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Multiple steady states on an adsorbent surface
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The occurrence of multiple steady states in a system formed by monomers adsorbed on a lattice, saith at-
tractive interaction between nearest adatoms, is demonstrated. This fact causes hysteresis in the
adsorption-desorption or desorption-readsorption processes. On the other hand, the coordination number
of the adsorbent lattice and the corresponding degree of nonlinearity of the rate equation do not essentially
influence the results obtained.

I. INTRODUCTION

Interactions between adatoms have helped explain adsorp-
tion energies which are functions of coverage. These in-
teractions influence the rate of surface reactions, making
them quicker or slower, thus producing "autocatalytic"
mechanisms. As is well known, multiple steady states can
exist in chemical reactions including autocatalytic steps. ' A
steady state may be stable or unstable according to whether
a small deviation from it decays to the original steady state
or evolves away from it.

In several previous papers' we have dealt with the kinet-
ics of various adsorption processes from an extension of the
Ising-Glauber mode15 where, starting from a master equa-
tion and suitably chosen transition probabilities, the macro-
scopic equations governing the time evolution of the system
were obtained. %hen interactions between adatoms exist,
the kinetic equations involve nonlinear terms corresponding
to these interactions. As shall be demonstrated, multiple
steady states, for a range of the parameters characterizing
the problem, can exist. Several of these steady states would
be stable, Thus, initial conditions essentially determine the
final steady state reached by the system and hysteresis
phenomena can take place. The simplest case is the
adsorption-desorption of a monomer, with a constant in-
teraction energy existing only between nearest neighbors.

II. THE MODEL

%e consider a particle which can be adsorbed on a vacant
site of a linear chain (later we shall extend the results to the
case of a lattice with coordination number z). Conversely,
an adsorbed particle can be desorbed, thus creating a vacant
site. Schematically, the process may be represented as

W (v)+ V(s) = X(s),
where A, X, and V denote, respectively, the particles of the
vapor, the adatoms, and the vacancies on the adsorbent lat-
tice.

When interactions between adatoms exist, the above sim-
ple scheme is not valid, because the interactions favor or re-
tard the adsorption-desorption mechanism, and in general
more than one partic1e is invo1ved in each elemental pro-
cess. Thus, this reaction is autocatalytic and the rate equa-
tions are non}inear. This fact suggests the existence of mul-
tiple steady states.

%e assume that the process takes place as follows: The
transition probability of each elemental process is chosen in

the Arrhenius form, and the activation energy is decom-
posed into two additive terms, corresponding to the action
of the substrate and to the interaction between nearest ad-

atoms, respectively. If the plus sign denotes a filled site and
the minus sign a vacant one, the elemental processes taking
place on the lattice and their respective probabilities are as
follows. Adsorption:

+ —+ —+ + +, 8'++ -A exp[ —(E+2E;)/kT]

+ —— + + —
~ W+ = A exp[ —(E + E;)/kT ]

——+ —++, W +-A exp[ —(E+E;)/kT]
—————+ —, W' = A exp( —E/kT)

Desorption:

+ + + + —+, W++ = A
'
exp[ —(E'+ 2E,")/kT]

+ + — + ——, IY+ = A
'
exp[ —(E'+ EI')/kT]

—++ ——+, W' =A'exp[ —(E'+E )/kT]

—+ —————, W' = A' exp( —E'/kT)

Here, A and A
' are constant factors, E and E' are the con-

tribution of the substrate to the total activation energy, E;
and E are the contribution to the total activation energy
due to interaction between two neighbor adatoms, k is the
Boltzmann constant, and T is the temperature. An attrac-
tive interaction facilitates adsorption and makes desorption
difficult, and therefore E; & 0 and E & 0. On the contrary,
a repulsive interaction facilitates desorption and makes ad-
sorption difficult, and therefore E& & 0 and E & 0. Thus E;
and E have different signs. For the sake of simplicity, we
have assumed that all the preexponential factors are the
same for the different eases (A for adsorption and A' for
desorption) .

Starting from this model and following the guideline of
Ref. 2, we obtain a hierarchy of rate equations. The first
equation of this hierarchy is

dn+ =n+ + 8'+++2n+ 8'+ +n 8'
dt

—n++ ~ W++ —2n++ W+ —n ~ W', (1)

where n; and njk (i,j,k +, —) denote the fractions of
singlets and triplets in i and i -j -k states, respectively.
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In order to close this hierarchy at a finite level, it is
necessary to use some approximation method. %e have
chosen the Bragg-Williams approximation, so that n&k

p1 ' pljElk and we retain only the first equation of the hierar-
chy. Introducing this approximation into Eq. (2), we obtain

—(1 —8) (J8+1)z—h8(J'8+ 1)z = P3(0) . (2)d(Hr)

where 8-n+ denotes the coverage, J =exp( —E;/kT) —1,
J'-exp( —E /kT) —1, H=& exp( —E/kT), and k = (A'/
A )exp[ —(E' —E)/kT].

III. RESULTS AND DISCUSSION

To calculate the steady values of 0, 0„we consider
d8/d(Ht)-P3(8) =0, which is an algebraic equation of
the third degree, and therefore has three roots. It can easily
be demonstrated that there is always one real root in the
range 0 & 0 & 1, and it is also possible that three roots exist
in the above range. In this case, two roots correspond to
stable states, both of which are separated by an unstable
one.

The number of steady states depends on the values of the
parameters J, J', and h. We assume IE'I = IEI and, there-
fore, J'= —J/(J+1). Thus the behavior of the system is
determined by only two parameters, J and h.

The stability diagram in the J-h plane is sho~n in Fig. 1,
where 1 and 3 denote the number of steady states (for case
3, only two steady states are stable). The a and b iines,
separating the different regions of the diagram, coincide at a
"critical" point, C, which is defined by hc - 9 and Jc = 2.
For J & Jc or h & h~ there is only one steady state. %e
can conclude that, for a repulsive or a slightly attractive
lateral interaction such that E; & —kTln3, multiplicity of
steady states does not exist. This multiplicity is possible
only for E; & —kT ln3 and a value of h in the suitable range

(between the a and b lines). As J increases, the range of h

giving multiple steady states becomes larger and larger. The
value of E; necessary to cause multiplicity of steady states is
quite reasonable. Thus, at room temperature, ~E; ~

= 1

kcal/mol is enough for this phenomenon to take place, if a
suitable value is given to h; for two-dimensional lattices, as
we shall see later, and for higher temperatures, this value of
F.; is still smaller.

In Fig. 2, 0, vs h for different values of J is plotted. One
can observe the similarity between these curves and the iso-
therms of a van der Waals gas and, therefore, the analogy
between this phenomenon and first-order phase transitions. 6

An interesting parameter is the relaxation time (scaled by
H) of the degree of adsorption far from a stabie state. We
have found that essentially two relaxation times exist, corre-
sponding to initial and final stages, respectively. The final
relaxation time, v, does not depend on the initial state but
does characterize the steady state. The behavior of v

depends on J and h, and is shown in Fig. 3. For values of J
less than Jc there is obviously only one relaxation time,
which increases as h decreases (and, consequently, 0, in-
creases). As regards values of J greater than Jc, for h & h,
(/t, denoting the value of /t corresponding to critical a line
at a given J), there is only one relaxation time, 7 &, which
increases smoothly as h increases. When h = h„while ~~

follows the aforementioned behavior, a relaxation time ~2,
corresponding to a new steady state, emerges. At the begin-
ning, rz is very great (rz ~ as h h, ), decreases abrupt-
ly, and then continues decreasing smoothly, even at h = hb

(hb denoting the value of /t corresponding to critical b line
at a given J). At h = hq, r~ ~, and for h ) hq only rz
exists. As J decreases, the difference hb —h, decreases and
at the critical point, ~here hb = h„both steady states
coalesce and the relaxation time tends to become infinite.

Finally, we extend the formulation of this problem to a
two-dimensional lattice with coordination number z (z
= 3, 4, 6). Again, we follow the guideline of Ref. 2, extend-
ed to a two-dimensional case, and use the Bragg-Williams

e

FIG. 1. Stability diagram in the (J,h) plane. 1 and 3 denote the
number of steady states in each region of the plane.

FIG. 2. Steady states of the system as a function of h, J being a
parameter.
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FIG. 3. Scaled relaxation time as a function of h, J being a

parameter. The numbers in brackets denote the values of J.

FIG. 4. Stability diagram in the (J,h) plane for various two-
dimensional lattices with coordination number z and comparison
with the linear chain.

approximation. We then obtain the kinetic equation

d(wj = (1 —0) (JO+ 1)'—hO(J'0+ 1)'= P, +t(O) . (3)
d(Hr)

The right-hand side of (3) is a polynomial of the (z+ 1)th
degree and we must solve the equation P, +t(O) =0 to find
the steady states. One should expect that the stability dia-

gram shown in Fig. 1 drastically changes, because the equa-
tion P, +&(0) = 0 has, in general, z + 1 roots. However, this
change does not take place. We have performed numerical
calculations for J going from —1 to very high values, and
for h from very low positive values to very high ones, i.e.,

we have swept practically all the region of the plane
J & —1, h & 0. We have always found one or three steady
states (two of the states being stable in the latter case) and
the stability diagrams in the J —h plane are similar to that
obtained for the linear chain, with critical points Jc =1.000
and bc=8.000, for z=3; Jc=0.666 and h~=7.716, for
z =4; and Jc =0.400 and Ac=7.529, for z =6 (Fig. 4).
Thus, we can conclude that, for the two-dimensional case,
the lattice coordination number and the degree of nonlinear-
ity of the rate equation, which are correspondingly greater
than those of the one-dimensional case, do not essentially
influence the results of the problem.
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