |
| Málaga                                  | 41,4   | 28,4  | 12,3   | 84,0   | 28,9     | 19,3 | 20,4      | 7,0   | 4,7 |  |  |
| Melilla                                 | 31,6   | 25,1  | 12,2   | 71,4   | 32,9     | 20,1 | 19,7      | 9,5   | 5,5 |  |  |
| Sevilla                                 | 52,9   | 41,2  | 12,3   | 112,1  | 42,2     | 19,3 | 27,4      | 10,5  | 4,7 |  |  |
| Average                                 | 56,7   | 29,7  | 12,4   | 108,5  | 31,4     | 19,6 | 26,9      | 7,9   | 4,9 |  |  |

## 2.2 Presence of equipment and cooling systems in Andalusia

Data of air-conditioning equipment in households is obtained from the "social survey 2008: Households and environment in Andalusia", conducted by *the Instituto de Estadística de Andalucía* (IEA), shown in Table 3.

Table 3 Presence of air-conditioning in households in Andalusia (IEA, 2008).

| 7.a. Households having air-conditioning (cooling systems) according to situation, type and |                    |                              |       |              |              |            |              |              |         |  |
|--------------------------------------------------------------------------------------------|--------------------|------------------------------|-------|--------------|--------------|------------|--------------|--------------|---------|--|
| habits for nocturnal use (Series by provinces with horizontal percentages).                |                    |                              |       |              |              |            |              |              |         |  |
| Instituto de Estadística de Andalucía                                                      |                    |                              | Roon  | ns           | with         | Туре       | of           | Noct         | urnal   |  |
| JULIA DE MODRADOA                                                                          |                    | air-                         | :4: : |              | syste        |            |              | abits        |         |  |
|                                                                                            |                    |                              | cond  | luoni        | ng           |            |              |              | 1       |  |
|                                                                                            |                    | ng                           |       |              |              |            |              | off          | _       |  |
|                                                                                            |                    | oni                          |       | д            | Ħ            |            |              | ор           | (C)     |  |
|                                                                                            |                    | liti                         |       | heı          | pa           | -          |              | ne           | ) L     |  |
|                                                                                            |                    | Air-conditioning<br>presence |       | Most of them | one part     | Individual | <del>-</del> | Never turned | ge      |  |
|                                                                                            |                    | ese                          |       | st           | <u>l</u> y ( | ivi        | ntra         | ver          | Average |  |
| Provinc                                                                                    | e Total households | Air-cor<br>presenc           | All   | Ĭ            | Only         | Ind        | Central      | Ne           | Av      |  |
| Almería                                                                                    | 234.101            | 52,2                         | 6,8   | 9,2          | 36,3         | 46,9       | 5,2          | 7,5          | 23,9    |  |
| Cádiz                                                                                      | 414.684            | 46,6                         | 2,1   | 3,7          | 40,7         | 44,6       | 2,0*         | 2,2*         | 22,6*   |  |
| Córdoba                                                                                    | 275.544            | 65,6                         | 11,5  | 5,4          | 48,7         | 58,7       | 6,8          | 4,8          | 23,1    |  |
| Granada                                                                                    | 319.888            | 38,3                         | 2,3*  | 3,8          | 32,2         | 37,3       | 1,0*         | 1,5*         | 21,2*   |  |
| Huelva                                                                                     | 183.775            | 51,6                         | 2,2*  | 5,6          | 43,8         | 47,8       | 3,6          | 2,3*         | 22,9*   |  |
| Jaén                                                                                       | 219.618            | 62,4                         | 3,3   | 5,4          | 53,8         | 60,7       | 1,7*         | 11,8         | 24,5    |  |
| Málaga                                                                                     | 554.688            | 44,8                         | 5,3   | 8,2          | 31,3         | 41,3       | 3,6          | 1,7*         | 25,3*   |  |
| Sevilla                                                                                    | 614.360            | 84,4                         | 7,7   | 9,4          | 67,4         | 78,2       | 6,2          | 6,2          | 24,2    |  |
| Total                                                                                      | 2.816.658          | 57,4                         | 5,4   | 6,7          | 45,3         | 53,5       | 3,9          | 4,3          | 23,9    |  |

SOURCE: IEA. Social survey 2008: Households and environment in Andalusia

<sup>\*</sup> The underlying sample size is lower than 20 cases, so the statistical reliability of the estimation is scarce

In summary, it is worth noting that in the whole of Andalusia, 57.4% of all households have air conditioning. This is equivalent to consider that in Andalusia in 2008 there were already 1.617.761 dwellings with air cooling system available.

# 2.3 Conversion factors of final-energy, primary-energy and CO<sub>2</sub> emissions

For the conversion operations between final-energy, primary-energy and  $CO_2$  emissions it is necessary to deduce the final-energy consumption from the primary-energy obtained from Table 2. For this purpose, the conversion factors that will be used throughout the process are listed in Table 4.

**Table 4** Conversion factors of primary-energy for indoor space heating and cooling to final-energy according to the consumption framework of Andalusia (Author's own from IAE-2008 survey)

| 541.5)       |              |                                   |        |      |
|--------------|--------------|-----------------------------------|--------|------|
|              | Final-energy | % Type of<br>fuel over<br>total * | Juctor |      |
| Cooling      | Electricity  | 100%                              | 2,61   | 2,61 |
| Cooling fact | tor          |                                   |        | 2,61 |
|              | Electricity  | 53%                               | 2,61   | 1,38 |
|              | Natural gas  | 8%                                | 1,07   | 0,09 |
| Heating      | Gasoil       | 7%                                | 1,12   | 0,08 |
|              | Heat pump    | 9%                                | 2,61   | 0,23 |
|              | Others       | 24%                               | 1,05   | 0,25 |
| Heating fac  | tor          |                                   |        | 2,03 |

<sup>(\*)</sup> Source: Table 3.a. Households according to heating system presence by dwelling characteristics in Andalusia. Year 2008. (IEA.2008).

# 2.4 Features of the Andalusian residential building stock and its air conditioning.

In Table 5, a synthesis is shown of the assumed starting conditions to conduct the energy consumption calculation. These conditions were used in a former study for the characterization of residential building stock in Andalusia, developed by the *Agencia de Vivienda y Rehabilitación de Andalucía* (AVRA) in 2012.

<sup>(\*\*)</sup> Source: Recognized document (RITE, 2016), p.16.

Table 5 Basic characterization of the Andalusian residential building stock. (MARIE Study,

| r                                                                        | ī         |       |
|--------------------------------------------------------------------------|-----------|-------|
| Households in multi-family buildings / percentage they represent         | 1.806.302 | 71 %  |
| Households in single-family buildings / percentage they represent        | 745.136   | 29 %  |
| Total households                                                         | 2.551.438 | 100 % |
|                                                                          |           |       |
| Surface of average household in multi-family housing building            | 75        |       |
| $(m^2)$                                                                  |           |       |
| Surface of average household in single-family dwelling (m <sup>2</sup> ) | 100       |       |
| Surface of the average household in Andalusia (m²)                       | 82,3      |       |
|                                                                          |           |       |
| Heated surface (m <sup>2</sup> ) & (%) in the average household          | 61,73     | 75 %  |
| Cooled surface (m²) & (%) in the average household                       | 41,15     | 50 %  |

AVRA, 2012)

## 3 Methodology

As a methodological alternative to aforementioned approaches, for the determination of the air-conditioning consumption of households, a new mixed-type (bottom-up and top-down) estimation method is proposed, starting from a previously expressed data series. The method includes applying values from the average simulations results of energy models (AICIA, 2011) that represent the whole national residential building stock, for its subsequent extrapolation after corrections to the Andalusian residential buildings stock. This mixed-type method can contribute to fine tune certain results which have hitherto been indirectly obtained through surveys or monitoring, as in SPAHOUSEC. This methodology could also be applied to other Mediterranean European regions or even other countries with an equivalent energy scenario.

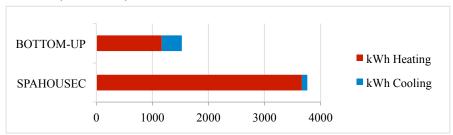
In this section, is explained the calculation process that is used to obtain the values for space heating and cooling energy consumption of households in Andalusia through a *top-down* approach, starting from the sources mentioned in section 2.

The operating procedure is shown in Table 6, which essentially consists the following steps:

- 1. Values are expressed in rows of each province and the total.
- In columns B to E, the distribution of the number of households per province is indicated and the presence of heating and cooling system in each case.
- 3. Columns F to I include data of annual primary-energy consumption for indoor space heating and cooling for single-family and multi-

- family typologies expressed in kWh/m<sup>2</sup>, obtained from the simulation of energy models (AICIA, 2011).
- 4. The values of annual primary-energy consumption (columns F to I) are converted into annual energy consumption per household (columns J to M), by adopting the values of 75 m<sup>2</sup> and 100 m<sup>2</sup> for multifamily housing buildings and single-family dwellings, respectively.
- 5. The N and O columns express annual consumption values by weighted housing, taking a 71% to 29% ratio for multi-family and single-family homes respectively, for the whole of Andalusia.
- 6. In the P and Q columns, the proportion of households in the considered province with respect to the total is assigned to the preceding values (multiplied by the factors in column C). Thus, a total value is obtained as the sum of the unit values of each province weighted by their proportion of the overall weight. The total corresponds to the average value of primary-energy consumption for space heating and cooling, assuming that all surfaces of the household are thermally conditioned, and all dwellings have heating and cooling equipment available.
- 7. In the R and S columns the previous unit values are diminished by the percentage of heating and cooling availability in each province, thereby obtaining the total value weighted with the actual presence of the air-conditioning equipment.
- 8. The T and U columns show the proposed final values obtained by weighting the previous columns with the percentage of the thermally conditioned surface in each household. For the whole of Andalusia 2.334,73 kWh and 943,65 kWh annual values of primary-energy for heating and cooling consumption are obtained respectively.
- 9. In the V and W columns, after correcting their percentage over the total value, unitary values per household for each province are shown.
- 10. At the bottom of the table the final-energy for space heating and cooling consumption values is calculated by applying the conversion factors formerly registered in Table 5.

**Table 6** Auxiliary and intermediate calculations for the determination of the annual final-energy for indoor space heating and cooling consumption (Author's own).


| A     | В                                                                  |       |       | С          |          |       | D                    |        |        |       | Е      |     |            |
|-------|--------------------------------------------------------------------|-------|-------|------------|----------|-------|----------------------|--------|--------|-------|--------|-----|------------|
|       | Number                                                             | of    |       | Proportion | over     | total | Heating              | availa | bility | Coo   | ling   | ava | ailability |
| Pr.   | househo                                                            | lds   |       | (%)        |          |       | (%)                  |        |        | (%)   |        |     |            |
| AL    | 234.101                                                            |       |       | 8%         |          |       | 23,38                | 3      |        | 5     | 52,21  |     |            |
| CA    | 414.0                                                              | 684   |       | 15%        |          |       | 42,22                | 2      |        | 4     | 16,9   |     |            |
| CO    | 275.                                                               | 544   |       | 10%        |          |       | 59,59                | )      |        | 6     | 55,62  |     |            |
| GR    | 319.                                                               | 888   |       | 11%        |          |       | 40,24                | ļ      |        | 3     | 38,30  |     |            |
| HU    | 183.                                                               | 775   |       | 7%         |          |       | 68,60                | )      |        | 5     | 51,56  |     |            |
| JA    | 219.                                                               | 618   |       | 8%         |          |       | 44,84                | ļ      |        | 6     | 52,43  |     |            |
| MA    | 554.6                                                              | 688   |       | 20%        |          |       | 32,12                | 2      |        | 4     | 14,82  |     |            |
| SE    | 614.                                                               | 360   |       | 22%        |          |       | 47,02                | !      |        | 8     | 34,41  |     |            |
| Tot.  | 2.810                                                              | 6.658 |       | 100%       |          |       | 43,11                |        |        | 5     | 57,44  |     |            |
| A     | F                                                                  | G     |       | Н          | I        |       | J                    | K      |        | L     |        | M   |            |
|       | C <sub>ep</sub> (kW                                                | h/m²) |       |            |          |       | C' <sub>ep</sub> (kW | h)     |        |       |        |     |            |
|       | Heat                                                               | ing   |       | Cooling    | <u> </u> |       | Heati                | ng     |        | (     | Coolin | g   |            |
| Pr.   | S.                                                                 | F. M  | .F.   | S.F.       | M        | .F.   | S.F.                 | N.     | I.F.   | 5     | S.F.   |     | M.F.       |
| AL    | 28,7                                                               | 63,   | 7     | 47,8       | 34,5     |       | 2.870                | 4.778  |        | 4     | 1.780  |     | 2.588      |
| CA    | 24,9                                                               | 60,   | 8     | 36,8       | 26,3     |       | 2.490                | 4.560  |        | 3.680 |        |     | 1.973      |
| CO    | 55,5                                                               | 129   | 9,2   | 55,4       | 40,3     |       | 5.550                | 9.690  |        | 5.540 |        |     | 3.023      |
| GR    | 81,1                                                               | 193   | 3,0   | 30,5       | 22,5     |       | 8.110                | 14     | 14.475 |       | 3.050  |     | 1.688      |
| HU    | 31,2                                                               | 10    | 1,8   | 45,4       | 33,0     |       | 3.120                | 7.635  |        | 4.540 |        |     | 2.475      |
| JA    | 57,9                                                               | 158   | 8,1   | 54,7       | 40,0     |       | 5.790                | 11.858 |        | 5     | 5.470  |     | 3.000      |
| MA    | 35,1                                                               | 84,   | 0     | 40,1       | 28,9     |       | 3.510                | 6.     | 300    | 4     | 1.010  |     | 2.168      |
| SE    | 40,5                                                               | 112   |       | 57,6       | 42,2     |       | 4.050                | 8.408  |        | 5.760 |        |     | 3.165      |
| A     | N                                                                  | O     | P     | Q          | R        |       | S                    | Τ      | U      |       | V      |     | W          |
|       | C'ep.                                                              | (kWh) |       |            |          |       |                      |        |        |       | •      |     |            |
| Pr.   | Heat.                                                              | Cool. | Heat  | t. Cool.   | He       | at.   | Cool.                | Heat.  | Coo    | l.    | Heat.  |     | Cool.      |
| A     | 4.220                                                              | 3.228 | 351   | 268        | 3        | 82    | 140                  | 62     | 70     |       | 74     | 0   | 843        |
| CA    | 3.955                                                              | 2.471 | 582   | 364        | 246      | 5     | 170                  | 184    | 85     |       | 1.253  |     | 576        |
| CO    | 8.481                                                              | 3.758 | 830   | 368        | 494      | ļ     | 241                  | 371    | 121    |       | 3.790  |     | 1.233      |
| GR    | 12.616                                                             | 2.085 | 1.433 | 3 237      | 577      | ,     | 91                   | 432    | 45     |       | 3.808  |     | 399        |
| HU    | 6.316                                                              | 3.078 | 412   | 201        | 283      | 3     | 104                  | 212    | 52     |       | 3.250  |     | 793        |
| JA    | 10.086                                                             | 3.721 | 786   | 290        | 353      | 3     | 181                  | 264    | 91     |       | 3.392  |     | 1.162      |
|       | 5.485                                                              | 2.706 | 1.080 | 0 533      | 3        | 347   | 239                  | 260    | 119    |       | 1.322  |     | 606        |
| SE    | 7.135                                                              | 3.923 | 1.550 |            | _        | 732   |                      | 549    | 361    |       | 2.516  |     | 1.656      |
| Total | C'ep                                                               |       | 7.03  | 3.116      | 3.1      | 13    | 1.887                | 2.335  | 944    |       |        |     |            |
| Total | C'ef                                                               |       |       |            |          |       |                      | 1.162  | 362    |       |        |     |            |
| Total | Total final-energy for air conditioning consumption (kWh) 1.523,41 |       |       |            |          |       |                      |        |        |       |        |     |            |

#### 4 Results and discussion.

The values obtained in this paper versus the SPAHOUSEC project values are expressed in Figure 2. Since the results of the latter are based on statistical approaches, using surveys and monitorings, the outcomes of this study were obtained from energy demands under standard use and operational conditions, although corrected by the degree of equipment and the percentage of actual conditioned surface described in specific statistics of households and environment in Andalusia.

The results of this study show that there is a theoretical average energy demand of similar magnitude for cooling and heating (Figure 2), which carries a similar proportion of energy consumption for such purposes.

Fig. 2 Compared results of annual final-energy for heating and cooling consumption in households (Author's own).



The fact that this mixed-method obtains an annual consumption for air conditioning (heating + cooling) of 1532 kWh per household, compared to 3763 kWh predicted in the SECH-SPAHOUSEC Project, demonstrates the large differences (more than double) between the application of one or another method.

The annual final-energy for heating and cooling consumption is, once corrected, shown in Table 7. These deducted consumption values will represent a new cast (22,5% for air-conditioning) for the contributions of the various types of energy consumption source in households, compared to that offered by SPAHOUSEC (42% for air-conditioning) for Andalusia.

Annual final-energy consumption by application in households. Mediterranean region, SPAHOUSEC Energy applikWh/  $m^2$ kWh% cation Heating 44,52 3.664,23 41% DHW 21,34 1.755,96 20% Cooking 7,73 636,09 7% 27,87 2.293,50 26% Lighting 6,20 510,66 6% 1,20 98,55 Cooling 1% Average 8.959,00 100 108,86 consumption Annual final-energy consumption by application in households in Andalusia (Author's own) Energy applikWh/ cation  $m^2$ kWhHeating 14,12 1.161,86 17% DHW \*\* 21,89 1.801,60 27% 7,73 636,09 9% Cooking 27,87 2.293,50 34% Lighting 6,20 510,66 8% Cooling 4,39 361,55 5% \*\* Average 82.20 6.765,27 100 consumption

**Table 7.** Distribution of the annual energy consumption in households calculated for Andalusia versus the obtained in SPACHOUSEC (Author's own).

### **5** Conclusions

From the results of the application of the proposed mixed-method, a set of representative values of energy for air-conditioning (heating and cooling) consumption is obtained. This outcome is much more consistent with the actual greater availability of air-conditioning equipment and with the standard use profile than those obtained by other *top-down and bottom-up* mixed methods.

<sup>(\*)</sup> Final-energy consumption values adopted from SPAHOUSEC

<sup>(\*\*)</sup> Final-energy consumption values obtained from the bottom-up mixed-method

The method involves the application of average values obtained by simulation of energy models representing the national residential building stock, for their extrapolation to cover the whole set. This could contribute toward the fine tuning certain results that have hitherto been indirectly studied through surveys and monitorings.

The outcomes of the study forecast a higher final-energy for heating consumption than for cooling consumption, although this difference (the former two to three times greater than the latter) is not as dramatic as that obtained by SPAHOUSEC.

Overall, an average annual final-energy for air-conditioning (heating + cooling) consumption per household of 1532 kWh is obtained, compared to the 3673 kWh stated in SPAHOUSEC for the Mediterranean area (which is more than double the previous figure).

These outcomes underline the noticeable differences obtained between applying the methodology described in this study, which uses energy demand (under standard conditions of use and operation) estimations, corrected by the availability of equipment and the percentage of area actually conditioned as described in specific statistics for households and environment of Andalusia, and other more general studies, such as SPAHOUSEC.

A contrast of these results with studies of a more specific nature, including monitoring and individual energy consumption metering of different uses, could contribute to a better adjustment of the proposed method.

### 6 References

- Ayala, A. de, Galarraga, I. & Spadaro, J. V. (2016). The price of energy efficiency in the Spanish housing market. Energy Policy 94:16–24. doi:10.1016/j.enpol.2016.03.032
- Castelli, M., Trujillo, L., Vanneschi, L. & Popovič, A. (2015). Prediction of energy performance of residential buildings: A genetic programming approach. Energy and Buildings 102: 67–74. doi:10.1016/j.enbuild.2015.05.013
- León, A.L., Muñoz Muñoz, M. S., León, J. & Bustamante P. (2010) Monitoring environmental and energy variables in the construction of subsidised housing: Cros-Pirotecnia building in Sevilla. Informes de la Construcción. 62(519):67-82. doi:10.3989/ic.09.045
- Sendra, J. J, Domínguez-Amarillo, S., Bustamante, P. & A.L. León (2013). Energy intervention in the residential sector in the south of Spain: Current challenges. Informes de La Construcción 65: 457–464. doi:10.3989/ic.13.074

Book of Proceedings of the 3<sup>rd</sup> International Congress on Sustainable Construction and Eco-Efficient Solutions

Fernández-Membrive, V. J., Lastra-Bravo, X. B. & Tolón-Becerra, A. (2015). Cost-benefit analysis of changes in energy in building technology in Southeast Spain. Energy and Buildings 103: 29–37. doi:10.1016/j.enbuild.2015.06.026

IDAE, Secretaría General, Departamento de Planificación y Estudios. (2011). Informe final. Proyecto SECH-SPAHOUSEC. Análisis del consumo energético del sector residencial en España

Ministerio de Industria, Energía y Turismo (MINETUR) - IDAE (2014). Balances del consumo de energía final. Historical serie 1990-2013

AICIA (2011). Escala de calificación energética: edificios existentes

Encuesta social 2008: Hogares y medio ambiente en Andalucía. Instituto de Estadística de Andalucía (IEA) (2008) https://www.juntadeandalucia.es/institutodeestadisticaycartografia/encsocial/2 008/. Accesed february 2011

MINETUR-MFON,(2016) Factores de emisión de CO<sub>2</sub> y coeficientes de paso a energía primaria de diferentes fuentes de energía final consumidas en el sector de edificios en España. Recognized document of the *Reglamento de Instala-*ciones Térmicas en los Edificios (RITE)

García-López, J. & Romero, M. (2012) Estudio para la caracterización del parque residencial en Andalucía. Benchmarking-Proyecto MED-MARIE. Agencia de la Vivienda y Rehabilitación de Andalucía, AVRA

### 7 Abbreviations used

 $C_{ep}.$  Annual primary-energy consumption

C'<sub>ep</sub>. Annual primary-energy consumption per household. C'<sub>ef</sub>. Annual final-energy consumption per household.

Cool. Cooling

DHW Domestic hot water

Heat. Heating

M.F. Dwellings in multi-family housing buildings

Pr. Province

S.F. Single-family dwellings

T. Temperature

## 8 Acknowledgements

We wish to express our appreciation to the *Agencia de Vivienda y Rehabilitación de Andalucía* (AVRA) and the Government of Andalusia for their collaboration in the MARIE project documentation.