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The semi-relativistic approach to electron and neutrino quasielastic scattering from nuclei is extended to include
final-state interactions. Starting with the usual nonrelativistic continuum shell model, the problem is relativized
by using the semi-relativistic expansion of the current in powers of the initial nucleon momentum and relativistic
kinematics. Two different approaches are considered for the final-state interactions: the Smith-Wambach 2p-2h
damping model and the Dirac-equation-based potential extracted from a relativistic mean-field plus the Darwin
factor. Using the latter, the scaling properties of (e, e′) and (νµ, µ−) cross sections for intermediate momentum
transfers are investigated.
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I. INTRODUCTION

In recent years, the so-called semi-relativistic (SR) ap-
proach has been explored as a convenient and easily im-
plementable way to “relativize” existing Schrödinger-based
models of quasielastic (QE) electron scattering from nuclei
[1–6]. This approach (which differs from other approaches
also called “semi-relativistic” in the literature [7,8]) is based
on the SR expansion of the on-shell electromagnetic current
in powers of p/mN only, i.e., the momentum of the initial
nucleon divided by the nucleon mass, leaving untouched the
dependence on the momentum transfer q and energy transfer
ω. Implementing this current expansion and employing rela-
tivistic kinematics, the resulting SR models can be applied at
large values of the momentum transfer, of order of a GeV or
more, where the traditional relativistic corrections [9] based
on expansions of the current in powers of 1/mN are bound
to fail, whatever the order of the expansion. The existence
in the literature [10] of expansions up to fourth order, at
least in a Foldy-Wouthuysen transformation where they are
seen to be quite complicated, raises simplicity as another
advantage of the SR approach. In fact, by carefully grouping
the expansion terms, one can write them as (q, ω)-dependent
factors times the traditional [11,12] leading-order charge,
convection, and spin-magnetization current operators [1].
Moreover, the SR first-order O(p/mN ) correction to the
charge operator [13] is proportional to the spin-orbit charge
operator i�q · (�σ × �p), usually obtained in the second-order
1/m2

N correction in traditional nonrelativistic expansions
[14].

Extensive tests of the SR expansion have been performed
within the context of the Fermi gas. In particular, comparisons
with the fully relativistic Fermi gas (RFG), where the exact
result is well known, have shown the reliability of the ex-
pansion [1]. Similar SR expansions have also been performed

for meson-exchange currents [15] and nucleon-� currents [16]
and, more recently, for the charge-changing (CC) weak current
driving QE (νl, l

−) reactions [17].
Part of the interest in reactions involving neutrinos instead

of electrons lies in their implications for ongoing and planned
neutrino oscillation experiments [18–26]. Since these naturally
involve heavy nuclei as targets, reliable nuclear models of the
reaction A(νl, l

−) play an essential role in the interpretation of
the data. Because of the close relationships that exist among
all semi-leptonic electroweak processes, accurate descriptions
of A(e, e′) data appear as a requirement that sets strong
restrictions on nuclear modeling of neutrino reactions. Based
on what is known from previous approaches to this problem
and on the results presented in this paper, two ingredients
arise as being essential if the nuclear reaction modeling is to
be successful in describing the electroweak cross sections in
the kinematic regime of interest, namely, relativity and final-
state interactions (FSI).

First is relativity, since one is dealing with momentum
transfers in the intermediate-to-high energy regime, typically
of the order of 1 GeV or higher, for which traditional non-
relativistic expansions in powers of 1/mN are not applicable.
Different fully relativistic models (based on Dirac equations
and/or relativistic many-body theories) have been developed
in recent years aiming to describe electron and neutrino
scattering [27–41]. While relativistic approaches based on
the Dirac equation appear as the most direct way to deal
with the problem, the importance of the different relativistic
ingredients is more easily explored by detailed comparison
with the extensively employed nonrelativistic approaches,
and particularly with the SR one that is the focus of this
work. This comparison will also help in identifying which
relativistic ingredients (current operators, initial- or final-
state wave functions) are the main ones responsible for the
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difference between relativistic and nonrelativistic results.
Upon incorporating these ingredients in SR approaches,
one can extend their applicability to regions well into the
relativistic domain and thereby hope to produce reliable results
at high energies.

Second, the model of FSI must account for many-body
effects that are known to be essential in describing reasonably
well (e, e′) cross sections within the context of nonrelativistic
approaches [42–48]. For instance, medium modifications
of the one-particle one-hole (1p-1h) final-state self-energy
via two-particle two-hole (2p-2h) intermediate states in the
continuum appear to be important in nonrelativistic many-
body treatments of a variety of processes involving low-to-
intermediate momentum transfers [49–51]. The main effect
is a significant shift of strength to high energies in the
QE cross section. On the other hand, relativistic impulse
approximation modeling of inclusive reactions [41,52] shows
an important effect of the FSI where strength is shifted to the
high momentum region.

The importance of FSI for intermediate-to-high momentum
transfers has also been investigated in connection with the
scaling properties of the QE cross section. The recent analysis
of (e, e′) world data in the QE region [53–55] has permitted the
extraction of a universal scaling function fL(ψ ′) from the lon-
gitudinal response function data [here ψ ′ is the dimensionless
scaling variable defined in Eq. (29) below]. The experimental
scaling function presents an asymmetric shape, in contrast
to the symmetric behavior predicted by most independent-
particle models, which essentially give results that are similar
to the RFG, with the exception of the tails observed for ψ ′ < −1
and ψ ′ > 1, where the RFG result is zero by construction.
The behavior exhibited by the experimental scaling function
reflects that of the longitudinal response function including the
FSI for intermediate values of the momentum transfer [45],
i.e., the single-particle strength at the QE peak is reduced and
a large tail is observed for high values of the energy transfer ω.
Note that the difference with respect to previous approaches is
that the experimental data now correspond to relatively high
values of the momentum transfer, mainly in the range from q =
500 MeV/c to 1 GeV/c, for which scaling occurs, and where
most of the existing nonrelativistic models of FSI are no longer
applicable.

Recent work [41,52] has reported good agreement between
the calculated scaling function and the data in a fully relativistic
approach based on the relativistic mean-field (RMF) model,
within the impulse approximation (IA). The bound and out-
going nucleon states are described by the same self-consistent
Dirac-Hartree potential. Here, the use of the same relativistic
potential in the initial and final states appears to be essential,
since, as shown in Ref. [52], calculations using the real parts
of complex relativistic optical potentials do not produce the
asymmetric behavior seen in the data. Apparently the main
factors responsible for the asymmetry are not only relativistic
kinematics, but also the particular dynamics contained in the
Dirac equation when strong scalar and vector potentials are
used for the continuum nucleon states (i.e., for the FSI). In
fact, within the IA, the significant shift of strength to positive
ψ ′ values only occurs under the presence of these strong
potentials [41].

In this paper, we investigate whether it is possible to
describe the asymmetric behavior of the QE scaling function
within the semi-relativistic approach for intermediate-to-high
momentum transfers. As FSI are essential in order to perform
meaningful comparisons with QE scaling data, we explore
various ways of including these ingredients in the SR model at
relativistic energies. We consider two different models of FSI:
the Smith-Wambach 2p-2h damping (SWD) model and the
Dirac-equation-based (DEB) potential plus the Darwin factor
(DEB+D) [30,56,57].

The SWD model is an extrapolation to relativistic kine-
matics of the nuclear reinteraction model introduced in
Refs. [43,49], which gives one a straightforward way to incor-
porate the effects of 2p-2h excitations in the nuclear response
function within a nonrelativistic context. Speculations on how
to extend this model to QE neutrino scattering for relativistic
energies have been presented in Refs. [58,59], within the
context of the RFG.

The DEB+D method attempts to translate the success of
the RMF model in describing the phenomenological scaling
function from QE (e, e′) data [41,52] to the SR approach.
We perform calculations in a SR continuum shell model
where the final wave functions are obtained by solving the
Schrödinger equation with the DEB potential and multiplying
by the Darwin factor. The DEB potential is obtained by a
reduction of the Dirac equation to a Schrödinger equation
with a local potential, which implies that one must multiply the
wave function by a nonlocality Darwin factor [30,56,57,60].
This essentially amounts to using upper components from the
solutions of the Dirac equation in computing the final nucleon
wave functions.

Both the DEB potential and Darwin factor are functions
of the local (energy independent) vector (V ) and scalar
(S) components of the relativistic Hartree potential. The
nonrelativistic reduction implied in the derivation of the DEB
potential and the Darwin term introduces a linear dependency
on the energy of the particle. The results obtained in the SR
model describing FSI in this way compare well with those
obtained using the fully relativistic RMF model, and thus also
reproduce the successful comparison with the experimental
scaling function data. This allows us to conclude that it is
the treatment of FSI in the RMF that gives rise to the large
asymmetric tail in the superscaling function.

In this paper, we also present an application of the
SR-DEB+D approach to the superscaling analysis (SuSA)
of the neutrino CC QE cross section. This method has been
proposed [61] as an efficient way of predicting neutrino cross
sections from the (e, e′) data, by exploiting the scaling prop-
erties of the latter. The method is based on the hypothesis that
the neutrino cross sections universally scale in the same way
as do the electron scattering cross sections for intermediate-
to-high momentum transfers, as seen for several types of
models [17,41,52]. An application of the SuSA approach to
compute integrated neutrino cross sections has been reported
recently [62]. In this work, we investigate the validity of the
superscaling approach within the SR-DEB+D model. Given
the success of our model in describing the experimental scaling
data, this check will help to further lay the foundations of the
SuSA approach introduced originally in Ref. [61].
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The structure of the work is the following. In Sec. II we
briefly outline the SR model and the different treatments of
the FSI. We present results in Sec. III and our conclusions in
Sec. IV.

II. SEMI-RELATIVISTIC (SR) MODEL

In this section, we summarize the basic formalism for
electron and neutrino reactions within the SR approach,
including the different treatments of the FSI. We refer the
reader to Refs. [1,17] for specific details.

A. Electron and neutrino cross sections

We focus specifically on the reactions (e, e′) and (νl, l
−)

induced by electrons and neutrinos, respectively, where l− is a
lepton with mass ml (typically a muon). The four-momentum
of the incident lepton is kµ = (ε, k), while k′µ = (ε′, k′) is
the four-momentum of the final lepton. The four-momentum
transfer is denoted Qµ = kµ − k′µ = (ω, q). The results
below are referred to a coordinate system where the z axis
points along q and the x axis along k − (k · q)q/q2.

The inclusive cross section for these reactions can be written
in general as

dσ

d�′dε′ = σ0F2, (1)

where σ0 is the usual Mott cross sections for (e, e′) reactions
[4], while it becomes an analogous factor in the case of (νl, l

−)
reactions (see Refs. [17,61] for explicit expressions). The
relevant observable is the nuclear structure function F2 which
can be written as

F2 = vLRL + vT RT (2)

for (e, e′) and

F2 = V̂ CCRCC + 2V̂ CLRCL

+ V̂ LLRLL + V̂ T RT + 2V̂ T ′RT ′ (3)

for (νl, l
−) reactions. The lepton kinematic factors vK and V̂ K

are defined in Refs. [4] and [61], respectively. Note that in the
limit of lepton mass ml = 0, one has the identities vL = V̂ CC

and vT = V̂ T . Finally, the nuclear response functions are given
by

RL = RCC = W 00, (4)

RCL = − 1
2 (W 03 + W 30), (5)

RLL = W 33, (6)

RT = W 11 + W 22, (7)

RT ′ = − 1
2 (W 12 − W 21), (8)

where the inclusive hadronic tensor is

Wµν =
∑̄
f i

δ(Ef − Ei − ω)〈f |Jµ(Q)|i〉∗

× 〈f |J ν(Q)|i〉. (9)

Here Jµ(Q) is the nuclear current operator relevant for the
reaction, i.e., the electromagnetic current in the case of (e, e′)
or the CC weak current in the case of (νl, l

−), as specified
below. Note that although in Eq. (4) RL and RCC are formally
equal, in practice they are not the same quantity, since different
current operators and nuclear matrix elements are involved in
their definitions, RL referring to electron scattering and RCC

to neutrino reactions.
The current operators used in this work are SR expansions

of the fully relativistic ones in powers of η = p/mN , where
p is the momentum of the initial (bound) nucleon, which is
typically small (η<1/4), and therefore an expansion at most to
first order O(η) should be adequate for the inclusive reactions
considered here in the region of the QE peak. The expansion
was performed in Refs. [1,17] (see Ref. [4] for a review on the
general SR expansion procedure). Here we give just the final
expressions used in our calculations. The CC weak current is
written in momentum space as Jµ = J

µ

V − J
µ

A , in terms of the
vector and axial current terms. For the vector current, one has

J 0
V = ξ0 + iξ ′

0(κ × η) · σ , (10)

J⊥
V = ξ1η

⊥ + iξ ′
1σ × κ, (11)

and for the axial current,

J 0
A = ζ ′

0κ · σ + ζ ′′
0 η⊥ · σ , (12)

J z
A = ζ ′

3κ · σ + ζ ′′
3 η⊥ · σ , (13)

J⊥
A = ζ ′

1σ
⊥. (14)

In Eqs. (10)–(14), we have introduced the dimensionless
momentum transfer vector κ = q/2mN , while we use
the notation J⊥ to denote the component of the vector J
perpendicular to the momentum transfer q.

Finally, the nucleon form factors and relativistic correction
factors are included in the coefficients ξi, ξ

′
i , ζ

′
i , and ζ ′′

i (the
corresponding relativistic versions of these quantities for the
electroweak neutral current were introduced in the Appendix
of Ref. [1]), defined by

ξ0 = κ√
τ

2GV
E, ξ ′

0 = 2GV
M − GV

E√
1 + τ

, (15)

ξ ′
1 = 2GV

M

√
τ

κ
, ξ1 = 2GV

E

√
τ

κ
, (16)

ζ ′
0 = 1√

τ

λ

κ
G′

A, ζ ′′
0 = κ√

τ

[
GA − λ2

κ2 + κ
√

τ (τ + 1)
G′

A

]
,

(17)

ζ ′
3 = 1√

τ
G′

A, ζ ′′
3 = λ√

τ

[
GA − κ

κ + √
τ (τ + 1)

G′
A

]
,

(18)

ζ ′
1 = √

1 + τGA. (19)

Here use has been made of the dimensionless variables κ =
q/2mN, λ = ω/2mN , and τ = κ2 − λ2. The nucleon form
factors appearing in Eqs. (15)–(19) are the isovector magnetic
GV

M = G
p

M − Gn
M , isovector electric GV

E = G
p

E − Gn
E , and

the axial form factor GA. In ζ ′
i and ζ ′′

i we have introduced the
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following combination of axial-vector and pseudoscalar form
factors:

G′
A = GA − τGP , (20)

where GP is the pseudoscalar nucleon form factor.
The expression for the SR expansion of the electromagnetic

current is very similar to that for the vector current in Eqs. (10)
and (11). The only difference is that the proper proton or
neutron form factors, instead of the isovector ones, should be
inserted in the corresponding ξi and ξ ′

i coefficients.

B. Nuclear and FSI models

In this work, we describe the nuclear structure with an
uncorrelated shell model. The many-body initial nuclear state
|i〉 is a Slater determinant. It is constructed with a set of single-
particle solutions of a nonrelativistic mean-field potential.
The final states |f 〉 = |ph−1〉 are particle-hole excitations
of the nuclear core. The holes |h〉, with nonrelativistic
energies εh, are solutions of the Schrödinger equation with
a Woods-Saxon potential. The particles |p〉, with asymptotic
kinetic energies εp = εh + ω, are continuum solutions of the
Schrödinger equation with positive energy. In the SR approach,
the relativistic kinematics is implemented by the following
substitution of the eigenvalue for positive energies:

εp → εp

(
1 + εp

2mN

)
. (21)

For intermediate energies, εh is small compared with ω and the
above substitution can be replaced to a good approximation by
λ → λ(1 + λ) with small error [63].

We begin at the basic starting point, denoted below as semi-
relativistic Woods-Saxon (SR-WS), where the continuum
states are described by solutions of the Schrödinger equation
with the same Woods-Saxon potential as the bound states.
Building on this, two further different approaches to FSI have
been considered.

In a first treatment, we include the FSI effects coming from
2p-2h intermediate states by following the Smith-Wambach
damping model (SWD). Within this model the total response
function RSWD

K (q, ω) is computed from the bare SR-WS one,
RSR−WS

K , as a folding or convolution integral

RSWD
K (q, ω) =

∫ ∞

0
dERSR−WS

K (q,E)

[
ρ

(
mN

M∗(q)
E,ω

)

+ ρ

(
mN

M∗(q)
E,−ω

) ]
, (22)

where M∗(q) is the nucleon effective mass taken from Ref. [64]
and, following Ref. [49], the function ρ(E,ω) is given by

ρ(E,ω) = 1

π

�(ω)/2

[E − ω − �(ω)]2 + [�(ω)/2]2
, (23)

�(ω) = �(ω) + i 1
2�(ω) (24)

being the complex self-energy of the final states. The imag-
inary self-energy is computed through the following average

for the particles and holes:

�(ω) = 1

ω

∫ ω

0
dε[γp(ε) + γh(ε − ω)]. (25)

We use the parametrization of Ref. [65]

γp(ε) = γh(ε) = γ (ε) = 2α

[
ε2

ε2 + ε2
0

] [
ε2

1

ε2 + ε2
1

]
, (26)

with α = 10.75 MeV, ε0 = 18 MeV, and ε1 = 110 MeV.
The second approach to FSI, and the main focus in

this work, is the Dirac-equation-based plus Darwin term
(DEB+D). The DEB potential UDEB is obtained from the
Dirac equation, written as a second-order equation for the
upper component ψup(r) [30,56,57]. This wave function is
then written in the form

ψup(r) = K(r, E)φ(r), (27)

and the Darwin factor K(r, E) is chosen in such a way that the
function φ(r) satisfies a Schrödinger-like equation

[
− 1

2mN

∇2 + UDEB(r, E)

]
φ(r) = E2 − m2

N

2mN

φ(r). (28)

Here E is the relativistic energy of the final nucleon. Note
that both the DEB potential UDEB(r, E) and the Darwin factor
K(r, E) show an explicit energy dependence coming from the
nonrelativistic reduction of the Dirac equation. The complete
expressions in terms of the vector and scalar parts of the
relativistic potential are given, for instance, in Refs. [30,60].
In the results section, we show the energy dependence of these
quantities in more detail.

C. Superscaling approach

In this paper, we focus on the properties of the scaling
functions fL(ψ ′) and fT (ψ ′); these are defined as the elec-
tromagnetic responses RL(q, ω) and RT (q, ω) divided by
the appropriate single-nucleon functions, GK (K = L, T ),
weighted by the nucleon number involved in the process (see
Refs. [17,61] for details).

The scaling functions depend generally on q and ω and are
different for different nuclei. Scaling of first kind is said to
hold when they are found to depend, not independently on q

and ω, but only on a specific function of these two, namely,
the scaling variable ψ ′(q, ω) defined as

ψ ′ = ξ
−1/2
F

λ′ − τ ′

[(1 + λ′)τ ′ + κ
√

τ ′(1 + τ ′)]1/2 , (29)

where λ′ = (ω − Es)/2mN, κ = q/2mN, τ ′ = κ2 − λ2,
and ξF =

√
1 + (kF /mN )2 − 1. Experimentally, the Fermi

momentum kF and the energy shift Es are empirical parameters
determined through fits to QE electron scattering data. The
unshifted scaling variable ψ is defined by the same formula,
but with Es = 0.

If fL and fT are independent of kF as well, one says that
second-kind scaling in fulfilled. When both kinds of scaling
occur, the responses are said to “superscale.”
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In the case of neutrino reactions, scaling functions
can be obtained in a similar way, dividing the weak re-
sponses by the corresponding single-nucleon contribution, see
Refs. [17,41,61]. The approach called SuSA assumes that the
scaling functions entering both (e, e′) and (νl, l

−) reactions
are the same; in this case, one can reconstruct the weak cross
sections from the electromagnetic ones by multiplying the
scaling function by the weak single-nucleon contribution.

III. RESULTS

In this section, we present results for the nucleus 12C. The
ground state is described here in the extreme shell model;
namely, the 1s1/2 and 1p3/2 shells are fully occupied for
protons and neutrons. The Woods-Saxon potential parameters
used to describe the (nonrelativistic) bound energies and wave
functions are given in Ref. [17]. As stated in the previous
section, for the final states in the SR model , we use different
forms of the potential depending on the description of the
FSI. In the SR-WS, the same Woods-Saxon potential is used
for initial and final states. In the SR-DEB, the DEB potential
and the Darwin term are used for the final states. A general
multipole expansion of the current operators is performed to
compute the nuclear response functions and scaling functions.
We refer the reader to Refs. [1,17] for details on this aspect of
the calculation.

We first investigate the properties of the electromagnetic
(e, e′) L and T scaling functions, leaving the discussion of
the neutrino CC cross section for the end of this section. In
particular, we are interested in the study of the properties of
scaling of the first kind. To this end, we compute the function
fK (ψ ′) (K = L, T ) for fixed values of the momentum transfer
q. One has scaling of the first kind when no dependence on q

is observed.

A. Relativistic effects

We start with a brief discussion of the size of the relativistic
effects embodied in the SR model. In Fig. 1, we show the
longitudinal and transverse scaling functions of 12C computed
in the shell model for three values of the momentum transfer,
q = 0.5, 0.7, and 1 GeV/c. We show results for three models
of the reaction, all of them including the same Woods-Saxon
potential in initial and final states. The dashed lines correspond
to a traditional nonrelativistic approach using nonrelativistic
currents and nonrelativistic kinematics. The dotted lines
have been obtained using relativistic kinematics, but still
the nonrelativistic current operators. Finally, the solid lines
correspond to the SR approach with relativistic corrections in
the current as well, i.e., to the SR-WS model.

As one can see, the width of the scaling functions is
significantly reduced in the calculations that include relativistic
kinematics, while the inclusion of relativistic effects in the
current operators leads to an increase of fL and a reduction
of fT . The importance of relativistic effects clearly increases
with the momentum transfer. In the figure, we also plot
the experimental data for the averaged fL(ψ ′), taken from
Ref. [55]. It is important to point out that data refer only to the
analysis of the longitudinal scaling function, i.e., fL; however,
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FIG. 1. Scaling functions of 12C in the continuum shell model
with a Woods-Saxon potential. Solid lines: SR model. Dashed:
traditional nonrelativistic results. Dotted: nonrelativistic current
operators using relativistic kinematics. Experimental data are from
Ref. [55].

we have chosen to present such data also in comparison with
theoretical results for fT . This makes the comparison between
fL and fT more straightforward and, in fact, it allows us to
check the degree to which scaling of the zeroth kind, i.e.,
fL = fT , is fulfilled for the different models presented in this
work.

Incidentally, note that the nonrelativistic current with
relativistic kinematics (dotted lines) gives the best description
of experimental data for q = 1 GeV/c, where a nonrelativistic
treatment of the current operator should hardly be adequate.
This fact is a consequence of the relativistic factor κ/

√
τ

in the coefficient ξ0 in Eq. (15) which produces an increase
of fL.

Although from the full set of results seen in Fig. 1 it
clearly appears that none of the three approaches provides a
satisfactory description of the experimental data, one can still
study the scaling properties of these models. One knows from
previous superscaling studies that scaling of the first kind is
approximately valid for the experimental longitudinal scaling
function, fL. This places important restrictions on theoretical
models, namely, that they should be (reasonably) compatible
with scaling of the first kind. Otherwise they would be unable to
describe the (e, e′) cross section over a wide range of momenta.

On the other hand, we recall that the scaling variable is
obtained from a consideration of relativistic kinematics, and
the scaling functions are obtained dividing by a single-nucleon
cross section that is derived from a fully relativistic form.
It is only when both these ingredients are included that
the experimental data show scaling. It is hardly surprising
that approximations to quasielastic scattering that do not
contain the appropriate relativistic content fail to produce the
appropriate scaling.
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FIG. 2. 12C scaling functions for three values of q = 0.5 (solid
lines), 0.7 (dashed), and 1 GeV/c (dotted). Initial and final states are
described with the same Woods-Saxon potential. Upper panels: tra-
ditional nonrelativistic model. Middle panels: nonrelativistic model
using relativistic kinematics. Lower panels: SR model.

This is illustrated in Fig. 2 for the different approaches
in the shell model. There we show the same results as in
Fig. 1, but presented in a different way, namely, this time
plotting together the results from each of the models for
the three values of q simultaneously. From Fig. 2, one can
appreciate that the SR approach is the only model that shows
first-kind scaling. Therefore, we conclude that the relativistic
corrections that are consistently accounted for in the SR, in
both the current operator and the kinematics, are important for
recovering first-kind scaling, although the model still lacks the
dynamic ingredients from relativistic FSI needed to reproduce
the shape of the experimental data, as discussed below.

Before entering into a detailed discussion of FSI, we display
in Fig. 3(a) test of the SR expansion, by comparing it with a
fully relativistic result. Similar tests have been carried out in
the context of the relativistic Fermi gas [1,17]. However, at the
level of the SR-WS, it is not possible to make meaningful
comparisons with fully relativistic results because of the
different description of the dynamics in the final states. To
make a consistent comparison, one should go a step back
and consider the plane-wave impulse approximation (PWIA),
where the final potential is set to zero. This is done in Fig. 3,
where we show the PWIA results for the L and T scaling
functions in semi-relativistic and relativistic models. From
these results, one can see that the descriptions of the initial
nuclear state and of the current operator are quite similar
in both models. Note that in the relativistic calculation, the
CC2 current has been employed (see also later). The bound
wave functions and energies are very close in the relativistic
and nonrelativistic approaches. The small differences seen in
Fig. 3 are linked to off-shell effects in the current matrix
elements and are of the same order as can be found between
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FIG. 3. Comparison of semi-relativistic and fully relativistic
models in PWIA. Solid lines: SR. Dashed: relativistic with CC2
current operator.

relativistic results using different prescriptions for the current
operator [41].

B. FSI in the damping model

There are two main effects embodied in the Smith-
Wambach damping model used here: a shift and a redistri-
bution of strength, as illustrated in Fig. 4, where we show the
longitudinal response function for five values of the momen-
tum transfer. These effects are a consequence of the folding
integral in Eq. (22), which basically produces the redistri-
bution, and of the appearance of the effective mass M∗(q),
which is responsible for the shift. However, when the energy
ω is large, the parametrization of Eqs. (25) and (26) results in
a small nucleon width; hence, the Lorentzian function ρ(E,ω)
becomes close to a Dirac delta function and only the effective
mass effect remains. This is why in Fig. 4, for the largest q

value, q = 1.5 GeV/c, the FSI just produce a shift of RL. Thus,
although the damping model can produce the needed effect for
low-to-intermediate momentum transfers (i.e., redistribution
of the strength as required by the data), for higher momentum
transfer this method is basically equivalent to introducing an
almost constant effective mass (of around M∗/mN ≈ 0.8–0.9).

The scaling properties of RL under the SWD model of
FSI may be seen by examining the results in Fig. 5. There
one observes that the scaling function increases with q;
hence, scaling of the first kind is not respected by the model.
Moreover it is almost symmetric, whereas the experimental
data, also shown in the figure, display an asymmetry, indicating
stronger redistribution of strength for positive values of ψ ′.
The apparent incapability of the SWD to describe this feature
of the data should not be considered a failure of the model,
but simply an inadequate extrapolation to high energy of a
model that was originally proposed to describe the damping of
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FIG. 4. Effect of FSI on longitudinal response function. Dashed
lines: SR model with a Woods-Saxon potential. Solid: SR model
including FSI in Smith-Wambach damping model.

the continuum nuclear response in the region of small energy
transfer.

C. DEB approach to FSI

The second approach to FSI in this work amounts to using
the DEB potential plus Darwin term as described earlier.
The interest in this approach for intermediate-to-high energies
originates from the results found in Refs. [41,52] where the
relativistic mean-field (RMF) model was found to describe
reasonably well the scaling function data. In particular, the
asymmetry presented by the data appears to be obtained only
in IA-based models when one uses the same form of the (real)
S and V relativistic potential in both initial and final states.
One must at this point remember that the present focus is on
inclusive reactions: one should not be tempted to apply the
optical potential fit to elastic data to inclusive reactions, such
as (e, e′) or (νl, l

−), where different channels are open [66].
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FIG. 5. Longitudinal scaling function in the SR model with
Smith-Wambach damping, with several values of the momentum
transfer q = 0.5 (solid lines), 0.7 (dashed), 1.0 (short-dashed), 1.3
(dotted), and 1.5 GeV/c (dot-dashed). No energy shift was applied to
the theoretical calculation. Experimental data from Ref. [55].

It is not the purpose of this paper to find rigorous theoretical
arguments to justify the use of the Hartree potential as the best
choice in relativistic calculations. Developments along these
lines will be discussed elsewhere [67]. We just mention here
that the asymmetry found in the scaling function computed in
the RMF is a consequence of the large scalar and vector parts
of the potential used in the final state, which are both much
smaller in the case of the real parts of typical optical potentials
or in other similar approaches.

The goal of this section is to show that when conveniently
implemented in the SR approach, the same relativistic Hartree
potential yields results consistent with the ones obtained within
the fully relativistic mean-field model. The electromagnetic
response functions with the DEB+D choice for FSI are shown
in Fig. 6 for fixed momentum transfer in the range q = 0.5
to 1.5 GeV/c. In the figure, we show the SR results using the
Woods-Saxon potential in the final state (dashed lines) and
using the DEB+D model of FSI (solid lines). For comparison
in the same figure we also show the SR-PWIA results. As
one can see, the effect of the DEB+D model is precisely
a shift and redistribution of the strength, typically what one
expects to occur due to FSI mechanisms. For q = 0.5 GeV/c,
the effect is similar to the SWD results of Fig. 4. However,
for higher values of q, the effect of the FSI is maintained
in the T response and even increases in the case of the L

response, contrary to what happens in the SWD model. In
this way, for q = 1.5 GeV/c, the total strength is not only
redistributed but also amplified in the longitudinal response
function. The behavior of RL for high q in the high-ω tail is
just a consequence of the SR expansion used for the current
operator. In fact, the time component of the vector current in
Eq. (10) is proportional to the ξ0 coefficient, which in turn is
proportional to the relativistic factor κ/

√
τ in Eq. (15). The

fact that this factor becomes infinite on the light cone ω = q

is just a consequence of the off-shell properties of the SR
expansion, since it was performed for on-shell nucleons and
therefore its applicability should be most appropriate for the
QE-peak region. This is not a fault of the current, since similar
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FIG. 6. Effect in the DEB+D model of FSI on the L and T

responses. Dashed lines: SR-WS model. Solid: SR-DEB+D. Dotted:
SR-PWIA.

anomalous off-shell effects can also be seen in prescriptions of
relativistic current [41]. Therefore, one should be careful when
extrapolating these operators to highly off-shell conditions,
and the results of Fig. 6 should be taken with caution in the
region close to ω = q, in particular when q is high and non-QE
effects dominate the total cross section, as RL probably cannot
be extracted experimentally there. In fact, the experimental
data for the scaling function shown in this paper were taken
from world data in the range q = 0.5 to 1 GeV/c.

The interest in showing results for values of q as high
as 1.5 GeV/c is related to the study of the properties of
first-kind scaling performed next. In Fig. 7, we show the scaling
functions in the DEB+D model. They have been extracted
from the results of Fig. 6 and are displayed as functions
of the unshifted (ψ) and shifted (ψ ′) scaling variables.
When nonzero, the energy shift is 20 MeV in all cases.
The experimental data for fL are shown for comparison.
One can see that the DEB+D results follow the trend of
the experimental data, clearly showing the same asymmetric
shape. While the strength and width of the results of Fig. 7
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FIG. 7. First-kind scaling in the DEB+D model for q = 0.5, 0.7,
1.0, 1.3, and 1.5 GeV/c. Scaling functions vs ψ when Es = 0 (top
row) and vs ψ ′ when Es = 20 MeV (bottom row). Experimental data
from Ref. [55].

are basically the same as the data, the theoretical results are
shifted to the right with respect to the data. Though small, the
shift increases with q. Due to the shift, one would conclude
that first-kind scaling is not perfect in this model. However,
note that the data do not contain values of q as large as
1.5 GeV/c and that the error bars are a consequence of a small
dispersion, since scaling of the first kind is not experimentally
as good as scaling of the second kind (i.e., independence of
the nucleon number A). Therefore, a small scaling violation
as that seen in Fig. 7 may not actually be inconsistent with the
data. Another interesting conclusion from these results is that
to a high degree, the DEB+D model respects scaling of zeroth
kind, i.e., fL = fT , for all q values.

Another study of first-kind scaling within the DEB+D
model has been performed with results at a different kinematic
setting, shown in Fig. 8. This time we show the scaling
functions computed for several incident electron energies and
a fixed electron scattering angle θe = 45o. Here the momentum
transfer is not constant and changes with ψ . As a consequence,
the scaling works better and the curves are closer to each other.

At this point, a test of the present SR model is possible
by comparing it with a fully relativistic model. Since the
final states in the DEB+D approach are computed essentially
as in the RMF approach presented in Refs. [41,52], both
models should give similar results if the relevant relativistic
corrections are included properly in the SR approach. A first
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FIG. 8. First-kind scaling in the DEB+D model for incident
electron energies εe = 1, 1.5, and 2 GeV. Electron scattering angle
θe = 45o, and Es = 0.
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FIG. 9. Electromagnetic scaling functions for three values of the
momentum transfer. Dotted lines: SR model with a Woods-Saxon
potential in the final state. Solid: SR model using the DEB+D
approach for FSI. Dashed: RMF with the CC2 current operator. Here
Es = 0.

comparison is performed in Fig. 9 for three values of the
momentum transfer. The RMF results are computed with the
CC2 current operator. The SR model using the Woods-Saxon
potential in the final state is also shown for comparison. It is
apparent from the figure that the behavior of the SR-DEB+D
results is similar to that in the fully relativistic approach.
The differences seen between the two models can partially
be attributed to the peculiar off-shell properties of the CC2
and SR currents, as well as to the four-component structure of
the wave functions involved in the RMF model compared with
the SR-DEB+D. In fact, differences of the same order can also
be found in the RMF approach between results obtained using
other current prescriptions. An example is shown in Fig. 10,
where we compare our results for q = 1 GeV/c with the RMF
results employing two current prescriptions. For this value
of the momentum transfer, the DEB+D model gives similar
results to those for the RMF model with the CC3 current oper-
ator, although not exactly the same. From the results of Figs. 9
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FIG. 10. Electromagnetic scaling functions for q = 1 GeV/c.
Solid lines: SR model within the DEB+D approach for FSI. Dashed:
RMF with the CC2 current operator. Dotted: RMF with the CC3
current operator.

and 10 we conclude that our model contains the relevant
relativistic corrections in this kinematic region. Our current
operator could then be considered at this level as another
prescription for off-shell extrapolation of the relativistic
nucleon current. At this point, it is also interesting to note
that the RMF model with the CC2 operator leads to a clear
violation of zeroth-kind scaling (likewise for CC1, but not for
CC3), contrary to what happens with SR-DEB+D.

Motivated by the results of Fig. 7, where first-kind scaling is
fulfilled except for a small shift, and in order to explore further
the scaling properties of our model, we have performed the
calculation of the scaling variable ψ ′ using a q-dependent
energy shift Es(q). The value of Es(q) is fitted to obtain the
maximum of fL at ψ ′ = 0. The results of this fit, shown in
Fig. 11, indicate that the collapse of the curves is improved
by this procedure. Although the scaling is not perfect, it is
remarkable that our results give essentially the same scaling
function for a wide range of q values (0.5–1.5 GeV/c) . The
scaling is better for the transverse function fT , while the
width of fL slightly increases with q. In Fig. 11, we also
show a comparison with the experimental data. The agreement
between theory and experiment is excellent. We recall that data
refer only to the analysis of the longitudinal response, hence
caution should be exercised when comparing the calculated
transverse scaling function fT and data. Finally, we also
present in Fig. 11 the shift energy Es(q) as a function of
q, showing that the dependence of the fit is clearly linear.
This linear behavior of Es(q) is connected to the energy
dependence of the DEB potential, which is also linear [30,60].
We illustrate this dependence in Fig. 12, where we plot the
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FIG. 12. Top row: DEB potential for final nucleon kinetic
energies 100–1500 MeV. Bottom panel: same for the Darwin factor.

central and spin-orbit parts of the DEB potential for a range
of final nucleon kinetic energies from 100 to 1500 MeV. More
details on the properties of the DEB potential can be found in
Ref. [30]. From Fig. 12, it is evident that the central part of
the DEB potential increases linearly with the energy and that
it is very repulsive for high energy. The spin-orbit part, on the
other hand, is rather small and unimportant for these energies.
In the same figure, we also show the Darwin factor K(r, E)
for the same nucleon energies.

The highly repulsive behavior of the DEB potential is the
main reason for the strength redistribution seen in our results. A
repulsive potential favors the emission of nucleons having high
enough available energy. Accordingly, more strength is placed
in the high energy tail of the cross section or, equivalently,
at positive values of ψ ′ in the scaling function. One should
mention here that the DEB potential alone is not enough
to produce reasonable results for the scaling function. The
Darwin factor K(r, E), shown in the last panel of Fig. 12, must
also be applied to the wave function. We illustrate this point in
Fig. 13, where we compare the SR-WS model (namely, with
Woods-Saxon potential in the initial and final states) with the
SR-DEB, but with the Darwin term set to unity. One can see
that the DEB potential alone produces the mentioned shift and
widening of the scaling function to higher energies, because of
the repulsive character of the potential, although the strength
is still too high when compared with the data.

The effect of the Darwin term can be appreciated in
Fig. 14, where we plot the scaling functions in the SR-DEB
approach with and without that factor (or equivalently by
setting K(r, E) = 1 in the calculation). Since K(r) < 1 inside
the nucleus, its effect is a reduction of the scaling function. This
reduction is precisely the one needed to reach the experimental
data, also shown in Fig. 14. Thus the Darwin factor is essential
in this approach to FSI.

One should mention that the full DEB+D model is not
equivalent to solving a Schrödinger equation with a Hermitian
local potential. Actually, the wave function in Eq. (27) is a
solution of such an equation with a nonlocal potential, since
apart from the dependence on the energy E, dependence on
the momentum or gradient operator also appears from the
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FIG. 13. Effect of DEB potential without the Darwin term. Solid
lines: SR model with the same Woods-Saxon potential in the initial
and final states. Dashed: SR-DEB results with the Darwin term set to
unity. Experimental data from Ref. [55].

reduction of the Dirac equation [30,56,57,60]. This means
that the solution of the Schrödinger equation with DEB
potential plus Darwin factor is not comparable to any other
nonrelativistic or relativized solutions obtained with local
potentials. The nonlocality contained in the DEB+D approach
introduced here, also implicit in the Dirac equation and
made explicit by means of the DEB+Darwin reduction, thus
becomes essential in producing the kind of effects that usually
appear in nonrelativistic approaches of FSI related to the role
of correlations and/or exchange terms in the optical potentials.
In particular, one could argue that in the SWD model discussed
above, the inclusion of 2p-2h intermediate states gives rise also
to nonlocal effects in the final state.

A better appreciation of the effect of the DEB potential
without the Darwin factor can be seen in Fig. 15, where we
compare the scaling functions in the SR-WS and SR-DEB
potentials. Once again the Darwin factor is set to unity. The
q-dependent shift Es(q) has been applied to the DEB results.
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FIG. 14. Effect of Darwin term on scaling function in the SR
model. Solid lines: total DEB+D result. Dashed: results with the
Darwin term set to one. Experimental data from Ref. [55].

The widening of the distribution to higher energies, producing
a longer tail, is clear. Note also that the DEB potential does
not modify the results in the region ψ ′ < 0, and that there is a
reduction of the maximum in the region ψ ′ ∼ 0 (the magnitude
of the reduction increases with q).

D. Applications to neutrino reactions

We now exploit the SR-DEB+D model introduced in
the last section to make predictions for QE CC neutrino
reactions. Given the success of that model in describing the
(e, e′) superscaling data, the neutrino cross section results
obtained with our model can be considered at least reasonable
in a kinematic range from intermediate-to-high energies and
momentum transfers.

A selection of results for the 12C(νµ, µ−) differential QE
cross section are presented in Figs. 16 and 17, for incident
neutrino energies of 1 and 1.5 GeV, respectively. We show
results for a range of scattering angles from 15o to 150o. All
of the results in the figures have been obtained with the SR
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FIG. 15. Effect of DEB potential without Darwin term. Solid
lines: SR-WS. Dashed: SR-DEB with the Darwin term set to unity
and with the q-dependent energy shift Es(q).

model with different ingredients for the FSI. The results within
the DEB+D model of FSI are shown with solid lines, while
the dotted lines are the SR-WS results using the same Woods-
Saxon potential in initial and final states. We display the cross
section as a function of the final muon energy ε′. Therefore, the
tail produced by the FSI can now be seen to the left of the peak
of the SR-WS results. Finally, with dashed lines we show the
results obtained in a third calculation which closely follows
the general procedure originally introduced in Ref. [61] and
referred to as the SuSA approach.

Just as when the SuSA approach was performed using
data, here the theoretical (e, e′) cross section is divided by
the single-nucleon factor to obtain the scaling function, which
in turn is multiplied by the relevant CC weak factor, to
obtain the neutrino cross section. That is, this procedure is
similar to the SuSA approach in Ref. [61] except that instead
of using the “experimental” superscaling function obtained
from the analysis of (e, e′) world data, in this case we make
use of the scaling function derived from (e, e′) results with
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FIG. 16. Double-differential cross section for the 12C(νµ, µ−)
reaction for incident neutrinos of 1 GeV, computed with several
versions of SR model. Dotted lines: Woods-Saxon potential. Solid:
DEB+D. Dashed: reconstructed from the (e, e′) DEB+D model using
the SuSA.

the SR-DEB+D model. Note that the reconstruction of the
(νµ, µ−) cross section from the (e, e′) data (SuSA) or (e, e′)
calculations (we denote it as superscaling-based approach to
avoid confusion with SuSA which implies the “experimental”
scaling function) assumes that the scaling function for both
reactions is similar for the kinematics of interest. Thus in
Figs. 16 and 17, we treat the solid lines of the DEB+D model
as “exact” and check the accuracy of the superscaling-based
approach by comparing the dashed lines with the solid ones.
In general, the superscaling-based results are very close
to the DEB+D results. The differences between the two
sets of results become smaller as the scattering angle and
neutrino energy increase, since bigger values of the momentum
transfer are involved. The biggest differences appear for very
small angles, implying rather small values of the momentum
transfer. In these cases, the description of the giant resonance
region needs a nuclear model containing collective degrees
of freedom such as the random-phase approximation (RPA),
which is not included in our approach. An example is shown
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FIG. 17. Same as Fig. 16, but for neutrinos of 1.5 GeV.

for θ = 15o in Figs. 16 and 17. The presence of the narrow
peaks appearing as potential resonances clearly violates the
scaling of the cross section in that region. However, for higher
values of the scattering angle, the superscaling-based analysis
begins to be applicable, and its predictions can be considered
quite reasonable, with an error typically below 10%.

IV. CONCLUSIONS

In this work, we have presented improvements over the
semi-relativistic approach to electron and neutrino reactions
for intermediate-to-high energies and momentum transfers
in the QE region. Going a step beyond the continuum shell
model, we have explored two approaches to describing the FSI:
the Smith-Wambach damping model and the Dirac-equation-
based potential. The former is applicable to low energies
and has simply been extrapolated here to relativistic energies,
while the latter is more appropriate for the kinematic regime
considered in this paper and has been our main focus.

Thus, in addition to using the semi-relativistic expansion
of the nucleon current in powers of p/mN and relativistic
kinematics, we have used the DEB form of the relativistic
Hartree potential term to describe the continuum wave function
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of the ejected nucleon. Furthermore, we have included in the
wave function the nonlocalities arising from the reduction of
the Dirac equation by multiplying it by the corresponding
Darwin factor.

First, we focused on the analysis of the electromagnetic
response functions. In particular, we investigated the properties
of scaling of the first kind displayed by our results. The
longitudinal and transverse scaling functions were computed
for a wide range of momentum transfers, from 0.5 to 1.5 GeV.
Several aspects and details of the different theoretical ingre-
dients embodied in our model were analyzed. In particular,
we examined the effects of the relativistic corrections, and we
presented comparisons with fully relativistic results.

We have found that our model approximately fulfills first-
kind scaling except for a small energy shift, Es(q), which turns
out to be linear in q. This behavior has been connected with the
repulsive character of the DEB potential, which also depends
linearly on the nucleon energy. The Darwin factor has been
found to be essential for the description of the experimental
scaling function data. The Darwin factor is needed to correct
for mathematically unavoidable nonlocalities arising in the
differential equation describing the upper component of the
relativistic nucleon wave function.

Is is a remarkable result of this work that, except for the
energy shift, our model gives essentially the same scaling
function for a 1 GeV wide range of three-momenta q—
spanning a kinematic region that extends from nonrelativistic
to relativistic conditions—and that the behavior of the theo-
retical scaling function is essentially the same as that of the
experimental data. The study of the theoretical energy shift
performed here can be of help for future analyses of the scaling
properties of experimental data. In particular, it suggests that
the small scaling violations of the first kind found in the (e, e′)

data can be used to extract valuable information about the
strength of the FSI.

Finally, we have presented an application of the model to
the inclusive CC neutrino reaction 12C(νµ, µ−) in the region
of the QE peak. Results have been presented in a range of
kinematics for several neutrino energies and muon scattering
angles. In particular, we used our model to investigate
theoretically the kinematic range of validity of the superscaling
approach in reconstructing the neutrino cross section from
the electromagnetic scaling function. The validity of the
superscaling-based approach has been verified with our model
for kinematics involving values of the momentum transfer
large enough such that the QE region is not contaminated by the
presence of giant resonances. For incident neutrinos of 1 GeV,
this happens for angles typically bigger than ∼15o. In these
cases, within our model, the superscaling-based approach is
seen to be very successful in being able to reconstruct the
neutrino cross section from the electromagnetic one.
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